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Abstract 
The zebrafish (Danio rerio), is an important biomedical model 
organism used in many disciplines, including development, disease 
modeling and toxicology, to better understand vertebrate biology. 
The phenomenon of developmental delay in zebrafish embryos has 
been widely reported as part of a mutant or treatment-induced 
phenotype, and accurate characterization of such delays is imperative. 
Despite this, the only way at present to identify and quantify these 
delays is through manual observation, which is both time-consuming 
and subjective. Machine learning approaches in biology are rapidly 
becoming part of the toolkit used by researchers to address complex 
questions. In this work, we introduce a machine learning-based 
classifier that has been trained to detect temporal developmental 
differences across groups of zebrafish embryos. Our classifier is 
capable of rapidly analyzing thousands of images, allowing 
comparisons of developmental temporal rates to be assessed across 
and between experimental groups of embryos. Finally, as our 
classifier uses images obtained from a standard live-imaging widefield 
microscope and camera set-up, we envisage it will be readily 
accessible to the zebrafish community, and prove to be a valuable 
resource.
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Introduction
The zebrafish (Danio rerio) is a model organism widely used  
in a variety of fields, including developmental biology, disease  
modelling, cancer biology and immunology (Choi et al., 2021; 
Eisen, 1996; Gomes & Mostowy, 2020; Kemmler et al., 2021; 
Zanandrea et al., 2020). External fertilization, high fecundity,  
low cost and ease of genetic manipulation together make  
zebrafish a valuable model for many studies, and their  
transparent embryos make them particularly useful in studies of  
developmental biology (Nusslein-Volhard, 2012). The advent 
of CRISPR/Cas (Clustered Regularly Interspaced Short  
Palindromic Repeats/CRISPR associated (protein)) technology  
has meant that many studies use transgenic lines to answer  
important biological questions (Liu et al., 2019).

Zebrafish embryos develop externally, becoming free-swimming,  
independently feeding larvae by five days post fertilization  
(dpf) (Kimmel et al., 1995). Development is rapid, with  
gastrulation and neurulation occurring within the first 12 hours 
post fertilization (hpf) (Kimmel et al., 1995). Many studies, and 
particularly developmental studies, require accurate staging  
of zebrafish embryos and larvae. Although the timing of  
fertilization can be estimated to within ~30 minutes, the num-
bers of hours post fertilization at the standard temperature  
of 28.5°C (Kimmel et al., 1995) provides only an approximation  
of the actual developmental stage, because other factors, like  
population density and water quality, can affect maturation  
rates (Singleman & Holtzman, 2014). Even when such  
factors are controlled for, embryos within a clutch may develop  
at different rates (Parichy et al., 2009). Researchers therefore  
use both hpf/dpf and staging guides that are based on  
morphological criteria to stage individual embryos (Kimmel  
et al., 1995). These morphological features include the  
number of somites and the appearance of landmark structures  
such as the embryonic shield, tail bud and eye primordium  
(Kimmel et al., 1995; Westerfield, 2000).

Staging of embryos is of particular importance because many  
studies report ‘developmental delay’ as part of a genetic or 
drug-induced phenotype. For example, transgenic lines might  
develop more slowly than their wild-type (WT) counterparts,  
(Elabd et al., 2019; Giraldez et al., 2005; Jia et al., 2020;  
Li et al., 2017), as might embryos injected with antisense  
morpholino oligonucleotides (Flinn et al., 2008; Hung et al.,  
2013; Walpita et al., 2010), or those treated with drugs  
(Akthar et al., 2019; Byrnes et al., 2018; Farooq et al., 2019).  
Significantly, zebrafish have emerged as important models in  

which to study the effects of environmental and aquatic 
toxins, with many of these treatments also resulting in a  
developmental delay (Aksakal & Sisman, 2020; Li et al., 2020; 
Mesquita et al., 2017). Such delays are difficult to quantify 
without manually staging large numbers of embryos, which is  
inconvenient, subjective and time-consuming, especially when 
assessing developmental abnormalities (Jeanray et al., 2015; 
Teixidó et al., 2019). Adding to this difficulty, the delay is  
often temporary, and transgenic or treated embryos ‘catch up’ 
with their WT counterparts (Elabd et al., 2019; Ge et al., 2019;  
Kamei et al., 2018). It is therefore important to identify exactly 
when the delay is occurring to account for it in the study.  
Conversely, in many studies it is necessary to exclude general  
developmental delay, a potentially confounding variable, as the 
cause of either a tissue-specific phenotype or a developmental  
delay induced by a drug treatment or specific mutation,  
in order to validate the results of a given experiment (Mannucci  
et al., 2021; Sidik et al., 2021). For example, if one knocks 
out a gene involved in cardiac development, it is important to  
determine if any delay in heart formation is cardiac-specific, 
or part of an organism-wide developmental delay. In some  
studies, altered hatching rates are used as an additional proxy 
for developmental stage (Martinez et al., 2018; Tshering et al.,  
2021; Zhang et al., 2015), yet hatching defects can be caused 
by hatching gland specific issues, as opposed to a more  
general developmental delay (Suzuki et al., 2019; Trikić  
et al., 2011). Because assessing developmental delay is such  
a critical part of zebrafish related work, it is imperative that we 
develop a more standardized and automated way to measure  
it: one that reduces the time and subjectivity burden inherent  
in manual staging.

The use of image analysis has become increasingly popular  
in the life sciences, automating the quantification of microscopy  
images in an unbiased fashion (Meijering et al., 2016).  
However, designing an image analysis algorithm to detect  
the wide range of morphological features on which staging  
guides depend would be a challenging endeavor. Nevertheless, 
the staging of embryos based on microscopy images is a task  
to which machine learning is well-suited. Machine learning 
approaches, where a computer program uses algorithms and  
statistical models to continuously learn and improve pattern  
prediction, is already used widely in biological studies (Greener 
et al., 2022). Several labs have already made successful  
attempts to automate the analysis of morphological features 
of zebrafish embryos using machine learning. Jeanray et al.  
(2015) used a supervised machine learning approach to  
classify bright-field images of zebrafish embryos according 
to chemical treatment induced defects, with >90% concord-
ance to manual expert classification, and various other studies  
have produced similar classifiers (Ishaq et al., 2017; Shang  
et al., 2020). More recently, Guglielmi et al. (2021) used an 
innovative optical projection tomography (OPT) and back- 
projection technique followed by semi-automated segmentation  
and quantitation to objectively describe the morphological  
features of zebrafish embryos in which BMP signaling was  
perturbed. In terms of developmental staging, Pond et al.  
(2021) recently developed a convolutional neural network  
(CNN)-based classifier to stage zebrafish tail-buds at four  

          Amendments from Version 2
We have updated our manuscript to remove the potentially 
confusing statement ‘it was not trained to predict the actual hpf 
of a given embryo’ as our system is solely designed to identify 
developmental delay, and not the actual hpf of an individual 
embryo.

Any further responses from the reviewers can be found at 
the end of the article
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discrete developmental stages, demonstrating that high  
accuracy can be achieved with small data sets (<100 images). 
These elegant systems highlight the power of machine learning  
approaches in the identification of morphological features 
and discrete developmental stages, but none of these stud-
ies extract sufficient information to enable complete temporal  
developmental profiles to be compared. For example, Pond  
et al. (2021) compared four developmental stages, and whilst  
their CNN-based classifier was able to accurately predict 
these stages, this is not sufficient to extract a comparable  
developmental profile.

Using a combination of live imaging and machine learning 
approaches, we have developed a classifier to quantify zebrafish 
embryonic development, allowing objective and meaningful  
relative comparisons over time. Moreover, we demonstrate our 
classifier’s ability to stage specific developmental time-points  
is comparable to human experts. This work provides proof  
of principle that machine learning algorithms can be used to  
accurately stage zebrafish embryos and we hope that our  
classifier will become a valuable resource for the zebrafish  
community.

Methods
Zebrafish husbandry
All zebrafish work, including housing and husbandry, was  
undertaken in accordance with institutional (The Francis 
Crick Institute) and national (UK) ethical and animal welfare  
regulations, including the Crick Use of Animals in Research  
Policy, the Animals (Scientific Procedures) Act 1986 (ASPA) 
implemented by the Home Office in the UK and the Animal  
Welfare Act 2006. All regulated procedures were carried out at 
The Francis Crick Institute in accordance with UK Home Office  
regulations under project license PF59163DB, which underwent  
full ethical review and approval by The Francis Crick  
Institute’s Animal Ethics Committee. Consideration was given 
to the ‘3Rs’ in experimental design, and animals were observed 
on a daily basis for any signs of illness/distress. Any animals  
displaying evidence of suffering (physiological/behavioral 
changes, signs of injury) were euthanized in pH neutralized 
MS222 for a minimum of 30 minutes, before a second physical  
euthanasia method was performed. The Zirc AB line was  
used in all experiments. For most experiments, zebrafish  
embryos were obtained by tank mass-spawning using either 
a mating tank with a clear Perspex divider or a Mass Embryo  
Production (MEP) system (MBK Installations). Embryos 
were collected 30 minutes following divider removal or  
first-light respectively, and then at 30-minute intervals  
thereafter until spawning ceased. Embryos were maintained 
in plates of ~50 animals, at 28.5°C in E2 medium, prepared 
by The Francis Crick Institute’s Media Preparation Facility.  
Approximately 30 minutes prior to imaging, zebrafish 
embryos were manually checked for correct development, then  
individually transferred into separate wells of a 96-well plate,  
containing pre-warmed (28.5°C or 25°C) E2 medium. One  
plate of 96 embryos was then transferred to the Crick  
Advanced Light Microscopy (CALM) Science Technology  
Platform (STP) imaging suite and mounted in the  

environmental chamber (see below). One 96-well plate was  
used for imaging each condition, as a 96-well plate set-up  
provided optimal conditions for individual embryo image 
capture. Having 96 embryos per condition also ensured that 
if several embryos failed to develop normally, there would 
still be sufficient embryos to perform both training and 
downstream analysis. Excess embryos were disposed of in  
MS222 as above.

Live imaging
Zebrafish embryos were maintained at 28.5°C until shortly  
before four hpf as defined by both hpf and morphological  
criteria (sphere stage, (Kimmel et al., 1995)), at which point 
they were transferred into U-bottomed 96-well plates (Thermo 
Fisher) in E2 medium as described above. Plates were cov-
ered with fluorinated ethylene propylene (FEP) membrane  
(1 mil Teflon FEP film, American Durafilm) to prevent con-
densation and allow for gas exchange. Brightfield images of 
embryos individually seeded in 96-well plates were acquired 
every 15 minutes starting at four hpf for 60 hours using a Nikon  
Ti2 microscope with 2X/0.1 Plan Apo objective and 1.5x 
intermediate magnification. A small pixel complementary  
metal-oxide-semiconductor (CMOS) camera (UI-3280SE, 
iDS) enabled a whole embryo to be captured in a single field 
of view at cellular resolution (pixel size 1.15 μm). Sample tem-
perature was maintained at either 25.0 or 28.5°C using an envi-
ronmental chamber enclosure (Okolab). The microscope was 
controlled with Micro-Manager v2.0 software (Edelstein et al.,  
2014, RRID:SCR_000415) and the HCS Site Generator 
plugin was used to generate a list of positions for the 96-well  
plate. The workflow is summarized in Figure 1.

Machine learning pipeline configuration
Automated staging of zebrafish embryos was performed using  
ilastik (Berg et al., 2019) and FIJI (Schindelin et al., 2012), 
both free, open source software popular among life science  
researchers. All the FIJI scripts and ilastik project files  
needed to reproduce these steps are available to download  
online (Barry, 2022). This repository contains step-by-step  
instructions that can be used to either reproduce the raw data  
used to generate the plots in this manuscript, or run the classifier  
on new data (see README.md in Barry, 2022).

Training of machine learning model
Images of zebrafish embryos were randomly divided into  
training and test datasets as described in Table 1. Using an  
ilastik pixel classification pipeline, pixels in training 
data were manually labelled as belonging to one of three  
classes: embryo, background or embryo/background boundary  
(Figure 2A). These labels, together with a range of generic  
pixel features, were used to then train a random forest classi-
fier using ilastik’s pixel classification workflow. All training 
labels and pixel features used to train the pixel classifier can be 
viewed in the ilastik pixel classifier project file (PixelClassifier.ilp  
- Barry, 2022).

The probability map for the boundary class output by ilastik  
was then used to fully segment the embryos, using 
simple grey level thresholding in FIJI (Figure 2B;  
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Figure 1. Schematic diagram showing developmental temporal quantification workflow. Zebrafish embryos were individually 
seeded into U-bottomed 96 well plates in E2 medium at around 3.5 hpf. (A) The plate was then sealed with a breathable FEP membrane 
(B) and transferred to an inverted microscope with motorised XY stage where the temperature was maintained at 25.0 or 28.5°C using 
an environmental chamber (C). Brightfield images were captured of each well every 15 mins from sphere stage (4hpf) until 18 hpf. 
Images were analysed using an ilastik object classification pipeline (D) to produce plots showing predicted hpf versus actual hpf, similar  
to the schematic plot shown (E).

Table 1. Overview of datasets used for training and testing.

Plate Incubation Temperature (°C) Wells Used for Training Wells Used for Testing

1 28.5 13 82

2 28.5 11 84

3 25.0 0 95
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Figure 2. Overview of ilastik-based pixel and object classification pipeline. (A) A pixel classifier was trained to segment the embryos 
in each image. Using a random selection of time-points, regions in images were manually annotated as either background (red), embryo 
(green), or boundary (blue). Using the measures shown, calculated at various different scales, and the annotations, ilastik then trained a 
random-forest classifier. (B) When supplied with test data, the trained pixel classifier produced three probability maps, one for each of the 
classes listed in (A) (background, embryo, boundary). Each pixel in a map for a particular class gives the probability that the pixel belongs 
to that particular class. By thresholding the boundary probability map and performing some simple morphological processing on the 
resulting binary image, we could obtain a mask representing the embryo. (C) We then trained an object classification pipeline using ilastik. 
Using the mask images generated in (B) and the corresponding raw images, an object classifier was trained to recognise either 4.5 or  
17.5 hpf embryos. (D) When supplied with test mask and raw images, the trained object classifier returned a probability corresponding to 
the likelihood that the test image represented a 4.5 (P = 0.0) or 17.5 hpf (P = 1.0) embryo.

see Segment.ijm - Barry, 2022). The resultant embryo masks 
were then combined with the corresponding raw embryo 
images to train an ilastik object classification pipeline  
(ObjectClassifier.ilp; Barry, 2022). In such a pipeline, ilastik  
calculates various morphological features based on the  
connected components in the masks and a series of intensity  
features drawn from the pixel values in the raw images within 
the regions delineated by the masks (see https://www.ilastik.org/ 
documentation/objects/objects for further information). We 
manually labelled 4.5 and 17.5 hpf embryos in our training data  
(Table 1) and trained the ilastik object classifier based on  
these annotations (Figure 2C). All training labels and pixel  
features used to train the object classifier can be viewed in the  
ilastik object classifier project file (ObjectClassifier.ilp –  
Barry, 2022).

The trained object classifier, when challenged with new test 
data, outputs two values; one gives the probability that the 
embryo is 4.5 hpf (p

4.5
), the other that the embryo is 17.5 hpf  

(p
17.5

). The sum of these two probabilities is always 1.0. Given  

the probability of a given test embryo being 17.5 hpf, the  
predicted hpf is calculated as follows:

17.5= 4.5 + × (17.5 – 4.5)hpfP p

Comparison with manual (human) staging
To enable comparisons to be made between the accuracy  
of the classifier and manual (human) staging of zebrafish  
embryos, three individuals were asked to stage WT zebrafish 
embryos in 42 still images, randomly selected from the  
time-lapse movies that the classifier had previously analyzed.  
All were provided with the standard staging guide of Kimmel  
et al. (1995). These data were then compared with the  
predicted hpf generated by our classifier, for the same  
42 images. The range of error was then calculated as the  
difference between the maximum and minimum error.

Statistical analysis
LOESS (locally established scatter plot smoothing) was  
used to generate the line plots in Figure 3 showing the  
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Figure 3. Temporal development profile of zebrafish embryos. (A) Examples of still images from time-lapse movies used to train 
the object classification algorithm. (B) Scatter plot showing the hpf predicted by the ilastik object classifier versus the actual hpf for  
each embryo image. Each dataset contains approximately 5,000 data points (96 wells per experiment, imaged every 15 minutes for  
13 hours). (C) Line fit of the data in (B) using locally estimated scatterplot smoothing (LOESS). The grey region around each line shows  
the 95% confidence interval.

temporal development profile of embryos maintained at 28.5°C 
compared to 25°C. 95% confidence intervals (CI) calculated  
in R are displayed. All R scripts are available in the software  
availability section (Barry, 2022).

Results
Development of embryos is slower when they are maintained  
at 25°C than at 28.5°C. As proof of principle, we challenged 
our trained machine learning model with previously unseen test 
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data, consisting of embryos incubated at different temperatures  
(Table 1). The classifier was able to clearly differentiate 
between embryos maintained at 28.5°C and those maintained 
at 25°C (Figure 3). For the test data derived from plates  
incubated at 28.5°C, a greater spread in datapoints is evident 
for data derived from one plate versus the other (Figure 3C). 
The standard error of the mean predicted hpf, averaged 
over all timepoints, was 0.16 hpf for Plate 1 versus 0.60 hpf 
for Plate 2. This may be because slightly more training data  
was drawn from plate 1. But it should also be considered 
that the test data was not subjected to any quality control, so  
it is possible that more embryos on plate 2 died or drifted out  
of the field of view than on plate 1.

Having shown that our classifier can make meaningful  
relative comparisons between the developmental speed of  
embryos incubated at different temperatures, we next asked 
how accurate our classifier is at determining the actual  
developmental stage of specific embryos. More specifically,  
could our classifier identify the actual developmental  
stage, in hpf, of the embryos imaged? Importantly, our  
classifier was trained to give the probability that a given 
embryo belongs to one of two classes (4.5 hpf or 17.5 hpf) with 
the intention of detecting developmental delays. However, 
we were interested to ask how it compared with manual 
(human) staging. Crucially, images captured and assessed by the  
classifier are not controlled in relation to embryo orientation.  
In practice, this means that in some images, the embryonic 
stage can be clearly seen and identified (e.g. by counting the 
somites). In other images however, it is much more difficult,  
because the embryo is in an orientation in which key  
morphological features cannot be distinguished, or indeed the 
image itself is blurred. Therefore, unsurprisingly, considerable 
variation was observed in the manual staging between three 
individuals — for approximately 60% of timepoints, the  
maximum difference between any two human estimates was 
two hours or greater (Figure 4a). The random orientation of 
the embryos imaged in our system frequently did not permit 
the counting of somites, nor clear visualization of a specific  
developmental landmark such at the otic vesicle. Our data  
therefore demonstrate the importance of having multiple  
people stage the same samples to reach a consensus where the 
images are obtained in an automated fashion. When the same 
images were analyzed by our classifier, even given the training  
limitations described above, it was able to estimate the specific 
hpf of embryos with a similar success rate to manual (human) 
staging (Figure 4b). The errors produced by the classifier  
(0.0 ± 0.804; mean ± 95% confidence interval) are compa-
rable to the errors made by humans (0.0 ± 0.239). But given 
the imbalance in the number of data points in each population  
(42 versus 126), making any kind of rigorous statistical  
analysis is difficult. What these data do show is that despite  
the classifier not having been trained to identify discrete devel-
opmental timepoints, it still fares well compared to humans,  
and is capable of analyzing images far more rapidly.

Discussion
Machine learning approaches in developmental biology are  
not new and have become increasingly popular as our ability  

to generate large amounts of data has evolved (Jones, 2019;  
Tarca et al., 2007). The generation of ‘big data’, particularly  
from ‘omics’ technologies, has necessitated ever more  
sophisticated analysis tools, and the collection of live-imaging  
data is no different. Our ability to obtain thousands of  
images of hundreds of live biological samples means there is 
an increasing need for more automated methods of analysis.  
Moreover, automated data analysis helps to minimize the  
proclivity for human error and unconscious bias, a particular  
problem in our perception of images (Jost & Waters, 2019).

In this work, we have developed a new machine learning  
classifier for quantification of temporal development of the  
zebrafish, a commonly used model organism, particularly in 
the field of developmental biology. Until now, identification of  
developmental delay in mutant or treated zebrafish lines has 
only been possible by human observation and manual staging;  
a methodology inherently restricted in terms of numbers  
of embryos that can be observed over a given time-course.  
Moreover, as our data have shown, there is an intrinsic  
subjectivity in manual staging that may render results hard to 
reproduce, for example, over half of the images assessed by  
humans in our study showed at least a 2 hpf variability  
between individuals, and in some cases, considerably more.  
Our classifier at present uses relatively simple brightfield  
images, and therefore accuracy could be improved by  
incorporating gene expression data using fluorescent transgenic 
reporter lines. The expression profiles of numerous key genes  
during zebrafish development are clearly defined both spatially  
and temporally, so it follows that we could improve the  
accuracy of our classifier by the addition of gene expression 
data of selected genes. These could include for example, tbxta  
(brachyury, T, no tail) (germ-ring from ~5 hpf, notochord  
from ~10 hpf) (Schulte-Merker et al., 1992; Schulte-Merker  
et al., 1994), sox10 (neural crest from ~10 hpf) (Dutton  
et al., 2001) and myod (presumptive mesoderm from ~5hpf,  
somites from ~10hpf) (Weinberg et al., 1996). In a similar  
way, Pond et al. (2021) incorporated gene expression data from  
confocal microscopy images to enhance their algorithm  
training, using fluorescent in situ hybridisation techniques  
to profile gene expression. Although it precludes the use  
of fluorescent in situ hybridisation techniques to profile gene  
expression, a key advantage of our classifier system is the  
use of live imaging, whereby the course of developmental  
progression is captured, as opposed to a series of fixed images 
of different embryos. Moreover, another key strength of our 
classifier is its ability to accurately quantify temporal devel-
opment from images of embryos in random orientations with 
absolutely no image quality control. We envisage that our  
classifier will be a particularly useful tool in studies where  
accurate quantification of developmental delay is imperative, 
such as for developmental toxicity testing of drugs and toxicants  
(Dasgupta et al., 2020; Nishimura et al., 2016; Song et al., 2021).

Limitations of this study include testing one 96-well plate at 
a given time meaning the 28.5°C and 25°C experiments were  
conducted on different days, and the lack of testing using a 
genetically perturbed/drug-treated zebrafish line. Additionally,  
in cases where only a small sample of embryos is to be 
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Figure 4. Comparison of manual and automated predictions of developmental stage. (A) Machine Learning (ML) classifier- and 
human-predicted hpf for 42 images of zebrafish embryos ranging from 4 to 17.5 hpf – each dot represents a single prediction for a single 
image. (B) Distribution of the range of human-predicted hpfs in (A), where the range represents the difference between the maximum and 
minimum error at each timepoint in (A).

tested (e.g. <50), it may be less labor-intensive to monitor  
development manually, albeit with appropriate controls to reduce  
subjectivity.

Other studies have used 3D imaging and OPT to enhance the  
ability of machine learning approaches to accurately stage 
and identify morphological features (Guglielmi et al., 2021;  
Pond et al., 2021). Our classifier at present uses relatively 
simple 2D images, taken using a standard wide-field micro-
scope, and its simplicity in both image acquisition and analysis  
makes it accessible to a wide audience. Similarly, although  

our classifier has been trained using WT embryos, the same 
pipeline could be used to analyze zebrafish embryos with aber-
rant morphologies, e.g. the no tail (Brachyury) mutant (Halpern  
et al., 1993; Schulte-Merker et al., 1994), providing the  
algorithm is retrained on a subset of the given mutant embryos.

Finally, while we implemented our classifier using “conventional”  
image analysis tools such as ilastik and FIJI, the use of 
deep learning in biological research is becoming ever more 
popular (Hallou et al., 2021). However, the application of 
deep learning for staging zebrafish embryos would require  
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optimization of neural network architecture, along with a  
substantially larger volume of training data — this requires  
considerable computational time and resources.

Conclusion
The developing zebrafish embryo is used in many different  
types of studies and accurate staging is essential. When  
comparing an experimental group of embryos with a control  
group, ensuring the embryos have reached the same  
developmental stage allows for meaningful comparisons to 
be made. Moreover, identification of a developmental delay 
in an experimental group is itself an important phenotypic  
observation. Our machine learning based classifier enables the 
unbiased assessment of thousands of images, across hundreds 
of embryos, with minimal time commitment. We anticipate  
that our classifier will be a useful tool for the zebrafish  
community to determine whether experimental animals (mutants,  
morphants, drug treated embryos) develop at the same rate  
as WT counterparts.

Data availability
Underlying data
All image data generated in this study is available to download  
from the BioImage Archive (accession number S-BIAD531)  
https://www.ebi.ac.uk/biostudies/bioimages/studies/S-BIAD531

Data are available under the terms of the Creative Commons  
Zero “No rights reserved” data waiver (CC0 1.0 Public domain 
dedication).

Reporting guidelines
Zenodo: ARRIVE 2.0 checklist for “Automated staging of 
zebrafish embryos using machine learning” https://doi.org/ 
10.5281/zenodo.7198533 (Barry, 2022a)

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).

Software availability
Source code available from: https://github.com/djpbarry/fish-quant

Archived source code available from: https://doi.org/10.5281/ 
zenodo.7189408 (Barry, 2022).

License: GNU v3.0
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# Overall assessment 
 
In this manuscript the authors describe a computational method for staging zebrafish embryos. 
 
Firstly, we would like to congratulate the authors for publishing all image data on the Bioimage 
Archive and putting all code onto a publicly accessible github repository. 
 
However, in our opinion, the overall rationale does not scientifically adhere to the standards in the 
field. The authors use a linear regression to interpolate random forest probabilities, which are not 
meant to provide a linear response to the input data. It is not obvious whether the object features 
that are used as an input to the random forest should change linearly during zebrafish 
development. For example, maybe the “variance in intensity” (
https://www.ilastik.org/documentation/objects/objectfeatures) would change only in later stages 
while it stays constant for some duration during early development, potentially resulting in a non-
linear response. The random forest classifier is adding even more nonlinearities as each decision 
tree is composed of several thresholds on the image features and the vote of each tree is a 
majority vote of all its leaves. The ilastik probabilities summarize the votes of all trees. Thus, 
overall, the rationale of a linear interpolation of those, by design, highly non-linear probabilities is 
in our view scientifically questionable. We feel that this notion is supported by the data. In our 
view, the data points for plate 1 in Figure 3A could be well fit by a step function with three steps 
where the random forest output probabilities stay relatively constant from 4 to 6 hpf and from 6 
to 13 hpf and from 13 to 20 hpf, consistent with the non-linear design of the random forest that is 
meant to create decisions rather than a linear response. 
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Along those lines, we were also wondering that why the authors chose to paint a schematic non-
linear response in Figure 1E. Could you please comment? 
 
We would like to offer two suggestions for how to modify the approach of the authors while still 
keeping a large part of the overall pipeline intact: 
 

As far as we know, the measured features can be extracted from ilastik and it would be very 
interesting to plot all of them against hpf and see whether some of them change linearly. If 
yes, those linearly responding features could be used to train a linear regression model to 
achieve the aim of the publication. 
 

1. 

As an alternative, the authors could decide to split the developmental time, e.g. into bins of 
2 hours and then train ilastik to predict into which bin the embryo belongs. That is, for 20 
hours one would need to train 10 classes. We hope that this should be an acceptable effort 
in terms of annotations. The output of the overall pipeline would then simply be the class 
that is predicted by ilastik with the highest probability.

2. 

Another general comment is that for all approaches it is critical to keep the imaging conditions 
identical in terms of illumination intensity and exposure time, to ensure that the algorithm trained 
on one data set can be applied to another one. It would be important to mention this in the 
manuscript. In addition, it should be considered whether the images could be normalized, e.g. 
using intensity percentiles, before being input to the algorithms. In fact, we think it would be 
essential to test whether such a normalization could improve the robustness of the results, 
especially when staging embryos that are imaged on  different days and that were not part of the 
training data. 
 
# Manuscript 
 
Page3- Text: “The staging of  ….. well-suited”. A reference (citation) would be helpful. 
 
Page3- Text: “Jeanray et al.   ….. Shang et al. (2022)”. Hard to comprehend. Please rephrase. 
 
Page3- Text: “ … semi-automated segmentation and quantitation …. ”.  Use quantification ?! 
 
Page4- Text: “ … using simple grey level threshold …. ”. What is meant by ‘simple’ here? What was the 
criterion for threshold selection? We think it is generally good to avoid qualifications such as 
“simple”. 
 
Page5- Table1: Could you please elaborate in the text why no data from plate 3 was used for 
training?! 
 
Figure 2, A: How were these features for pixel classification selected? Can you please explain the 
rationale why these features were used and which filter sizes were selected? In case, the authors 
just used all features that are available in ilastik, we think this should be mentioned like this 
instead of listing them individually. 
 
Figure 2, B: Can you please label the individual morphological operation steps? 
 
Figure 2,- Caption B: What kind of thresholding and what morphological operations were used? 
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Figure 2, C: How were these features  selected? 
 
Page8- Text: “….. image itself is blurred”. Why are the images blurred? Could they be removed from 
the data set? 
 
Page8- Text: “….. Test data was not subjected to any quality control, …..”. Why not? 
 
Page8- Text: “But given the imbalance   ….. analysis is difficult”. Why was this imbalance created in 
the first place? 
 
Page8- Text: “ ….. analyzing images far more rapidly”. Do you have any estimation on how fast in 
minutes/hours/….? 
 
Page10- Text: “ When comparing ….. To be made”. Not comprehensible. Can you please rephrase? 
 
Page10- Text: “ ….. unbiased assessment …..”.  Replace with automated? 
 
# Software 
 
In general, we feel that the software is missing documentation, especially to make the usage of it 
clear to non-computational users that would like to use it. For example, there is no information on 
how a user could start using the software. Information such as “clone the repository, you will find 
the trained models inside this directory, etc” is missing. Other basic information is also missing on 
describing how each command should be executed. For example, part of the first step of the 
pipeline is written as: 
 
� /run_ilastik.sh … --output_filename_format="/{nickname}_{result_type}.tiff" "input.tiff" 
 
But there are no comments indicating that the user should replace the parts between angle 
brackets (< >) with their own input. Also, please comment about the importance of keeping the 
other brackets (such as in {nickname}_{result_type}.tiff) for the software to work properly. 
 
The Fiji scripts are devoid of comments in the code describing the different steps, functions, etc. 
 
We think that the repository should have a minimal example pointing to a dataset that could be 
used to run the software with the exact instructions to showcase how to run it! 
 
Regarding other technical issues, we found that the data was missing some information in their 
metadata. For example, when opening the image properties on Fiji, we could not find the value of 
the frame intervals (it was zero and it would be great if it was giving the hpf). 
 
Also, there should be information regarding the software versions used to run the analysis. We 
encourage this last point since we were not able to reproduce the workflow using the following 
time-series from the test-set: 
 
FishDev_WT_01_1_MMStack_A8-Site_0.ome.tiff 
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First, we noticed that the first script of the tool only outputs the pixel predictions for two time-
points, which was not clear if this is how the tool is supposed to work or whether this is a bug and 
one should expect the pixel predictions for all time points of the dataset. Also, we could not 
reproduce the whole workflow since we had an error after attempting to run the object 
classification part of the workflow (step 3, error input/output marked below). 
 
## Error output from step 3: 
 
� /Applications/ilastik-1.4.0b27-OSX.app/Contents/ilastik-release/run_ilastik.sh --headless --
project="./ObjectClassifier.ilp" --export_source="Object Probabilities" --output_format="multipage 
tiff"  --output_filename_format="./{nickname}_{result_type}.tiff" --
raw_data="/Users/segonzal/Downloads/Zebrafish_ML_Archive/test_data/FishDev_WT_01_1/FishDev_WT_01_1_MMStack_A8-
Site_0.ome.tif" --
segmentation_image="/Users/segonzal/Downloads/Zebrafish_ML_Archive/test_data/FishDev_WT_01_1/FishDev_WT_01_1_MMStack_A8-
Site_0.ome_Probabilities.tiff_Binary.tiff" --export_dtype="float32" --readonly="true" > error.txt 
 
"/Applications/ilastik-1.4.0b27-OSX.app/Contents/ilastik-release/lib/python3.7/site-
packages/lazyflow/operators/ioOperators/opTiffReader.py", line 58, in setupOutputs 
    assert axes[last_C_pos] == "C" 
AssertionError
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
No

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
No

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Bioimage analysis

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.
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Responses (1)  
  
 AUTHOR RESPONSE16 MARCH 2023  
Rebecca Jones  
The Francis Crick Institute, 1 Midland Road, London, UK  
Responses to Reviewer 2 (Amin Allalou) In this manuscript the author is describing a method for 
automatic detection of different development stages for the zebrafish. A robust method that can 
accurately classify a zebrafish into different development stages is highly relevant for many 
researchers working with zebrafish and hence the importance in developing methods like this is 
high.  
We thank the reviewer for their positive comments.    
  
The dataset used for the method is quite small and limited. It is good for proving a proof of the 
concept of the method but for a more general use of the method it needs to be further tested with 
embryos with different genetic backgrounds or treatment (as mentioned by the author in the 
discussion).  
We agree with the reviewer that the data used in this study is limited, in the sense that the images 
used are all of wild type zebrafish embryos and all images were acquired on the same microscopy 
system. However, the aim of the manuscript was indeed to demonstrate a proof of concept (that 
developmental delay could be quantified in an automated manner). We did explore the possibility 
of testing our method on images of zebrafish whose development was perturbed either by some 
pharmacological treatment or genetic mutation, but, as far as we are aware, no such treatments 
or mutants are readily available. Therefore, including such additional data would constitute a 
substantial body of additional work and experimentation.    
- I see your point even though more data would make the manuscript more appealing.   
  
The author should improve the overall description of the method and the data used for training. It 
is sometimes difficult to understand what dataset is used for training and for evaluation. Same 
data cannot be used in training as in the evaluation of the method, it needs to be made clear to 
the reader that this is not the case.  
We thank the reviewer for drawing our attention to this and agree that the wording of the 
manuscript could be improved in places. We have made clarifications regarding the nature of the 
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training and test data, detailed in the responses below.    
- Thank you for clarifying this.   
  
Page 4 Zebrafish husbandry and Live imaging Later in the paper the author is discussing 2 
different datasets for 28.5 degree data (rep1 and rep2). Could the author in this section describe 
the difference between those to datasets.  
We thank the reviewer for bringing this to our attention. We have revised the methods section and 
added a table (Table 1) to clarify exactly what data was used for training and what was used for 
testing. In total, we imaged three 96-well plates of embryos, two at 28.5C and one at 25.0C. A 
random selection of wells from the two 28.5C plates were used for training purposes, while the 
remainder of wells in those plates were reserved for testing. None of the training data was 
subsequently used for testing. The plate incubated at 25.0C was used for testing only. To be 
certain that none of the training data "leaked" into the test datasets, we modified the R code used 
to generate the plots in Figure 3 to explicitly rule out (by name) the inclusion of the wells used for 
training. New plots for Figure 3 have been generated with this revised R code which, as far as we 
can tell, are identical to those included with the original submission.    
- Table 1 is a good addition that makes the data selection much more clear.   
  
Page 4 “A total of 20 embryos were used for training, selected at random from the two”... Why only 
20 embryos?  
This was in fact a typo (the correct number, as per Table 1, is 24). But the reason for the small 
number is the requirement for manual annotation, which is time consuming. However, we view 
this as a positive - with relatively little training data, the classifier was still successful in 
distinguishing between two different populations of embryos.    
- Thank you. I agree a small number of training samples that can generate a good method is 
positive.   
  
How are these samples used in the training. Is the set divided into training, validation and test set? 
This is usually the procedure.  
The manner in which the data is divided into training and test sets is outlined in Table 1.    
- Thank you  
  
“The resultant masks were then combined with the raw pixel data in an ilastik object classification 
pipeline (ObjectClassifier.ilp; Barry, 2022), whereby the embryos were manually classified as being 
either 4.5 or 17.5 hpf (Figure 2C)."Some more detail on the classification method would be useful 
for the reader.  
We have now added some further details on the object classification workflow and included a link 
to the relevant section of the ilastik documentation (
https://www.ilastik.org/documentation/objects/objects), should the reader require further 
information.    
-Thank you  
  
Page 5 “…for the same 50 images, and plotted accordingly”. Where are they plotted?  
This corresponds to the data shown in Figure 4    
  
Section “Results An accuracy measure of the correct classification would be good to have. How 
many samples are correctly classified into the correct class.  
We agree with the reviewer that such a metric would be useful. However, while our machine 

 
Page 17 of 33

Wellcome Open Research 2023, 7:275 Last updated: 21 AUG 2023

https://www.ilastik.org/documentation/objects/objects


learning model is trained on the basis of placing objects into one of two different classes (4.5 or 
17.5 hpf embryos), the result is essentially a regression model, as we are testing this classifier on 
embryos at various stages of development between 4.5 and 17.5 hpf (inclusive). So, while we could 
certainly include a measure of how successful our model would be in discriminating between 4.5 
and 17.5 hpf embryos, this would tell us little about how successful the model is at discriminating 
between different rates of development, which was our primary goal.    
- Ok, thank you for the clarification.   
  
Development of embryos is slower when they are maintained at 25°C than at 28.5°C. As proof of 
principle, following training on 14 embryos and subsequent testing on two 96-well plates of WT 
embryos at 28.5°C as …” What was trained here? The author should be more clear on what was 
trained here. Is anything from previous training used here (where 20 embryos were used) or is it a 
completely new training? Was the same classes used in the training as previous? If so why was it 
retrained?  
We agree with the reviewer that this section was poorly worded and likely to cause confusion. We 
have therefore revised this text to make clear that no new training data has been introduced at 
this point - the results section refers to the same datasets referred to in the methods (and now 
listed in Table 1).    
- Great!  
  
If all training was done on one batch from 28.5°C it should not be used as a comparison in the 
evaluation where the same batch is compared to data from a new batch. This is not a valid 
comparison.  
We agree with the reviewer on this point and have made changes to the text (and added Table 1) 
to clarify what was used as training data and what was used for testing - none of the data shown 
in Figure 3 was used in training.    
-OK!  
  
“our classifier was trained to give the probability that a given embryo belongs to one of two 
classes (4.5 hpf or 17.5 hpf) with the intention of detecting developmental delays – it was not 
trained to predict the actual hpf of a given embryo.” It is not really clear to the reader how the 
author is estimating the predicted hpf. The classifier seems to be trained on only two classes 
4.5hpf and 17.5hpf. The output from the classification is a probability of belonging to one of each 
class. From these values how is the probability based predicted hpf in Figure 3 calculated? This 
should be clarified.  
We thank the reviewer for drawing our attention to this omission. We have now added text to the 
relevant methods section explaining how the probability values output by the object classifier are 
converted into predicted hpf values.    
-Ok, thanks for the clarification. However, it is a little bit confusing when you state “it was 
not trained to predict the actual hpf of a given embryo”, but you provide a regression where 
you try to do exactly this and also plot results for this. And at the same time you are not 
providing any classification accuracy. You are merely using a 2 class classifier and 
depending on how similar they are to the different classes you estimate the hpf. Figure 3B 
should be a straight line if the hpf prediction was good. Now it looks more like they are 
closer to one class and around 12 hpf they just shift from one class to the other. And for the 
25 degree this shift happens around 16hpf. This to me does not seem like a good prediction 
of the hpf. However, this still shows the delay in development that the paper is aiming for 
but the importance and need of the regression part is not clear to me.   
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“hpf of embryos with a similar success rate to manual (human) staging (Figure 4b). The errors 
produced by the classifier (0.0 +-} 0.804; mean +-} 95% confidence interval) are comparable to the 
errors made by humans (0.0 +-} 0.239).” Is both rep 1 and rep 2 data used in this calculation? Are 
any of these batches used in the training? Please, clarify in the text.  
A random selection of images from both plate 1 and plate 2 were used to generate this data. We 
have now noticed that, although none of the images used in training were included in this data, 
some images from the same wells as those used for training were included – these have now been 
removed and the figure revised. While there are now slightly fewer data points (44), the overall 
conclusion remains unchanged.    
-OK!  
  
“For example, at an actual hpf of 16.0, our classifier gave predicted hpfs of 16…. embryos and 
embryos maintained at 25°C, respectively.” This only provides info on that the development on the 
25°C is slower, as it should be. But how accurate is the 10.21 ± 0.44 really? How much slower 
should an embryo at 25°C be? Did the author do some manual staging to compare this number 
with manual estimation?  
We agree with the reviewer that this statement of accuracy was of limited value and have now 
removed it from the text. Estimations of accuracy are now limited to the data comparing our 
machine learning classifier with manual staging as shown in Figure 4.    
-OK  
  
Figure 1E What data is used here? It looks much cleaner than the ones shown in Figure 3? If this is 
just an artificial plot than are all three colors needed?  
We have now updated the panel in Figure 1E to make it clear that this plot is not real data and is 
intended for illustrative purposes only.    
- Ok, great!  
  
Figure 3 In Figure 3b the spread of the data points for red (WT rep 2) seems much greater than for 
green (WT rep 1) (this can also be seen in the confidence interval in Fig 3b). It is not clear, but if the 
data for “rep 1” is coming from the same dataset as was used for the training, then this pattern is 
an indication that the method does not generalise well to a new batch. Could the author clarify 
where the data is coming from and provide a plot with the data separated? In addition, some 
quantification of the spread of the data in rep1 vs rep 2 would be of interest to the reader.  
All of the data presented in Figure 3 was generated on test data only, previously unseen by the 
classifier. With regard to the differences in data spread, we have now added some discussion of 
this in the main text. Slightly more training data was drawn from plate 1 than plate 2, which may 
explain the slightly greater spread of data points for plate 2. It should also be noted that no 
quality control was applied to the test data (as this is laborious and time-consuming), so images of 
dead embryos and/or embryos that have drifted to the edge (our outside) of the field of view will 
have been included - it's possible that plate 2 produced a greater quantity of these lower quality 
images than plate 1. But the standard error of the mean for both plates is still less than 1.0 hpf.    
- One problem I see with the division of the data is that in your true test set (data coming 
from an isolated batch) you only have data that should show a difference from your data 
used in the training. No real isolated control data. To make the results more clear an 
isolated test set for 28 degrees and 25 degrees would be a much stronger evidence of the 
method performance. What if the method is doing some overfit to the two training batches, 
how do you know the performance on the test set is accurate when you don’t have a control 
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group (28 degree)?   
  
(3b) From the graph there seems to be a cluster of blue (25 degree) with actual hpf 4-10 being 
classified as approx 15 hpf. A comment on this pattern would be useful to the reader since the 
error is quite large.  
The majority of these datapoints correspond to the same two wells on that particular plate and it 
appears that segmentation error is to blame for the misclassification, as illustrated in the example 
below – in both cases, the embryos in the early stages of development were consistently over-
segmented, which likely resulted in their misclassification.    
-ok, If this is the case then an additional plot with those wells removed (or marked in some 
way  in your current plot) would clearly show the reader that the errors are coming from 
those wells.   
  
Figure 4. “Machine Learning (ML) classifier- and human-predicted hpf for 50 images of zebrafish” 
Are the data taken from the same batch as was used for training? No, as explained above, we have 
now made absolutely sure that none of the random images used for the human-ML comparison 
were drawn from the training data.  
- Ok! 
 
Is the rationale for developing the new software tool clearly explained?
No

Is the description of the software tool technically sound?
No

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
No

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
No

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
No

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Quantitative Microscopy, Image analysis, Machine learning, zebrafish

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 07 Apr 2023
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Rebecca Jones 

Ok, thanks for the clarification. 
 
However, it is a little bit confusing when you state “it was not trained to predict the actual hpf 
of a given embryo”, but you provide a regression where you try to do exactly this and also 
plot results for this. And at the same time you are not providing any classification accuracy. 
You are merely using a 2 class classifier and depending on how similar they are to the 
different classes you estimate the hpf. Figure 3B should be a straight line if the hpf 
prediction was good. Now it looks more like they are closer to one class and around 12 hpf 
they just shift from one class to the other. And for the 25 degree this shift happens around 
16hpf. This to me does not seem like a good prediction of the hpf. However, this still shows 
the delay in development that the paper is aiming for but the importance and need of the 
regression part is not clear to me. 
 
We agree with the reviewer's point here that, ideally, a plot of predicted hpf versus actual 
hpf should result in a straight line. In our case, we have curves that could more accurately 
be described as s-curves, due to the nature of the model we trained, as outlined above by 
the reviewer. While such curves are certainly not ideal for accurately predicting the hpf of 
individual embryos, they are completely adequate for the identification of developmental 
delay, which was our primary goal. 
 
It is certainly possible that we could improve our model by including additional training 
classes (perhaps resulting in a predicted versus actual hpf plot more closely resembling a 
straight line), but as previously stated, this would require a substantial volume of additional 
work to manually annotate new training data. We did actually consider presenting our data 
in a slightly different manner, which would have involved labelling the y axis in Figure 3B as 
"Probability of embryo being 17.5 hpf", but felt that this was perhaps a little abstract and 
may be difficult for biologists to interpret. But we also felt that "predicted hpf" wasn't quite 
accurate, for the reasons the reviewer has outlined, which is why we settled on (the slightly 
cumbersome!) "probability based predicted hpf". 
 
We also agree that the statement "it was not trained to predict the actual hpf of a given embryo
" is confusing and have removed this statement from the text.     
 
One problem I see with the division of the data is that in your true test set (data coming 
from an isolated batch) you only have data that should show a difference from your data 
used in the training. No real isolated control data. To make the results more clear an 
isolated test set for 28 degrees and 25 degrees would be a much stronger evidence of the 
method performance. What if the method is doing some overfit to the two training batches, 
how do you know the performance on the test set is accurate when you don’t have a control 
group (28 degree)? We take the reviewers point about the 25C test data being completely 
isolated from the training data, whereas the 28.5C test data is drawn from the same plates 
as training data. However, in our opinion, over-fitting to training data was more likely had 
we used only a single 28.5C plate for training. We chose to use training data from both 
28.5C plates for this reason. 
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ok, If this is the case then an additional plot with those wells removed (or marked in some 
way in your current plot) would clearly show the reader that the errors are coming from 
those wells. We must respectfully disagree with the reviewer on this point. We believe that 
one of the major strengths of our approach is the lack of manual curation we have 
performed on the data - the method is 100% automated. While we accept that this will 
sometimes result in errors for individual images or wells, for a sufficiently large population 
of embryos (such as a 96 well plate), these errors are not significant, as is evidenced by our 
ability to detect developmental delay between two different populations. 
 
Removing erroneous datapoints based on arbitrary criteria would not only be an extremely 
time-consuming endeavour (requiring the manual assessment of thousands of images), we 
believe it would also significantly weaken our argument that no manual intervention is 
required in our pipeline.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 30 March 2023
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© 2023 Scholpp S. This is an open access peer review report distributed under the terms of the Creative 
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Steffen Scholpp   
Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, 
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The amendments are sufficient, and therefore, I suggest the manuscript for indexing.
 
Is the rationale for developing the new software tool clearly explained?
No

Is the description of the software tool technically sound?
No

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
No

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
No

Are the conclusions about the tool and its performance adequately supported by the 
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findings presented in the article?
No

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Morphogen trafficking in zebrafish

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 26 January 2023

https://doi.org/10.21956/wellcomeopenres.20298.r53876

© 2023 Allalou A. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Amin Allalou   
1 Division of Visual Information and Interaction, Department of Information Technology, Image 
Analysis and Human-Computer Interaction, Uppsala University, Uppsala, Sweden 
2 Science for Life Laboratory BioImage Informatics Facility, Uppsala, Sweden 

In this manuscript the author is describing a method for automatic detection of different 
development stages for the zebrafish. A robust method that can accurately classify a zebrafish into 
different development stages is highly relevant for many researchers working with zebrafish and 
hence the importance in developing methods like this is high. 
 
The dataset used for the method is quite small and limited. It is good for proving a proof of the 
concept of the method but for a more general use of the method it needs to be further tested with 
embryos with different genetic backgrounds or treatment (as mentioned by the author in the 
discussion). 
 
The author should improve the overall description of the method and the data used for training. It 
is sometimes difficult to understand what dataset is used for training and for evaluation. Same 
data cannot be used in training as in the evaluation of the method, it needs to be made clear to 
the reader that this is not the case. 
 
Page 4 Zebrafish husbandry and Live imaging

Later in the paper the author is discussing 2 different datasets for 28.5 degree data (rep1 
and rep2). Could the author in this section describe the difference between those to 
datasets.

○

Page 4

 
Page 23 of 33

Wellcome Open Research 2023, 7:275 Last updated: 21 AUG 2023

https://doi.org/10.21956/wellcomeopenres.20298.r53876
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-4028-8443


“A total of 20 embryos were used for training, selected at random from the two”...
Why only 20 embryos? 
 

○

How are these samples used in the training. Is the set divided into training, validation 
and test set? This is usually the procedure. 
 

○

○

“The resultant masks were then combined with the raw pixel data in an ilastik object classification 
pipeline (ObjectClassifier.ilp; Barry, 2022), whereby the embryos were manually classified as 
being either 4.5 or 17.5 hpf (Figure 2C)." 
 

Some more detail on the classification method would be useful for the reader.○

○

Page 5
“…for the same 50 images, and plotted accordingly”. 
 

Where are they plotted?○

○

Section “Results
An accuracy measure of the correct classification would be good to have. How many 
samples are correctly classified into the correct class.  
 

○

“Development of embryos is slower when they are maintained at 25°C than at 28.5°C. As proof of 
principle, following training on 14 embryos and subsequent testing on two 96-well plates of WT 
embryos at 28.5°C as …” 
 

What was trained here? The author should be more clear on what was trained here. Is 
anything from previous training used here (where 20 embryos were used) or is it a 
completely new training? Was the same classes used in the training as previous? If so 
why was it retrained? 
 

○

If all training was done on one batch from 28.5°C it should not be used as a 
comparison in the evaluation where the same batch is compared to data from a new 
batch. This is not a valid comparison. 
 

○

○

“our classifier was trained to give the probability that a given embryo belongs to one of two 
classes (4.5 hpf or 17.5 hpf) with the intention of detecting developmental delays – it was not 
trained to predict the actual hpf of a given embryo.” 
 

It is not really clear to the reader how the author is estimating the predicted hpf. The 
classifier seems to be trained on only two classes 4.5hpf and 17.5hpf. The output 
from the classification is a probability of belonging to one of each class. From these 
values how is the probability based predicted hpf in Figure 3 calcualted? This should 
be clarified. 
 

○

○

“hpf of embryos with a similar success rate to manual (human) staging (Figure 4b). The errors 
produced by the classifier (0.0 +-} 0.804; mean +-} 95% confidence interval) are comparable to the 
errors made by humans (0.0 +-} 0.239).” 
 

Is both rep 1 and rep 2 data used in this calculation? Are any of these batches used in ○

○
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the training? Please, clarify in the text. 
 

“For example, at an actual hpf of 16.0, our classifier gave predicted hpfs of 16…. embryos and 
embryos maintained at 25°C, respectively.” 
 

This only provides info on that the development on the 25°C is slower, as it should be. But 
how accurate is the 10.21 ± 0.44 really? How much slower should an embryo at 25°C be? 
Did the author do some manual staging to compare this number with manual estimation?

○

○

Figure 1E
What data is used here? It looks much cleaner than the ones shown in Figure 3? If this is just 
an artificial plot than are all three colors needed?

○

Figure 3
In Figure 3b the spread of the data points for red (WT rep 2) seems much greater than for 
green (WT rep 1) (this can also be seen in the confidence interval in Fig 3b). It is not clear, 
but if the data for “rep 1” is coming from the same dataset as was used for the training, then 
this pattern is an indication that the method does not generalise well to a new batch. Could 
the author clarify where the data is coming from and provide a plot with the data 
separated? In addition, some quantification of the spread of the data in rep1 vs rep 2 would 
be of interest to the reader. 
 

○

(3b) From the graph there seems to be a cluster of blue (25 degree) with actual hpf 4-10 
being classified as approx 15 hpf. A comment on this pattern would be useful to the reader 
since the error is quite large.

○

Figure 4.
“Machine Learning (ML) classifier- and human-predicted hpf for 50 images of zebrafish” 
 

Are the data taken from the same batch as was used for training?○

○

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Partly
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Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Quantitative Microscopy, Image analysis, Machine learning, zebrafish

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 06 Mar 2023
Rebecca Jones 

Responses to Reviewer 2 (Amin Allalou) In this manuscript the author is describing a method 
for automatic detection of different development stages for the zebrafish. A robust method that 
can accurately classify a zebrafish into different development stages is highly relevant for many 
researchers working with zebrafish and hence the importance in developing methods like this is 
high. 
We thank the reviewer for their positive comments.   
 
The dataset used for the method is quite small and limited. It is good for proving a proof of the 
concept of the method but for a more general use of the method it needs to be further tested with 
embryos with different genetic backgrounds or treatment (as mentioned by the author in the 
discussion). 
We agree with the reviewer that the data used in this study is limited, in the sense that the 
images used are all of wild type zebrafish embryos and all images were acquired on the 
same microscopy system. However, the aim of the manuscript was indeed to demonstrate a 
proof of concept (that developmental delay could be quantified in an automated manner). 
We did explore the possibility of testing our method on images of zebrafish whose 
development was perturbed either by some pharmacological treatment or genetic 
mutation, but, as far as we are aware, no such treatments or mutants are readily available. 
Therefore, including such additional data would constitute a substantial body of additional 
work and experimentation.   
 
The author should improve the overall description of the method and the data used for training. 
It is sometimes difficult to understand what dataset is used for training and for evaluation. Same 
data cannot be used in training as in the evaluation of the method, it needs to be made clear to 
the reader that this is not the case. 
We thank the reviewer for drawing our attention to this and agree that the wording of the 
manuscript could be improved in places. We have made clarifications regarding the nature 
of the training and test data, detailed in the responses below.   
 
Page 4 Zebrafish husbandry and Live imaging Later in the paper the author is discussing 2 
different datasets for 28.5 degree data (rep1 and rep2). Could the author in this section describe 
the difference between those to datasets. 
We thank the reviewer for bringing this to our attention. We have revised the methods 
section and added a table (Table 1) to clarify exactly what data was used for training and 
what was used for testing. In total, we imaged three 96-well plates of embryos, two at 28.5C 
and one at 25.0C. A random selection of wells from the two 28.5C plates were used for 
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training purposes, while the remainder of wells in those plates were reserved for testing. 
None of the training data was subsequently used for testing. The plate incubated at 25.0C 
was used for testing only. To be certain that none of the training data "leaked" into the test 
datasets, we modified the R code used to generate the plots in Figure 3 to explicitly rule out 
(by name) the inclusion of the wells used for training. New plots for Figure 3 have been 
generated with this revised R code which, as far as we can tell, are identical to those 
included with the original submission.   
 
Page 4 “A total of 20 embryos were used for training, selected at random from the two”... Why 
only 20 embryos? 
This was in fact a typo (the correct number, as per Table 1, is 24). But the reason for the 
small number is the requirement for manual annotation, which is time consuming. 
However, we view this as a positive - with relatively little training data, the classifier was still 
successful in distinguishing between two different populations of embryos.   
 
How are these samples used in the training. Is the set divided into training, validation and test 
set? This is usually the procedure. 
The manner in which the data is divided into training and test sets is outlined in Table 1.   
 
“The resultant masks were then combined with the raw pixel data in an ilastik object classification 
pipeline (ObjectClassifier.ilp; Barry, 2022), whereby the embryos were manually classified as 
being either 4.5 or 17.5 hpf (Figure 2C)."Some more detail on the classification method would be 
useful for the reader. 
We have now added some further details on the object classification workflow and included 
a link to the relevant section of the ilastik documentation 
(https://www.ilastik.org/documentation/objects/objects), should the reader require further 
information.   
 
Page 5 “…for the same 50 images, and plotted accordingly”. Where are they plotted? 
This corresponds to the data shown in Figure 4   
 
Section “Results An accuracy measure of the correct classification would be good to have. How 
many samples are correctly classified into the correct class. 
We agree with the reviewer that such a metric would be useful. However, while our machine 
learning model is trained on the basis of placing objects into one of two different classes 
(4.5 or 17.5 hpf embryos), the result is essentially a regression model, as we are testing this 
classifier on embryos at various stages of development between 4.5 and 17.5 hpf (inclusive). 
So, while we could certainly include a measure of how successful our model would be in 
discriminating between 4.5 and 17.5 hpf embryos, this would tell us little about how 
successful the model is at discriminating between different rates of development, which 
was our primary goal.   
 
Development of embryos is slower when they are maintained at 25°C than at 28.5°C. As proof of 
principle, following training on 14 embryos and subsequent testing on two 96-well plates of WT 
embryos at 28.5°C as …” What was trained here? The author should be more clear on what was 
trained here. Is anything from previous training used here (where 20 embryos were used) or is it 
a completely new training? Was the same classes used in the training as previous? If so why was 

 
Page 27 of 33

Wellcome Open Research 2023, 7:275 Last updated: 21 AUG 2023



it retrained? 
We agree with the reviewer that this section was poorly worded and likely to cause 
confusion. We have therefore revised this text to make clear that no new training data has 
been introduced at this point - the results section refers to the same datasets referred to in 
the methods (and now listed in Table 1).   
 
If all training was done on one batch from 28.5°C it should not be used as a comparison in the 
evaluation where the same batch is compared to data from a new batch. This is not a valid 
comparison. 
We agree with the reviewer on this point and have made changes to the text (and added 
Table 1) to clarify what was used as training data and what was used for testing - none of 
the data shown in Figure 3 was used in training.   
 
“our classifier was trained to give the probability that a given embryo belongs to one of two 
classes (4.5 hpf or 17.5 hpf) with the intention of detecting developmental delays – it was not 
trained to predict the actual hpf of a given embryo.” It is not really clear to the reader how the 
author is estimating the predicted hpf. The classifier seems to be trained on only two classes 
4.5hpf and 17.5hpf. The output from the classification is a probability of belonging to one of each 
class. From these values how is the probability based predicted hpf in Figure 3 calculated? This 
should be clarified. 
We thank the reviewer for drawing our attention to this omission. We have now added text 
to the relevant methods section explaining how the probability values output by the object 
classifier are converted into predicted hpf values.   
 
“hpf of embryos with a similar success rate to manual (human) staging (Figure 4b). The errors 
produced by the classifier (0.0 +-} 0.804; mean +-} 95% confidence interval) are comparable to the 
errors made by humans (0.0 +-} 0.239).” Is both rep 1 and rep 2 data used in this calculation? Are 
any of these batches used in the training? Please, clarify in the text. 
A random selection of images from both plate 1 and plate 2 were used to generate this 
data. We have now noticed that, although none of the images used in training were 
included in this data, some images from the same wells as those used for training were 
included – these have now been removed and the figure revised. While there are now 
slightly fewer data points (44), the overall conclusion remains unchanged.   
 
“For example, at an actual hpf of 16.0, our classifier gave predicted hpfs of 16…. embryos and 
embryos maintained at 25°C, respectively.” This only provides info on that the development on 
the 25°C is slower, as it should be. But how accurate is the 10.21 ± 0.44 really? How much slower 
should an embryo at 25°C be? Did the author do some manual staging to compare this number 
with manual estimation? 
We agree with the reviewer that this statement of accuracy was of limited value and have 
now removed it from the text. Estimations of accuracy are now limited to the data 
comparing our machine learning classifier with manual staging as shown in Figure 4.   
 
Figure 1E What data is used here? It looks much cleaner than the ones shown in Figure 3? If this is 
just an artificial plot than are all three colors needed? 
We have now updated the panel in Figure 1E to make it clear that this plot is not real data 
and is intended for illustrative purposes only.   
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Figure 3 In Figure 3b the spread of the data points for red (WT rep 2) seems much greater than 
for green (WT rep 1) (this can also be seen in the confidence interval in Fig 3b). It is not clear, but 
if the data for “rep 1” is coming from the same dataset as was used for the training, then this 
pattern is an indication that the method does not generalise well to a new batch. Could the 
author clarify where the data is coming from and provide a plot with the data separated? In 
addition, some quantification of the spread of the data in rep1 vs rep 2 would be of interest to the 
reader. 
All of the data presented in Figure 3 was generated on test data only, previously unseen by 
the classifier. With regard to the differences in data spread, we have now added some 
discussion of this in the main text. Slightly more training data was drawn from plate 1 than 
plate 2, which may explain the slightly greater spread of data points for plate 2. It should 
also be noted that no quality control was applied to the test data (as this is laborious and 
time-consuming), so images of dead embryos and/or embryos that have drifted to the edge 
(our outside) of the field of view will have been included - it's possible that plate 2 produced 
a greater quantity of these lower quality images than plate 1. But the standard error of the 
mean for both plates is still less than 1.0 hpf.   
 
(3b) From the graph there seems to be a cluster of blue (25 degree) with actual hpf 4-10 being 
classified as approx 15 hpf. A comment on this pattern would be useful to the reader since the 
error is quite large. 
The majority of these datapoints correspond to the same two wells on that particular plate 
and it appears that segmentation error is to blame for the misclassification, as illustrated in 
the example below – in both cases, the embryos in the early stages of development were 
consistently over-segmented, which likely resulted in their misclassification.   
 
Figure 4. “Machine Learning (ML) classifier- and human-predicted hpf for 50 images of zebrafish” 
Are the data taken from the same batch as was used for training? No, as explained above, we 
have now made absolutely sure that none of the random images used for the human-ML 
comparison were drawn from the training data.  

Competing Interests: No competing interests were disclosed.
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The authors describe an automated method to stage zebrafish embryos. Using a machine learning 
approach, the authors developed a way to determine the stages of embryos without 
dechorionation from 4hpf – 18hpf automatically. Then, the authors use two different 
temperatures to evaluate the method's efficiency: staging embryos at 25°C and 28.5°C and 
comparing the results to manually staged embryos. The software seems to be less accurate than 
staging by researchers. However, the differences are minor and can be neglected. The obvious 
advantage is the possibility of staging a large number of embryos.  
 
In my opinion, this is a valuable method to analyse many embryos in a short time. Moreover, the 
technique seems to cope reasonably well with specific challenges, such as the orientation of the 
individual embryos or the chorion. 
 
Personally, I would like to see more ways in which the method is challenged. For example, it would 
be interesting to see how the algorithm copes with higher temperatures, i.e. 33°C or by mutations 
lacking fundamental body parts, such as in the headless mutant or the no tail mutant. How would 
the staging work in these embryos? These experiments are not strictly required for this 
manuscript but would provide additional insight into how the technology works. 
 
The method was tested only for several stages (4 – 18hpf). Can that be extended to older stages, 
or does the twitching of the embryos after 20hpf affect the automated staging? Furthermore, is 
pigmentation an obstacle? Finally, does the method also work with fixed embryos? These aspects 
should be discussed. 
 
Finally, the advantage of the machine learning approach was not immediately apparent. For 
example, does the algorithm improve after staging more embryos? The authors should clarify how 
many iterations have been performed and if the authors predict a further improvement in the 
future. 
 
In general, this is a handy method for large chemical or genetic screens. However, with a smaller 
sample size, such a method seems too labour-intensive, and the specialised equipment, such as 
cameras and well plates, could be troublesome. Therefore, it would be interesting to read for 
which applications this technology would be beneficial. Similarly, it would help the readers to find 
a critical discussion on the limitations of this technology. 
 
Minor comments: 
 
The different colours in the plot in Fig. 1E are not explained and should refer to the explanation in 
Fig. 3.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
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Partly

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Morphogen trafficking in zebrafish

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 06 Mar 2023
Rebecca Jones 

Responses to Reviewer 1 (Stefen Schlopp)   The authors describe an automated method to 
stage zebrafish embryos. Using a machine learning approach, the authors developed a way to 
determine the stages of embryos without dechorionation from 4hpf – 18hpf automatically. Then, 
the authors use two different temperatures to evaluate the method's efficiency: staging embryos 
at 25°C and 28.5°C and comparing the results to manually staged embryos. The software seems 
to be less accurate than staging by researchers. However, the differences are minor and can be 
neglected. The obvious advantage is the possibility of staging a large number of embryos. In my 
opinion, this is a valuable method to analyse many embryos in a short time. Moreover, the 
technique seems to cope reasonably well with specific challenges, such as the orientation of the 
individual embryos or the chorion. 
We thank the reviewer for taking the time to read and comment on our manuscript, and for 
the supportive and helpful comments.   
 
Personally, I would like to see more ways in which the method is challenged. For example, it 
would be interesting to see how the algorithm copes with higher temperatures, i.e. 33°C or by 
mutations lacking fundamental body parts, such as in the headless mutant or the no tail mutant. 
How would the staging work in these embryos? These experiments are not strictly required for 
this manuscript but would provide additional insight into how the technology works. 
We agree with the reviewer that it would be interesting to see how the algorithm copes with 
higher temperatures, and indeed we did try this at 32°C, however the embryos did not 
develop well and the majority died within a few hours of starting the experiment. In terms 
of testing the algorithm using mutants with a different morphology to WT (e.g. the headless 
mutant as suggested), our classifier was only designed to detect normal WT development, 
and whilst the same analysis pipeline could be used, the algorithm would need to be 
retrained on the ‘new’ morphology. We have added an additional comment in our 
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manuscript to reflect this, and we thank the reviewer for bringing it to our attention.   
 
The method was tested only for several stages (4 – 18hpf). Can that be extended to older stages, 
or does the twitching of the embryos after 20hpf affect the automated staging? Furthermore, is 
pigmentation an obstacle? Finally, does the method also work with fixed embryos? These aspects 
should be discussed. 
The reviewer asks whether the method could be extended to older stages, and this is 
indeed possible. The end point of the experiment (17.5 hpf) was sufficient for proof-of-
concept, and there was therefore no reason for us to train the classifier beyond this stage. 
The end point could easily be extended, and the emerging pigmentation of the embryos as 
they develop would not pose a problem. Similarly, twitching of the embryos would not 
affect the outcome. This is because a unique advantage of our classifier is the complete 
absence of quality control; it is able to accurately quantify developmental temporal 
trajectory regardless of the orientation of the embryos. We have included a further 
sentence in our manuscript reflecting this, and we thank the reviewer for the helpful input. 
In respect of fixed embryos, this is not something we tried, and due to differences in opacity 
of live vs fixed embryos, we believe that the classifier may need retraining in the same way 
as described above.   
 
Finally, the advantage of the machine learning approach was not immediately apparent. For 
example, does the algorithm improve after staging more embryos? The authors should clarify 
how many iterations have been performed and if the authors predict a further improvement in 
the future. 
The reviewer has raised an interesting point regarding whether the algorithm improves 
after staging more embryos, and we have included some additional text in our manuscript 
to clarify the number of training iterations that were performed. Theoretically, the machine-
learning based classifier could improve if we trained it on more WT embryos, however it is 
also possible to over-train the classifier, resulting in its abilities becoming too specific to the 
training sets and less generalizable over a wider range of samples. There is consequently a 
training ‘sweet-spot’, and less can be more. Deep-learning is a way to potentially address 
this, but discussion of this falls outside the scope of this current paper.   
 
In general, this is a handy method for large chemical or genetic screens. However, with a smaller 
sample size, such a method seems too labour-intensive, and the specialised equipment, such as 
cameras and well plates, could be troublesome. Therefore, it would be interesting to read for 
which applications this technology would be beneficial. Similarly, it would help the readers to find 
a critical discussion on the limitations of this technology. 
The reviewer comments that our method seems labor-intensive for smaller sample sizes. 
This is a valid point, and we have added text in the discussion section of the manuscript 
regarding the limitations of our classifier, which we trust addresses this issue.   
 
The different colours in the plot in Fig. 1E are not explained and should refer to the explanation in 
Fig. 3. 
Figure 1E has now been replaced with a simple schematic to show how the technology 
works; the figure legend has been updated accordingly.  
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