Skip to main content
. 2023 Aug 9;88(16):11980–11991. doi: 10.1021/acs.joc.3c01269

Table 3. P–C Coupling of Substituted Arylboronic Acids with Diphenylphosphine Oxide.

graphic file with name jo3c01269_0009.jpg

          product composition (%)a,b
 
entry Z T t (h) conversion (%)a 2 3 (EtO)Ph2PO Ph3PO (1a) yield (%)
1 H 135 1.5 100b 95 (1a)   5   83 (1a)
2 4-Me (f) 135 1.5 100 81   5 14 73 (2f)
3 2-Me (g) 135 1.5 100 71   13 16 67 (2g)
4 3-Me (h) 135 1.5 100 87   8 5 80 (2h)
5 4-F (i) 135 1.5 100 75   10 15 70 (2i)
6 4-Cl (j) 135 1.5 100   49 (3A)   51 23 (3A)
7 4-Cl (j) 90 4 100 46 5 11 38 (2j)c
8 4-Cl (j) 90d 4 77 12 41 (3A) 6 18  
9 4-Cl (j) 135e 1 100   23 (3A) 5 72  
10 3-Cl (k) 135 1.5 100   53 (3B) 6 41 25 (3B)
11 3-Cl (k) 90 4 96 35 22 (3B) 11 28 (2k)f
12 3-Cl (k) 90c 22 100 33 44 (3B) 4 19  
a

On the basis of relative 31P NMR intensities of the P-components.

b

The average of two or three parallel experiments.

c

31P NMR (CDCl3) δ 28.5, δP lit.23 (CDCl3) 28.2; HRMS (m/z): calcd for C18H15OPCl [M + H]+, 313.0549; found, 313.0542.

d

On conventional heating.

e

2.4 equiv of Ph2P(O)H was used.

f

31P NMR (CDCl3) δ 28.1, δP lit.24 (CDCl3) 28.1; HRMS (m/z): calcd for C18H15OPCl [M + H]+, 313.0549; found, 313.0538.