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Abstract

Background and Aims: Tobacco smoking is a risk factor for impaired brain function, but its 

causal effect on white matter brain aging remains unclear. This study aimed to measure the causal 

effect of tobacco smoking on white matter brain aging.
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Design: Mendelian randomization (MR) analysis using two non-overlapping data sets (with 

and without neuroimaging data) from UK Biobank (UKB). The group exposed to smoking and 

control group consisted of current smokers and never smokers, respectively. Our main method was 

generalized weighted linear regression with other methods also included as sensitivity analysis.

Setting: United Kingdom.

Participants: The study cohort included 23 624 subjects [10 665 males and 12 959 females with 

a mean age of 54.18 years, 95% confidence interval (CI) = 54.08, 54.28].

Measurements: Genetic variants were selected as instrumental variables under the MR analysis 

assumptions: (1) associated with the exposure; (2) influenced outcome only via exposure; and (3) 

not associated with confounders. The exposure smoking status (current versus never smokers) was 

measured by questionnaires at the initial visit (2006–10). The other exposure, cigarettes per day 

(CPD), measured the average number of cigarettes smoked per day for current tobacco users over 

the life-time. The outcome was the ‘brain age gap’ (BAG), the difference between predicted brain 

age and chronological age, computed by training machine learning model on a non-overlapping set 

of never smokers.

Findings: The estimated BAG had a mean of 0.10 (95% CI = 0.06, 0.14) years. The MR analysis 

showed evidence of positive causal effect of smoking behaviors on BAG: the effect of smoking 

is 0.21 (in years, 95% CI = 6.5 × 10−3, 0.41; P-value = 0.04), and the effect of CPD is 0.16 

year/cigarette (UKB: 95% CI = 0.06, 0.26; P-value = 1.3 × 10−3; GSCAN: 95% CI = 0.02, 0.31; 

P-value = 0.03). The sensitivity analyses showed consistent results.

Conclusions: There appears to be a significant causal effect of smoking on the brain age gap, 

which suggests that smoking prevention can be an effective intervention for accelerated brain 

aging and the age-related decline in cognitive function.
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INTRODUCTION

Smoking behaviors are among the most studied modifiable risk factors related to accelerated 

brain atrophy and cognitive impairment [1–4]. This discovery has led to prosperous studies 

of the adverse impact of smoking behaviors on neuroimaging [1, 3, 5–8]. Substantial 

research has found that chronic smoking strongly impacts neurocognition and brain 

neurobiology [9–14]. For example, previous studies have reported that accelerated brain 

aging is associated with the production of oxidative stress and alteration of synaptic 

protein expressions from smoking behaviors [15, 16]. Also, the atherosclerotic processes 

of smoking had potentially harmful effects on brain aging [11, 17]. The microstructure of 

the human brain is constantly changing over the life-span with normal aging, reflecting 

brain shrinks, memory decline and increases in the development of severe chronic diseases 

such as vasculature diseases [18]. Therefore, it is critical to recognize the causal effect of 

smoking on brain aging and thus quantitatively understand the potential benefits of smoking 

intervention in reducing the acceleration of brain aging.
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‘Brain age’ is a metric for brain aging status related to cognitive functions [19–21], 

calculated based on structural or functional neuroimaging data using machine learning 

(ML) algorithms [22–24]. In the current research, we adopt a commonly used chronological 

age-adjusted brain age metric, brain age gap (BAG), as the outcome variable that quantifies 

the difference between brain and chronological age [22–25]. BAG is a scalar metric that 

avoids the challenges of multiplicity, and dependence adjustment as in multivariate imaging 

models thus often yields more robust and interpretable results [22, 23, 25]. The recent 

literature showed that applying advanced ML methods to neuroimaging data can provide a 

reliable estimate for BAG with small predictive biases [25–34].

Various factors can influence BAG, including genetic, environmental, biological and 

behavioral factors [19, 35, 36]. Among these, smoking behavior is a well-studied factor 

that was adversely related to accelerated brain age in many previous studies [1, 37], and 

its causal effect on neuroimaging features was jointly examined with other risk factors, 

including diastolic blood pressure, systolic blood pressure, pulse pressure, low-density 

lipoprotein, high-density lipoprotein, triglycerides, total cholesterol, body mass index, Type 

2 diabetes and alcoholic drinks consumed per week [38]. However, it is challenging to 

establish the causal relationship solely between smoking behavior and BAG in traditional 

observational studies because smoking often co-occurs with other health risk factors also 

linking to abnormal brain aging, including alcohol use, mental disorders (e.g. schizophrenia) 

and chronic diseases (e.g. hypertension, dyslipidemia and cardiovascular disease) [1, 39–

42]. To address this challenge, we estimated the causal effect of smoking by Mendelian 

randomization (MR) analysis. Several addiction and neuropsychiatric research studies have 

employed MR analysis to investigate the causal effects of smoking behaviors on stroke, 

amyotrophic lateral sclerosis and psychiatric and behavioral disorders [14, 43–46].

The current study aimed to investigate the causal effects of smoking behaviors [i.e. smoking 

status (SS) and cigarette per day (CPD)] on BAG using the UK Biobank (UKB) cohort. We 

hypothesized that smoking behaviors, such as being a smoker or smoking a larger number 

of cigarettes per day, would significantly cause impairment in brain microstructures reflected 

by an increase in BAG among the participants in UKB. The estimated causal effect can 

reveal the overall effect of smoking and its biological consequences (e.g. cardiovascular 

condition worsening) on brain aging and thus unfolds the potential health benefits of the 

intervention and prevention for tobacco smoking.

METHODS

UKB cohort and variables

Our data were extracted from the UKB, a large-scale biomedical database consisting of 

phenotype and genotype, and imaging details of approximately 500 000 participants aged 

40–69 years [47]. The initial measurement was conducted in 2006–10, and the repeat of 

baseline assessment started in 2013 [48]. We used the initial baseline measurement of 

smoking behavioral data in 2006–10 when conducting our current research to avoid poor 

data quality due to common loss to follow-up problem [48]. The neuroimaging data we used 

were collected since 2014 [48]. We performed quality control and restricted our analyses 

to participants with European ethnic backgrounds who had data available. To generate an 
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accurate BAG estimation for normal brain aging, we excluded participants with health 

conditions (e.g. stroke, brain injury, brain cancer and psychiatric illnesses) to reduce the 

distortion of the fractional anisotropy (FA) measurements due to these diseases [49]. The 

study cohort included 23 624 subjects with neuroimaging data [10 665 males and 12 959 

females with a mean age of 54.18 years, 95% confidence interval (CI) = 54.08, 54.28]. 

Supporting information, Fig. S1 shows a flow diagram of the number of participants for 

different analytical step. In each step we included participants with complete data, and thus 

no missing data presented in the analysis. As the primary research question and analysis 

plan were not pre-registered on a publicly available platform, the results of this study are 

considered exploratory.

Smoking behavior

This study focused up on two smoking behaviors (phenotypes): SS and CPD, following the 

commonly used definitions in the literature [50, 51]. SS was a binary variable classifying 

participants as current smokers and non-smokers who had never smoked according to the 

UKB data field 2016 (SS). The CPD was a quantitative variable representing the average 

number of cigarettes smoked per day for tobacco users, characterizing the level of nicotine 

craving in current smokers. We defined the CPD (ranges from 0 to 60) of current smokers 

based on three UKB data fields (IDs: 2887, 3456 and 6183) following the commonly used 

procedure in smoking genome-wide association studies (GWAS) [50, 51]. For those subjects 

who smoked fewer than one CPD, the CPD values were rounded down and recoded to 0; for 

those who smoked more than 60 CPD, the CPD values were truncated recoded to 60.

Neuroimaging data

We used diffusion magnetic resonance imaging (dMRI) data for the 23 624 participants for 

whom genotype and SS/CPD data were also available (see Supporting information, Fig. S1). 

The UKB acquired and processed these imaging data following its imaging protocol and 

pipeline [52]. White matter microstructure integrity was measured by FA derived based on 

the pre-processed dMRI, and then the per-tract mean values of 40 FA tracts were calculated 

[52]. The locations and names of the 40 FA tracts are provided in Supporting information, 

Data S1.

Genotype data

We used genotype data from the UKB cohort sequenced through two genotyping chip 

types, Affymetrix UK BiLEVE Axiom and UKBB Axiom® arrays. The data involved more 

than 90 million single-nucleotide variants (SNVs) among all participants [53]. More details 

regarding the quality control of genotype data are available in Supporting information, 

Appendix S1.

Analysis overview

Our analysis consisted of two steps (see Figure 1). The first step was to establish 

the function to compute the outcome variable, adjusted BAG, based on FA data and 

chronological age using machine learning techniques in a training set with only non-smokers 

(Figure 1a). In this step, we ensured the accuracy of the estimation and locked the optimal 
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predictive model through an internal fivefold cross-validation (CV) within the training set. 

This predictive model was eventually applied to calculate the adjusted BAG of participants 

in another non-overlapping set consisting of both non-smokers and smokers (i.e. testing set) 

(see Figure 1b). In the second step, we conducted a two-sample MR analysis to investigate 

the causal effects of smoking behaviors on adjusted BAG [54]. The first sample consisted of 

UKB participants (n = 185 972) with only smoking behavioral data (exposure) but no brain 

imaging data (outcome: adjusted BAG). The second sample included a non-overlapping 

set of UKB participants (n = 12 907) who had neuroimaging data and the outcome data for 

adjusted BAG.

Adjusted BAG

The goal of the ML model was to compute a scalar brain age metric based on 40 FA 

measures. The UKB non-smokers with neuroimaging data were randomly split into training 

and testing sets by a 1:1 ratio, as shown in Supporting information, Fig. S1. The training set 

included 10 717 non-smokers for building an unbiased brain age estimating function for the 

general population [28]. The testing set consisted of 10 746 non-smokers and 2161 smokers 

serving as one of the samples used in the two-sample MR analysis. Among the smokers in 

the testing set, 1597 of them had CPD data available. Descriptive statistics were provided 

for training and testing sets separately, including mean and standard error for continuous 

variables and frequency and percentage for categorical variables.

Within the training set, we implemented ML analysis through an internal fivefold CV to 

achieve the optimal predictive performance using random forest (RF) regression [55, 56]. 

Based on the performance of the fivefold CV, we tuned the parameters of RF and then 

determined the set of FA measures via recursive feature selection according to their variable 

importance (i.e. Gini importance) based on accuracy criteria, including the coefficients of 

correlation (R) and mean absolute error [MAE (year)] [57, 58].

Given the optimal predictive model, we estimated the predicted brain age (B) and obtained 

BAG by subtracting chronological age Y  by the predicted brain age (ΔG = Y − B). This 

estimated BAG can be systematically biased because the prediction tends to overestimate 

brain age at low chronological age and underestimate brain age at high chronological age 

(see Supporting information, Fig. S6) [33, 34, 37]. Therefore, we regressed the BAG on 

chronological age to adjust the bias following a common bias adjustment procedure [33, 

59–61]. We then obtained the adjusted predictive brain age (Badj) and the adjusted BAG 

(ΔGadj = Y − Badj). A positive adjusted BAG implies accelerated brain aging, while a negative 

adjusted BAG implies decelerated brain aging [19]. We further inspected the ΔGadj data 

between current smokers (SMK) and non-smokers (non-SMK), summarizing results of 

distribution comparison and effect size of group differences (i.e. Cohen’s d) in box-plot 

and forest plot. Hereafter, we conducted the rest of the analyses to evaluate the potential 

causal effects of smoking phenotypes (i.e. SS and CPD) on ΔGadj in this study. In addition, 

we explored the association between the adjusted BAG and cognitive function measured 

from our previous study [62] at the 0.05 significance level. The cognitive function was 

represented by the intelligence g-factor estimated via factor analysis based on cognitive 
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traits related to four domains in the UKB cohort: processing speed, perceptual reasoning, 

executive function and fluid intelligence [62].

Estimating causal effect by MR analysis

We evaluated the causal effects of smoking phenotypes (i.e. SS and CPD) on ΔGadj by 

performing a two-sample MR analysis [63], and a P-value of 0.05 indicates a significant 

causal relationship. To implement the analysis (see details in Supporting information, Fig. 

S1 and Appendix S1), we selected IVs for MR analysis based on smoking behavior GWAS 

using the first sample n = 185 972  in the UKB after linkage disequilibrium pruning and 

clumping (removing genetic variants with r2 > 0.50 within a 50-kb window). We performed 

IV–outcome association analysis using the second sample n = 12 907  in the UKB, which 

is not non-overlapped with the first sample. The UKB participants in our analysis were 

family unrelated with European ethnic background. We selected genetic variants with 

genetic-exposure P-value <5 × 10−8, genetic-outcome P-value adjusted by the Benjamini–

Hochberg false discovery rate method (BHp) > 0.05 and genetic-confounder BHP > 0.05 as 

the IVs for MR analysis. We provide the details of the IVs in Supporting information, Data 

S5.

Given the IVs selected, we implemented the two-sample MR analysis using the R package 

MendelianRandomization (version 0.5.1) [64]. We used the MR method with generalized 

weighted model (gen-IVW) by Burgess et al. [65] (see details in Supporting information, 

Data S5). Cochran’s Q-test, which provides evidence for heterogeneity in the causal effects 

between SNPs, was conducted alongside the MR analysis. We further carried out sensitivity 

analyses to examine the robustness of causal effects of SS and CPD on ΔGadj. The MR 

methods used in sensitivity analyses are MR-weighted-median [66], MR-PRESSO [67], 

MR-MIX [68] and contamination mixture method (MRconmix) [69]. MR-weighted-median 

provides consistent estimates when there are some invalid IVs using a weighted median 

estimator; however, it requires at least 50% of the weight derived from valid IVs [66]. 

MR-PRESSO removes IVs that tested to be outliers in the MR analysis, therefore generating 

MR estimates with less variability (tighter confidence intervals) [67]. Its standard deviation 

is restricted to be smaller than or equal to the standard deviation from MR-IVW [67]. 

This method also provides a global test to assess whether the IVs used in the MR 

model have significant horizontal pleiotropy [67]. MR-Mix is another method that uses 

a mixture model to incorporate those IVs having horizontal pleiotropy [68]. MRconmix 

provides robust analysis when invalid IVs present by constructing a likelihood function 

according to variant-specific causal estimates, assuming different normal distributions for 

valid and invalid IVs [69]. Additionally, we performed the leave-one-out analysis besides the 

sensitivity analysis to assess whether an IV was driving the causal relationship between the 

exposure and the outcome [70]. We also performed MR-Egger and evaluated the reliability 

of MR-Egger results via its I2 statistics [measurement of the ‘NO Measurement Error’ 

(NOME) assumption]. Moreover, we performed MR analysis to examine the other possible 

causal direction using BAG as the exposure and smoking behaviors (SS and CPD) as the 

outcome (see Appendix S2 for BAG GWAS and IV selection). In addition to UKB cohort, 

we performed the IV selection using summary statistics of CPD from the GSCAN (no 
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GSCAN summary statistics available for SS) [39] and also performed the MR analysis using 

these IVs for CPD.

RESULTS

We summarized the participants’ demographic characteristics and health conditions in 

training and testing sets separately for non-smokers and smokers (Table 1; see Supporting 

information, Fig. S2 for their distributions). The training and the testing sets had balanced 

demographic factors such as age, body mass index (BMI) and sex. As shown in Table 1, 

the mean BMI, mean age and proportions of categorical characteristics were similar between 

smokers and non-smokers, showing that there is no systematic difference in the distribution 

of sample characteristics between different groups. Also, we explored the demographic 

factors and found that these factors were distributed similarly between participants included 

and excluded from our MR study (see Table 1). We provided frequency of additional health 

conditions between training and testing sets (Supporting information, Fig. S1) and the 

prevalence of different self-reported health conditions in Supporting information, Data S2. 

Most conditions had a low prevalence within the testing set.

Model construction for calculating BAG

We constructed the ML model to calculate BAG from the training set using RF, locked the 

optimal model and applied it to the testing set. The optimal ML model chosen included 

16 FA measures (see Supporting information, Data S1 and Fig. S3). The optimal model 

achieved excellent prediction performance in both training and testing sets: R = 0.97 and 

MAE year = 2.21 for training set (see Figure 1a); R = 0.94 and MAE year = 2.80 for non-

smokers and R = 0.94 and MAE year = 2.89 for smokers in the testing set, respectively 

(see Figure 2a). ΔGadj had a significant association with SS [β = 0.88; 95% confidence 

interval Cl = 0.74, 1.02; P − value = 2.81 × 10−36 ] and CPD (β = 0.05; Cl = 0.03, 0.07; 

P‐value = 5.0049 × 10−6  at the 0.05 significance level, as shown in Table 2. Such differences 

between smokers and non-smokers were consistent in all age categories (i.e. 40–49, 50–59 

and 60–69 years) (see Figure 2b for the P-values). On average, mean ΔGadj of nonsmokers 

was 0.66 Cl = 0.40, 0.93 , 1.03 (0.77, 1.28) and 1.10 (0.81, 1.38) years younger than the 

ΔGadj of smokers in aged 40–49, 50–59 and 60–69 categories, respectively (see Cohen’s 

d in Figure 2c for the effect size). Also, ΔGadj was significantly associated with cognitive 

function (β = − 0.04; CI = − 0.06, − 0.02; P − value = 6.52 × 10−7, data not shown), given 

the cognitive function represented by the intelligence g calculated in our previous work [62].

Causal effects of smoking behaviors on brain aging

We selected 248 and 54 genetic variants as IVs in the MR models for SS and CPD, 

respectively, following the criteria in Equations (1)–(3) in Supporting information, Data 

S5. These IVs were well aligned with findings in existing studies, such as the gene 

cluster CHRNA5–CHRNA3–CHRNB4 linked with CPD [71–73]. We further explored the 

gene information of these IVs via an SNP annotation portal, the functional annotation of 

variant on-line resource (FAVOR) (http://favor.genohub.org/, accessed 12 July 2022) (see 

Supporting information, Data S3) [74].

Mo et al. Page 7

Addiction. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://favor.genohub.org/


We performed MR analyses to test the estimated causal effect (θ̂) of the exposures using 

the selected IVs given ΔGadj as the outcome. As shown in Table 2 and Figure 3b, the 

primary MR method [i.e. gen-IVW (UKB)] showed a significant causal effect of SS 

on ΔGadj (θ = 0.21; CI = 6.5 × 10−3, 0.41; P − value = 0.04). Also, CPD had a significant 

causal effect on ΔGadj (UKB: θ̂ = 0.16; CI = 0.06, 0.26; P − value = 1.3 × 10−3; GSCAN: 

θ = 0.16; CI = 0.18, 0.31; P − value = 0.03), indicating that the causal effect of CPD were 

robust across cohorts [see gen-IVW (GSCAN) in Figure 3b]. The results showed that 

smokers were 0.21 years older in brain age than comparable non-smokers at the same 

chronological age, and having an extra cigarette per day increased brain age by an additional 

0.16 years.

Moreover, sensitivity analyses showed robust causal effects of SS and CPD separately on 

ΔGadj (see Figure 3b). According to the MR-PRESSO’s global test, one of the methods in 

sensitivity analyses, the selected IVs did not show significant horizontal pleiotropic effects 

on both SS and CPD (P − value = 1.00). Cochran’s Q-test suggested no evidence of weak or 

pleiotropic effects of IVs in MR analyses for CPD (P − value = 0.94), but there were weak 

effects of IVs for SS (P − value = 0.00). The leave-one-out analysis indicated that no single 

IV was driving the causal relationship (see Supporting information, Figs S4 and S5 and 

a complete list of causal estimates in Supporting information, Data S4). The I2 statistics 

suggested that MR-Egger had sufficiently low reliability for CPD I2 = 0.0% . For SS, 

I2 = 52% also suggested violation of the NOME assumption in MR-Egger. As MR-Egger is 

highly sensitive to the violation of the assumptions [75], we decided to focus upon results 

using other MR methods. Overall, most of the MR analyses showed evidence of significant 

causal effects of SS and CPD on BAG (see Figure 3b). We found no sufficient evidence of 

causal effect of BAG on smoking behaviors (SS: P − value = 0.07; CPD: P − value = 0.09). 

We further performed MR analysis using the instruments for CPD in non-smokers and found 

insignificant effect (P-value of gen-IVW = 0.11).

DISCUSSION

Our study investigated the potential causal effects of smoking behaviors on the brain aging 

process using the imaging-genetics data from the UKB cohort. Our findings confirmed the 

causal effect of smoking on accelerated neural degeneration during aging interpreted by age 

year. Also, the results revealed that the overall brain white matter deterioration was due to 

aging accelerated by smoking behaviors. The accelerated neural decline has been associated 

with multiple clinical symptoms of dementia, Alzheimer’s disease and vasculature diseases 

[15, 18]. Findings have important implications for clinical interventions, highlighting how 

reductions in smoking may have important neurological health benefits.

We identified significant causal effects of SS and CPD on BAG based on MR analysis, 

consistent with the strong associations reported in previous work [17, 62, 76, 77]. For 

example, the pack-year was reported as the significant risk factor associated with BAG, 

given an increase of 0.36 months of adjusted BAG associated with one pack-year [17]. 

Similarly, we observed that a person who was a current smoker or had a larger number 
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of cigarettes per day at the time of data collection would have a higher BAG value than a 

person who was a non-smoker or had fewer cigarettes in the UKB cohort. In addition, our 

study revealed that smoking led to a significant increase in brain aging and consequently 

raised the risk of age-related diseases and symptoms (e.g. memory and cognitive function 

decline) which may, in part, explain the previous findings of abnormal brain aging 

and cognitive functions. Smoking can lead to multiple complications (e.g. encouraging 

acute cardiovascular events and increasing insulin resistance) [78–80]. Subsequently, these 

smoking-related biological conditions can lead to accelerated brain aging [38, 81–83]. 

Numerically, the estimated causal effects of smoking behaviors on brain aging are distinct 

from the association effects. The former provides a more accurate estimate of the potential 

health benefits by preventing smoking.

Moreover, the IVs used in our analysis coincided with previously reported smoking-

behavior-related genes (see Supporting information, Data S1 for the complete list). For 

example, in chromosome 9 (CHR9), genes FAM163B and GAPVD1 had significant 

associations with CPD and smoking initiation, respectively [39, 51]. Genes REV3L 
(CHR6), CHRNB3 (CHR8), AS3MT (CHR10), NCAM1 (CHR11), CHRNA3–CHRNA5–
CHRNB4 (CHR15) and CYP2T1P (CHR19) had association with smoking initiation, 

smoking cessation, nicotine dependence and smoking history [7, 39, 71, 72, 84–94]. These 

existing studies supported the validity of IVs used in our MR analysis and reliability of the 

MR results. In addition, the sensitivity analyses reassured that there was no evidence for 

significant horizontal pleiotropy corresponding to these IVs.

Results must be interpreted in the context of study limitations. First, the UKB sample was 

biased towards certain sampling characteristics: (1) being older, being female and living 

in less socioeconomically deprived areas compared to samples in other study cohorts; 

(2) the participants in UKB tended more likely to have obesity, smoke cigarettes, drink 

alcohol on a daily basis and have fewer self-reported health conditions compared to the 

general population [95]. Secondly, our current work was restricted to one ethnic background 

aged 40–69 years. Some other factors may potentially affect our MR findings, such as 

population structure, family and assortative mating [96]. To control these potential effects, 

we adjusted the effect of population structure by adding principal components to GWAS 

analysis and removed participants that were family related; the effect of assortative mating 

was not accounted because our data had limited information to assess this effect. Exposure 

to secondhand smoke can be a potential confounder of the study, the impact of which 

will be investigated in future studies as the data become available in UKB. We encourage 

future studies to examine the causal relationship using different cohorts and validate the 

generalization of the results in a broader range of age and ethnic backgrounds.

In conclusion, our study provided a thorough analysis of causal inference for smoking 

behaviors on BAG and revealed robust and consistent causal effects in a large study cohort. 

These results reinforced the evaluation of the impact coming from smoking and assisted in 

guiding future studies. This study provided a greater understanding of the causal effects of 

smoking behaviors on brain aging and cognitive disorders, connecting previous findings of 

neuroimaging and cognitive function [62, 76, 77]. Our results have important implications in 

how behavior may also improve neurological health status.
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Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Overview of analysis procedures. (a) Within the non-overlapping training set, (i) the optimal 

predictive model for estimating predicted brain age was obtained using machine learning 

model; (ii) the predictive model was corrected to reduce the estimation bias and further used 

to estimate the adjusted predictive brain age; and (iii) the outcome variable [i.e. adjusted 

brain age gap (BAG)] was calculated by subtracting the chronological age by the adjusted 

predictive brain age. (b) In the testing set, the adjusted BAG was estimated based on the 

corrected predictive model in (a), and the causal effect of smoking behavior (e.g., smoking 

status) on adjusted BAG was evaluated through Mendelian randomization analysis. Smoking 

status was a binary trait consisting of nonsmokers and smokers
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FIGURE 2. 
Adjusted brain age gap (BAG) and its relationships with smoking status in the testing set. 

(a) The relationship between the adjusted predicted brain age (Y adj) and chronological age 

in different smoking statuses (SS) (R = coefficients of correlation; MAE = mean absolute 

error). (b) The distribution of adjusted BAG ΔGadj  between different SS groups in separate 

chronological age categories, where P indicates the P-value corresponding to the comparison 

between nonsmokers (non-SMK) and smokers (SMK) in each category. (c) The effect size 

with the 95% confidence interval for testing the difference between non-SMK and SMK 

within each age category based on (b). (d) The number of participants in each age group 

corresponding to comparisons between non-SMK and SMK in (b)
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FIGURE 3. 
Mendelian randomization and the results. (a) The three fundamental instrumental variable 

(IV) assumptions in the Mendelian randomization (MR) analysis: (i) IVs are significantly 

associated with the exposure [i.e. smoking statuses (SS) or cigarettes per day (CPD)]; (ii) 

the exposure is not significantly associated with confounders of the exposure–outcome 

association; and (iii) IVs can affect the outcome variable only through the exposure. (b) 

The causal effect estimate with a 95% confidence interval using different MR methods for 

smoking traits SS and CPD separately, based on the IVs selected following the three IV 

assumptions. Gen-IVW (marked with a triangle) is the primary MR method (i.e. weighted 

generalized linear regression) and the other methods (marked with a dot) are the MR 

methods used in the sensitivity analysis. BAG = brain age gap
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Table 1.

Demographic characteristics of participants in training and testing data sets

Training Set Testing Set

Variable Level NonSMK (N=10,717) NonSMK (N=10,746) SMK (N=2,161)

BMI (kg/m2) Mean (SE) 26.30 (4.08×10−2) 26.26 (4.02×10−2) 26.48 (8.70×10−2)

Age (years) Mean (SE) 54.30 (7.15×10−2) 54.28 (7.12×10−2) 53.08 (1.57×10−2)

Townsend deprivation index at recruitment Mean (SE) −2.13 (2.57) −2.18 (2.54) −0.90 (3.19)

Age completed full time education (years) Mean (SE) 17.28 (2.34) 17.27 (2.35) 16.94 (2.35)

Average total household income before tax 
(n, %)

Less than 18,000 930 (8.68) 899 (8.37) 145 (6.71)

18,000 to 30,999 1023 (9.55) 1038 (9.66) 314 (14.53)

31,000 to 51,999 2012 (18.77) 2017 (18.77) 455 (21.06)

52,000 to 100,000 2883 (26.9) 3042 (28.31) 635 (29.38)

Greater than 100,000 3012 (28.1) 2872 (26.73) 495 (22.91)

Do not know/ Prefer 
not to answer 838 (7.82) 803 (7.47) 105 (4.86)

Sex (n, %)
Female (%) 6009 (56.07) 5978 (55.63) 972 (44.98)

Male (%) 4708 (43.93) 4768 (44.37) 1189 (55.02)

Hypertension (n, %)
Yes (%) 1213 (11.32) 1252 (11.65) 259 (11.98)

No (%) 9504 (88.68) 9494 (88.35) 1902 (88.01)

Diabetes (n, %)
Yes (%) 33 (3.08×10−3) 43 (4.00×10−3) 12 (5.55×10−3)

No (%) 10684 (0.99) 10703 (0.99) 2149 (0.99)

Stroke (n, %)
Yes (%) 93 (8.68×10−3) 86 (8.00×10−3) 25 (1.16×10−3)

No (%) 10660 (0.99) 10624 (0.99) 2136 (0.99)

SE = standard error; n = frequency; % = percentage within each column; NonSMK = non-smoker; SMK = smoker.
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Table 2.

Results of Mendelian randomization and association analyses in the study sample.

Association Mendelian randomization

β ± SE (95% CI) p-value θ ± SE (95% CI) p-value

SS 0.88 ± 0.07 (0.74, 1.02) 2.81× 10−36 0.21 ± 0.10 (6.5×10−3, 0.41) 0.04

CPD 0.05 ± 0.01 (0.03, 0.07) 5.49×10−6 0.16 ± 0.05 (0.06, 0.26) 1.30×10−3

SE = standard error; CI = confidence interval; SS = smoking status; CPD = cigarette per day.
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