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Abstract

All but the simplest phenotypes are believed to result from interactions between two or more

genes forming complex networks of gene regulation. Sleep is a complex trait known to

depend on the system of feedback loops of the circadian clock, and on many other genes;

however, the main components regulating the phenotype and how they interact remain an

unsolved puzzle. Genomic and transcriptomic data may well provide part of the answer, but

a full account requires a suitable quantitative framework. Here we conducted an artificial

selection experiment for sleep duration with RNA-seq data acquired each generation. The

phenotypic results are robust across replicates and previous experiments, and the transcrip-

tion data provides a high-resolution, time-course data set for the evolution of sleep-related

gene expression. In addition to a Hierarchical Generalized Linear Model analysis of differen-

tial expression that accounts for experimental replicates we develop a flexible Gaussian

Process model that estimates interactions between genes. 145 gene pairs are found to

have interactions that are different from controls. Our method appears to be not only more

specific than standard correlation metrics but also more sensitive, finding correlations not

significant by other methods. Statistical predictions were compared to experimental data

from public databases on gene interactions. Mutations of candidate genes implicated by our

results affected night sleep, and gene expression profiles largely met predicted gene-gene

interactions.

Author summary

Understanding the molecular bases of phenotypes remains a challenge of complex trait

biology. We used a combination of selective breeding, RNA-Seq, and Gaussian Process

modeling to determine whether de novo gene expression networks could be derived for

sleep duration in Drosophila. We bred flies with long and short sleep times, and sequenced

RNA from the flies at each generation of selection. Using a hierarchical Bayesian
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Generalized Linear Model, we identified genes with altered expression across generation

in the selected populations. Gene expression trajectories were largely non-linear across

time, however, so we developed a Gaussian Process method to more accurately model the

data. The Gaussian Process provides an adaptable framework that adjusts to the complex-

ity of gene expression patterns we observed, eliminating the need to specify or assume a

specific polynomial model. The Gaussian Process also enabled us to compute covariances

among pairs of genes, elucidating gene expression networks for sleep duration. Follow-up

mutational analyses validated the candidate genes’ effects on sleep duration and transcrip-

tional analyses of the mutations largely confirmed gene expression network predictions.

The Gaussian Process framework is broadly applicable to gene expression data collected

across time.

Introduction

Despite the plethora of modern and increasingly refined molecular biology assays—from

DNA to metabolites and beyond—systematically uncovering the molecular bases of pheno-

types remains one of the thorniest challenges in biology. “Omics” approaches allow whole

genome, transcriptome, proteome, and other “omes” to be generated and candidate genes to

be fished out of these high dimensional data, but understanding how these biomolecules inter-

act even in the simplest pathways requires painstaking follow-on experimentation, construc-

tion of databases, and an immense collective effort to make connections from disjointed assays

into a coherent model. Despite the large amount of studies and data generated for many sys-

tems, a full understanding of underlying processes has not yet been achieved; this is clear indi-

cation that better methods are needed to obtain the understanding of biological processes

from data. For complex traits the task is even more difficult. Sleep is a complex phenotype the

evolution of which remains a classic mystery in biology. Although sleep and sleep-like behav-

ior is conserved among species, its main purpose is not completely understood, and hypothe-

ses for its purpose span functions like conservation of resources [1–3], pruning of synapses

and memory formation [4–7], and management of metabolite and waste products [8, 9]. It is

plausible that sleep is a manifestation of multiple functions, and that it involves the activity of

many genes to regulate a complex higher-level function; indeed many genes have been impli-

cated in sleep [10–20]. Assuming anything but the simplest possible model would therefore

require a description that accounts for this complexity in the interactions of genes and gene

products.

Artificial selection plus sequencing/resequencing is a powerful approach for identifying

heritable variation in phenotypes and their underlying molecular bases [21], typically assaying

DNA or RNA expression in the initial and evolved populations and comparing them to con-

trols [22, 23]. Coupling selection with gene expression identified candidate genes for diurnal

preference [24], olfactory behavior [25, 26], food consumption [27], mating behavior [28],

resistance to parasitism [29], environmental stressors [30, 31], ethanol tolerance [32], and

aggressive behavior [33]. Caveats of that method include often not having molecular data on

the intermediate generations, and relying on traditional statistical methods to assess the signif-

icance of polymorphic variants. In the case of gene expression, RNA levels are often modeled

for each gene individually using linear models, without further consideration of the processes

involved or interactions between genes. Inferring interaction between genes (as opposed to

individual changes) requires observations of how the genes covary in time. Correlation [34,

35] or information theory-based methods (and others, reviewed in [36–38]) could be applied
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to estimate the relationship between the genes when that information is present, but neither is

time course data usually available, nor are these methods standard in artificial selection

experiments.

Recent work applies Gaussian Process models [39, 40] to data sampled over time in order

to evaluate dynamic parameters. Where gene and protein expression dynamics can be mod-

eled with differential equations, Gaussian Process methods estimate parameters for non-linear

systems [41], elucidate the spatial-temporal dynamics of developmental morphogen gradients

[42], model signaling and gene regulatory networks [43, 44] infer latent transcription factor

activity [45], and find transcription factor targets [46]. Other applications of Gaussian Pro-

cesses account for missing or irregularly sampled gene expression data [47], model spatial

interactions between cells [48] and generate clusters [47, 49]. Gaussian Processes can also infer

relationships among multiple disparate data types [50, 51] to explore, for example latent pro-

cesses underlying spatial-temporal relationships among brain structure, brain activity metrics,

and behavior [52], or relationships among multi-modal spatially- and temporally-varying data

[53]. Gaussian Processes thus provide a flexible framework for the estimation of latent

relationships.

In this work we have artificially selected Drosophila melanogaster for increased or decreased

night sleep duration and sequenced the mRNA of the flies from each generation of selection.

The selection procedure produced both long- and short-sleeping fly populations significantly

deviant from unselected controls. The RNA sequence data, which consisted of expression lev-

els as a function of time (measured in generations), was analyzed using a Multi-Channel

Gaussian Process [50, 51] where each gene is described by one of these “channels”, and their

relationships are estimated by an underlying covariance structure in the model. We describe

the expression of 85 genes that had significant changes in the artificial selection long or short

schemes along generation common to both males and females. We used this model to infer the

magnitude of all 3,570 possible pairwise interactions between all possible pairs of genes.

Results from this analysis and comparison to unselected controls suggest that multiple shifts in

interactions underlie the increase and decrease of night sleep duration, with 145 interactions

not being observed in the controls. Further experiments revealed candidate genes that impact

night sleep and confirm these interactions.

Materials and methods

Construction of outbred population

We constructed an outbred population of flies using ten lines from the Drosophila Genetic Ref-

erence Panel (DGRP) [54, 55] with extreme night sleep phenotypes [11]. Five lines had the

shortest average night sleep for both males and females combined in the population:

DGRP_38, DGRP_310, DGRP_365, DGRP_808, and DGRP_832. The other five lines had the

longest average night sleep in the population: DGRP_235, DGRP_313, DGRP_335,

DGRP_338, and DGRP_379. The ten lines were crossed in a full diallel design, resulting in 100

crosses. Two virgin females and two males from the F1 of each cross were randomly assigned

into 20 bottles, with 10 males and 10 females placed in each bottle. At each subsequent genera-

tion, 20 virgin females and 20 males from each bottle were randomly mixed across bottles to

propagate the next generation. The census population size was 800 for each generation of ran-

dom mating. This mating scheme was continued for 21 generations, resulting in the Sleep

Advanced Intercross Population, or SAIP [10, 56]. The SAIP was maintained by pooling the

flies from each bottle together, then randomly assigning 20 males and 20 females to each bottle

each generation.
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Artificial selection procedure for night sleep

At generation 47 of the SAIP, we began the artificial selection procedure, which we defined as

generation 0. We seeded six bottles with 25 males and 25 females mixed from all bottles of

the outbred population. Two replicate bottles were designated for the short-sleeping protocol

(S1 and S2), two for the long-sleeping protocol (L1 and L2), and two for a control (unse-

lected) protocol (C1 and C2). Each generation, 100 virgin males and 100 virgin females were

collected from each of the six population bottles. Virgins were maintained at 20 individuals

to a same-sex vial for four days to control for the potential effects of social exposure on sleep

[57]. Flies were placed into Trikinetics (Waltham, MA) sleep monitors, and sleep and activity

were recorded continuously for four days. We used an in-house C# program (R. Sean Barnes,

personal communication) to calculate sleep duration, bout number, and average bout length

during the night and day, as well as waking activity. We also calculated sleep latency, defined

as the number of minutes prior to the first sleep bout after the incubator lights turn off. In

addition, we computed the coefficient of environmental variation (CVE) for each sleep trait

as the product of the standard deviation in each replicate population (σ) divided by the mean

(μ) × 100 [58].

All sleep traits including night sleep duration were averaged over the four-day period. For

the short (long)-sleeping populations, we chose the 25 males and 25 females in each replicate

population having the lowest (highest) average night sleep as parents for the next generation.

Any flies found dead were discarded, and the next shortest (longest)-sleeping fly was used in

order to ensure that 25 females and 25 males were used as parents. For the control populations,

we chose 25 males and 25 females at random to start the next generation. Flies were not mixed

across replicate populations. We repeated this procedure for 13 generations.

Quantitative genetic analyses of selected and correlated phenotypic

responses

We analyzed the differences in night sleep among selection populations as well as other poten-

tially correlated sleep traits using a mixed analysis of variance (ANOVA) model:

Y ¼ mþ Sel þ RepðSelÞ þ Sexþ Genþ Sel� Sexþ Sel� Genþ RepðSelÞ � Sex

þRepðSelÞ � Genþ Sex� Genþ Sel � Sex� Genþ RepðSelÞ � Sex� Genþ ε

where Y is the phenotype; μ is the overall phenotypic mean; Sel, Sex, and Gen are the fixed

effects of selection scheme (short- or long-sleeper), sex, and generation, respectively; Rep is the

random effect of replicate population; and ε is the error term. The CVE traits were assessed

using the same model with the replicate terms removed. A statistically significant Sel term

indicates a response of the trait to selection for night sleep; a significant Sel × Sex term indi-

cates a sex-specific response to selection. We repeated the analysis for sexes separately using

the reduced model

Y ¼ mþ Selþ RepðSelÞ þ Genþ Sel � Genþ RepðSelÞ � Genþ ε

where the terms are as defined above. We also analyzed the response to selection in each gener-

ation separately using the reduced model

Y ¼ mþ Selþ RepðSelÞ þ Sexþ Sel� Sexþ RepðSelÞ � Sexþ ε

and the reduced model

Y ¼ mþ Selþ RepðSelÞ þ ε
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for each sex separately per generation. Finally, we analyzed the change in sleep parameters

over generations in the control populations using the model

Y ¼ mþ Repþ Sexþ Genþ Rep� Sexþ Rep� Genþ Sex� Genþ Rep� Sex� Genþ ε

where each factor is as defined above. We estimated realized heritability (h2) using the breed-

er’s equation:

h2 ¼
SR
SS

where SR and SS are the cumulative selection response and differential, respectively [59]. The

selection response is computed as the difference between the offspring mean night sleep and

the mean night sleep of the parental generation. The selection differential is the difference

between the mean night sleep of the selected parents and the mean night sleep of the parental

generation.

RNA extraction and sequencing

As described above, sleep was monitored in 100 virgin males and 100 virgin females each gen-

eration. Twenty-five flies of either sex were used as parents for the next generation, leaving 75

flies of each sex in each selection and control population. Four pools of 10 flies of each sex

were chosen at random from these 75 flies and frozen for RNA extraction at 12:00 pm (i.e.,

ZT6). This timepoint was arbitrarily chosen and is during the fly’s active period. RNA was

extracted from two of these pools; the remaining two pools were kept as back-up samples and

used if needed. Samples were collected for the initial generation (0), and all subsequent genera-

tions. RNA was extracted using Qiazol (Qiagen, Hilden, Germany), followed by phenol-chlo-

roform extraction, isopropanol precipitation, and DNase digestion (Qiagen, Hilden,

Germany). Qiagen RNeasy MinElute Cleanup kits (Qiagen, Hilden, Germany) were used to

purify RNA according to the manufacturer’s instructions. With the exception of generation 1,

which had RNA that was degraded, RNA from all other generations was sequenced. This pro-

duced 312 RNA samples (6 populations × 13 generations × 2 sexes × 2 replicate RNA

samples).

Poly-A selected stranded mRNA libraries were constructed from 1 μg total RNA using the

Illumina TruSeq Stranded mRNA Sample Prep Kits (Illumina, San Diego, CA) according to

manufacturer’s instructions with the following exception: PCR amplification was performed

for 10 cycles rather than 15 in order to minimize the risk of over-amplification. Unique bar-

code adapters were applied to each library. Libraries were pooled for sequencing. The pooled

libraries were sequenced on multiple lanes of an Illumina HiSeq2500 using version 4 chemistry

to achieve a minimum of 38 million 126 base read pairs. The sequences were processed using

RTA version 1.18.64 and CASAVA 1.8.2.

RNA alignment of reads

Sequences were assessed for standard quality parameters using fastqc (0.11.4) (Babraham Insti-

tute, Cambridge, UK). Reads were aligned to the FB2015_04 Release 6.07 reference annotation

of the Drosophila melanogaster genome using STAR [60]. Default parameters were used except

that the minimum intron size was specified as 2, and the maximum intron size was specified as

268,107, consistent with the largest intron size in the D. melanogaster genome. STAR outputs

aligned sequence to a SAM file format, which contains the code ‘NH’ [60]. An NH of 1 indi-

cates a uniquely mapped read, while NH> 1 indicates that the read did not map uniquely.

HTSeq was used to count only the uniquely mapped reads (NH = 1) [61].
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Principal Component Analysis (PCA)

It was expected from previous studies of gene expression that there would be large differences

in gene expression due to sex [62–72]. We performed Principal Component Analysis to assess

those differences (S1 Fig). The principal components of the normalized RNA-seq count nor-

malized matrix were computed, with each gene being treated as a different variable, and each

sample a different observation. Samples were projected in the planes of the ten first compo-

nents, and clustering according to the experimental labels was inspected visually.

Gene normalization and filtering

The combined genic and intergenic counts were normalized by the expression of a pseudo-ref-

erence sample computed from the geometric mean of all samples, using the method described

by Love et al. [73]. Filtering was performed by computing the 95th percentile of the distribution

of normalized, base 2 logarithm, levels in the intergenic regions for males and females and

using those values as cut-off level for the genic regions—i.e. any genes that did not have expres-

sion above this level for at least one sample were removed from further analyses [74]. The (lin-

ear scale) cutoff expression value for males was 48.6, and for females 102.

Generalized Linear Model analysis of expression data

Analysis of differential expression between selection schemes was initially performed for each

gene independently. Given the separation of the expression levels by sex seen in the PCA anal-

ysis, analyses were conducted separately for the subsets of male or female flies. We imple-

mented a generalized linear model (GLM) with a hierarchical structure to account for non-

independent, replicate-specific parameters. The description is similar to a generalized linear

mixed model (GLMM), but uses a Bayesian formulation to specify the hyper-priors and is fully

described below. Normalization factors for the RNA levels was performed using the scheme

described by Love et al. [73]. A negative binomial likelihood was used and parameterized with

the mean (given by the prediction of the linear model) and dispersion parameters; the number

of samples (156 for each sex) allowed estimation of the latter together with model coefficients,

dispensing with the need of other schemes applied when the number of samples is small, com-

monly implemented in some packages.

Bayesian inference was used and parameter priors were exploited to treat replicate effects in

a hierarchical formulation [75]. Specifically, for each replicate-dependent parameter (say

βshort,rep), two parameters were specified at the top-level (μshort and σshort), given (hyper-)priors,

and estimated from the data together with all other parameters. Below that, both replicate-

specific model parameters (βshort,1 and βshort,2) are given the same gaussian prior using top-

level parameters (e.g. bshort;1 � N ðmshort; sshort) for that coefficient in replicate 1 as well as

replicate 2). Under this formulation the full model for the expression of a gene j is given by

logμj/ selrep + gen + sel × genrep, where a relationship between each set of replicate-dependent

parameters is enforced hierarchically through their higher level common parameters and

hyperpriors. Explicitly, we have:

Zj ¼ logmj

¼ ½b1; b2; bshort;1; bshort;2; blong;1; blong;2; bgen; bshort�gen;1; bshort�gen;2;

blong�gen;1; blong�gen;2�X

where X is the design matrix, with binary 0/1 variables indicating parameters that apply to spe-

cific treatments (e.g. the entries multiplying β1,β2, are present for all, that βshort,1, is present for

short sleepers from replicate 1, etc.) except for parameters dependent on the gen variable
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which takes the value of the generation (e.g. 0 through 13 for the entries multiplying the βgen
parameter in all treatments, and for those multiplying βshort×gen,1 for short sleepers from repli-

cate 1, etc.). Table 1 lists all parameters, their descriptions, design matrix values associated to

them, and priors.

Maximum a posteriori probability (MAP) estimates and confidence intervals were obtained

using the Stan package [76]. Significance was calculated using a likelihood ratio test comparing

the point estimates from the full model to a reduced model not including the interaction terms

(i.e. logμj,rep = selrep + gen). Model p-values were corrected for multiple testing using the Benja-

mini-Hochberg method [77], with significance defined at the 0.001 level, consistent with the

lower threshold applied in other artificial selection studies [28, 32, 33].

Calculation of non-parametric correlations between genes

The correlation coefficients (ρ) between any two pairs of genes can be computed directly from

the data. Pearson correlation assumes the relationship between the two variables is linear,

while Spearman correlation is rank-based and therefore accommodates non-linear relation-

ships, although it still assumes the relationship is monotonically increasing or decreasing. We

therefore computed Spearman correlations between genes that were found to be significant for

both males and females in the GLM analysis—one correlation coefficient was obtained for the

data subset from each sex-selection combination. The significance of each correlation coeffi-

cient is tested using the null hypothesis that ρ = 0. Because the main interest is the interaction

Table 1. Parameter names, description, design values, and priors for Bayesian inference.

Parameter Description Design values Prior

μcontrol Hyperprior on mean of βrep n/a N ð �y0 ; 1Þ

σcontrol Hyperprior on (square root of) variance of βrep n/a Cauchy(0, 1)

μshort Hyperprior on mean of βshort,rep n/a N ð0; 1Þ

σshort Hyperprior on variance of βshort,rep n/a Cauchy(0, 1)

μlong Hyperprior on mean of βlong,rep n/a N ð0; 1Þ

σlong Hyperprior on variance of βlong,rep n/a Cauchy(0, 1)

μshort×gen Hyperprior on mean of βshort×gen,rep n/a N ð0; 1Þ

σshort×gen Hyperprior on variance of βshort×gen,rep n/a Cauchy(0, 1)

μlong×gen Hyperprior on mean of βlong×gen,rep n/a N ð0; 1Þ

σlong×gen Hyperprior on variance of βlong×gen,rep n/a Cauchy(0, 1)

β1 Intercept for replicate 1 0, 1 N ðmcontrol; scontrolÞ

β2 Intercept for replicate 2 0, 1 N ðmcontrol; scontrolÞ

βshort,1 Effect from short sleeper, replicate 1 treatment 0, 1 N ðmshort ;sshortÞ

βshort,2 Effect from short sleeper, replicate 2 treatment 0, 1 N ðmshort ;sshortÞ

βlong,1 Effect from long sleeper, replicate 1 treatment 0, 1 N ðmlong ;slongÞ

βlong,2 Effect from long sleeper, replicate 2 treatment 0, 1 N ðmlong ;slongÞ

βgen Treatment-independent generation effect 0–13 N ð0; 2Þ

βshort×gen,1 Interaction short by generation, rep 1 effect 0–13 N ðmshort�gen; sshort�genÞ

βshort×gen,2 Interaction short by generation, rep 2 effect 0–13 N ðmshort�gen; sshort�genÞ

βlong×gen,1 Interaction long by generation, rep 1 effect 0–13 N ðmlong�gen; slong�genÞ

βlong×gen,2 Interaction long by generation, rep 2 effect 0–13 N ðmlong�gen; slong�genÞ

α Negative binomial dispersion n/a Uniform(0, 109)

�y0 denotes the mean expression of all samples at generation zero.

https://doi.org/10.1371/journal.pcbi.1011389.t001
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between genes in the selected populations that are different from controls we compare the

coefficients by computing and comparing the confidence intervals for ρsel (where sel can be

“short” or “long”) and ρcontrol using the normal approximation to arctanh(ρ) [78]. We note

that this is not exactly equivalent to the significance testing of the null hypothesis that

ρsel = ρcontrol [79] (which relies on computing the confidence interval for ρsel − ρcontrol using the

same method), since it overestimates the total variance (i.e., one would find fewer significant

instances). Nevertheless, the approach is valid and is more broadly applicable, in that it can be

computed when a joint distribution with the two variables cannot be obtained—we use the

term “significant” for either kind of difference, but explicitly state which one is used.

Gaussian Process regression

Gaussian Processes (GP) are an alternative function-space formulation to the well-known

weight-space linear models of the form y = f (x) + ε; their use dates back to the 19th century

and they have been covered extensively in the statistical and information theory literature [80],

becoming popular in machine learning applications [39, 81], and more recently implemented

in less technical contexts like the life sciences [40]. We give a brief overview of their usefulness,

motivate their use in this work, and point to the references above for formal description of the

method.

The weight-space linear model expresses the observations in terms of explicit linear coeffi-

cients (or weights) of the independent variable, x, possibly with further basis function expan-

sions (e.g. square, x2, or higher order polynomials, xn), for instance y = β0 + β1x + β2x2 + ε,

(where ε is normally distributed noise). Gaussian Processes describe the basis functions

implicitly instead, with y � N ðm;KÞ; that is, a set y of N observations is distributed according

to a multivariate normal distribution with mean given by the vector μ (of size N) and covari-

ance between the values of x given by the matrix K (with dimension N × N). The entries of this

matrix in row i, column j are defined by some covariance function such that kij = cov(xi, xj)—if

the covariance function is linear in the values of x, for instance, the prediction for y is a straight

line similar to y = β0 + β1x. Formulating the model in terms of function-space enables the use

of flexible sets of basis functions; this approach of only implicitly describing a basis function,

thus avoiding specification of a potentially large basis is called the “kernel trick”. Functions

like the commonly used squared exponential kernel can be shown to be equivalent to an infi-

nite number of basis functions [39], and therefore cannot be incorporated in the explicit terms

of the weight-space formulation.

While Gaussian Processes are a classic formulation in statistics, the recent surge in machine

learning applications has popularized its use in the natural sciences. They have been used to

analyze gene expression by using their flexible output in combination with ordinary differen-

tial equations [41, 43, 44, 46], with clustering approaches [49], within other regression models

[82], or modeling spatial covariance [48]. In the context of our experimental design Gaussian

Process Regression could be used as a flexible alternative to GLMs, with each selection scheme

having a different mean function μsel and a squared exponential covariance function kðx; x0Þ ¼

s2
f cðx; x

0Þ ¼ s2
f exp

jx� x0 j2

2l2

� �
where x takes the values of the generations in our experiment. The

exponentiated term gives the correlation c(x, x0) between a pair of time points, with parameter

ℓ modulating the correlation level given a distance r = x − x0, and s2
f being the signal variance

of the data. Under this model, unlike with the GLM analysis, the change in RNA-seq counts is

a function not of slope coefficients but of the signal variance s2
f . It is worth noting that the sig-

nal variance is a scalar constant for all terms in the covariance matrix, so it can also be written
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as K ¼ s2
f C, where C is analogous to K but with correlations instead of covariances, a notation

that will be useful shortly.

Multi-channel Gaussian Processes

Despite the extensive use of Gaussian Processes, most applications in the life sciences have

been restricted to single-channel GPs; that is, models that only describe one set of observations

at a time (here the expression time series for a single gene). These models—in this aspect not

unlike GLMs—describe expression of genes independently, i.e. they implicitly assume genes

do not interact in any way. Gaussian Processes can however be extended to include covariance

between two or more sets of observations, a formulation that seems to be underexploited in

the biological literature (but see [53] and [52]). The different dependent variables yi are some-

times called channels or tasks, and the resulting model is called a multi-task or multi-channel

Gaussian Process. The details of the specification of this model can be found in [51] and [50],

which we summarize below. For an array of two genes only, for instance, instead of describing

each vector y1 and y2 separately as multivariate gaussians of dimension N1 and N2, respectively,

the concatenated vector [y1 y2]T with N1 + N2 observations can be modeled as a single multi-

variate gaussian with a covariance matrix of K dimensions (N1 + N2) × (N1 + N2), or

½y1 y2�
T
� N ðm;KÞ. The diagonal blocks of the covariance matrix with dimensions N1 × N1

and N2 × N2 are the same as above, and the off-diagonal blocks of dimensions N2 × N1 and

N1 × N2 specify the correlations c12ijðx1i; x2jÞ ¼ exp jx1i � x2j j
2

‘2
1
þ‘2

2

� �
between the two points ij from

channels 1 and 2 [50].

Finally, the signal variance for each of those blocks need to be specified, and the final matrix

is given by K ¼ K11 K12

K21 K22

� �

¼

�
s2

1
C11 s2

12
C12

s2
12
C12 s2

2
C22

�

[51], and the mean of the multivariate

gaussian is specified by a concatenated vector μ = [μ1 μ2]T. The number of parameters is

reduced by recognizing that the covariance matrix is symmetric so in this example s2
21
¼ s2

12
,

where we also dropped the subscript f. For this model, the variation in the RNA levels of say

gene 1 is a function not only of s2
1
, but also of s2

21
¼ s2

12
. Therefore, fitting the data with this

model infers interaction between genes from scratch without any external information not

contained in the array of RNA-seq counts.

The model can be extended to any number of genes, although computational requirements

for performing the necessary matrix operations on K also grow with its size and may be limit-

ing—the computational and mathematical limitations of this approach are discussed in S1

Appendix.

Bayesian MCMC inference of Gaussian Processes

Analogously to GLM models, we maintain the negative binomial likelihood for the Gaussian

Process inference, but unlike the transition between linear models and their generalized ver-

sions, the incorporation of non-gaussian likelihoods is not as straightforward, and requires

methods to approximate the underlying latent Gaussian Process model, leading to what is

sometimes referred to as Gaussian Process Classification [39]. Because of the Bayesian infer-

ence implemented for this model we chose to infer the latent function via Markov Chain

Monte Carlo sampling as these variables can be estimated jointly with the other parameters

and have priors that by design are standard gaussian, and therefore are straightforward to

specify. Table 2 gives the description of all parameters in the Multi-Channel Gaussian Process

model and their priors.
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The number of covariance parameters in a multi-channel Gaussian Process model with M
channels is (M2 −M)/2, and the total number of parameters scales roughly as OðM2Þ as the

number of channels becomes large. For 100 genes, for instance, that would result in about

5,000 covariances. Due to the statistical challenge of exploring a parameter space with a dimen-

sion of several thousand, as well as the computational demand of factorizing a large matrix at

each MCMC step, the estimation of the signal covariance parameters between genes was not

performed jointly. Instead, each pair of genes was fitted separately, with a single-channel

Gaussian Process being first used to estimate the signal variance and bandwidth parameters

for each gene and this estimate being used as a prior for the (pairwise) joint inference. This

procedure effectively breaks down a Gaussian Process inference of any size into several smaller

inference problems requiring factorization of a matrix of size 2N, with a total number of

parameters of the order of N, which are computationally much more manageable and can be

run in parallel. Because the covariance parameters depend only on the relationship between

two variables (here, genes), separate estimation does not affect inference of the parameters; in

fact, it removes the constraint of positive-definiteness on the matrix of covariances of all genes

(which instead applies to the matrix of two genes only, see S1 Appendix.

Eight parallel chains were run for each estimation with 40 thousand samples each; half were

excluded as warm-up and 1 out of every 40 was kept for further calculations. Convergence was

assessed using the R̂ metric and observing the number of effective samples (ESS) [75]. The

annotated model implemented in the Stan probabilistic language is made available at https://

github.com/caesoma/Multiple-shifts-in-gene-network-interactions-shape-phenotypes-of-

Drosophila-melanogaster. Because inference was done separately for each selection scheme,

differences between them were assessed by comparing the posterior distribution of the param-

eters of interest.

Confirmatory experiments

We tested Minos insertions putatively disrupting five genes from the significant Gaussian Pro-

cess correlation for their effect on sleep, along with their two background controls. We assayed

phenotypes using the same procedure outlined above. Twenty-four flies per sex per line were

assayed, and the experiment was replicated twice. Sleep was analyzed using the following

ANOVA model:

Y ¼ mþ Genotypeþ Sexþ Repþ Genotype� Sexþ Genotype� Rep

þ Sex� Repþ Genotype� Sex� Repþ ε

where Sex and Rep are as previously defined above and Genotype refers to the Minos insertion

Table 2. Parameter names, description, and priors for Gaussian Process Bayesian inference.

Parameter Description Prior

s Standard deviations of data (one for each channel) n/a

ŝ2
i ; ðVs;iÞ Signal variance expectation (variance) from single-channel i model n/a

‘̂i ; ðV‘;iÞ
Bandwidth expectation (variance) from single-channel i model n/a

s2
ii Signal variance for channels i N ðŝi ;

ffiffiffiffiffiffiffi
Vs;i

p
Þ

s2
ij Signal covariance between channels i and j N ð0;maxðsÞÞ

ℓ Bandwidth parameters N ð‘̂i ;
ffiffiffiffiffiffiffi
V‘;i

p
Þ

~f Gaussian Process latent normal variates N ð0; 1Þ

ϕ inverse of square of dispersion parameter (ϕ = 1/α2) N ð0; 1Þ

https://doi.org/10.1371/journal.pcbi.1011389.t002
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line or control. We conducted RNA-Seq on the Minos insertion lines and their controls. We

collected 10 flies per sex/line at the conclusion of sleep monitoring for RNA extraction. RNA

was extracted as detailed above, with the following exception: ERCC spike-ins (ThermoFisher

Scientific, Waltham, MA) were added to the RNA after the extraction procedure. A total of 28

samples (7 lines × 2 sexes × 2 replicates) were collected and processed. We then sequenced

these samples and processed them as detailed above. Note that we discarded one sample due to

failed quality control during library preparation. We compared normalized gene expression in

the mutants to their respective controls using a Kruskal-Wallis non-parametric test. Expres-

sion ratios were computed between knock down genotypes and their wild-type controls (w1118

or y1w67c23) for individual genes predicted by the Gaussian Processes to be significantly corre-

lated with the knocked down genes in the relevant sex-selection scheme combination (S1

Table), henceforth candidate genes. Expression ratios were also computed for sets of 1000

genes chosen at random, each set matching the genetic backgrounds (knockdown and con-

trols) as well as the sex (henceforth random sets); a distribution of expression ratios was gener-

ated for each random set.

Results

Phenotypic response to artificial selection

The selection procedure for night sleep was very effective. Long-sleeper and short-sleeper pop-

ulations had significant differences in night sleep across all generations (PSel = 0.0003; S2

Table); in fact, night sleep was different for the two selection schemes for each generation con-

sidered separately except for generations 0 and 1 (S3 Table). Both males and females

responded equally to the selection procedure. Fig 1A shows the phenotypic response to 13 gen-

erations of selection for night sleep. At generation 13, the long-sleeper populations averaged

642.2 ± 3.83 and 667.8 ± 2.97 minutes of night sleep for Replicate 1 and Replicate 2, respec-

tively. The short-sleeper populations averaged 104.3 ± 6.71 and 156.2 ± 8.76 minutes of night

sleep for Replicate 1 and Replicate 2, respectively. The average difference between the long-

and short-sleeper lines was 537.9 minutes for Replicate 1, and 511.6 minutes for Replicate 2. In

contrast, the two control populations did not have differences in their night sleep after 13 gen-

erations of random mating (PGen = 0.7083; S4 Table). In the initial generation, night sleep was

519.6 ± 10.57 minutes in the Replicate 1 control and 567.9 ± 7.63 minutes in the Replicate 2

control. At generation 13, night sleep was 563.4 ± 7.62 and 542.3 ± 7.91 in Replicates 1 and 2,

respectively, a difference of only 43.8 and 25.6 minutes. These negligible changes in night sleep

in the control population suggest that little inbreeding depression occurred over the course of

the experiment [59]. Selection was asymmetric, with a greater phenotypic response in the

direction of reduced night sleep. Note also that night sleep is bounded from 0 to 720 minutes,

and the initial generation had 515.39 minutes of night sleep on average across all populations,

a fairly long night sleep phenotype. This high initial sleep may explain why the response to

selection for short night sleep was more effective. Night sleep is sexually dimorphic [11, 83,

84]; yet both males and females responded to the selection protocol equally (PSel×Sex = 0.9492;

S2 Table). Thus, we constructed a set of selection populations with nearly 9 hours difference in

night sleep.

In an artificial selection experiment, some amount of inbreeding will necessarily take place.

Only a subset of the animals are selected each generation as parents; thus phenotypic variance

is expected to decrease as selection proceeds [59]. However, this is not the case for all artificial

selection experiments [59]. We calculated the coefficient of environmental variation (CVE)

[58] and evaluated its trajectory across time in order to determine whether the populations

were becoming more or less variable over time. As Fig 1B shows, night sleep CVE increased
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over time in the short sleepers, and decreased over time in the long sleepers (P< 0.0001; S5

Table). The increase in CVE in short sleepers was largely due to a decrease in the population

mean as the standard deviation also decreased over time, indicating that the phenotypic vari-

ance decreased (S2 Fig). Likewise, the standard deviation decreased in the long sleepers over

time, even as the mean night sleep increased, indicating decreased variability in these popula-

tions as well. These changes in CVE mimic previous observations in populations artificially

selected for sleep [10]. Regressions of the cumulated response on the cumulated selection dif-

ferential were used to estimate heritability (h2). Long-sleeper population h2 (±SE of the

Fig 1. Response to artificial selection for night sleep. (A) Mean and (B) coefficient of environmental variation of night sleep. Plot and regression

lines of cumulated selection differential (SS) against cumulated selection response (SR) for (C) long- and (D) short-sleeping populations, and

against cumulated differential SD for (E) controls. Light green, Replicate 1 long-sleeper population; Dark green, Replicate 2 long-sleeper

population; Orange, Replicate 1 short-sleeper population; Red, Replicate 2 short-sleeper population; Gray, Replicate 1 control population; Black,

Replicate 2 control population.

https://doi.org/10.1371/journal.pcbi.1011389.g001
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coefficient of regression) were estimated as 0.145 ± 0.021 and 0.141 ± 0.014 (all P< 0.0001) for

Replicates 1 and 2, respectively (Fig 1C); short-sleeper population h2 were 0.169 ± 0.013 and

0.183 ± 0.019 (all P< 0.0001) for Replicates 1 and 2 (Fig 1D). In contrast, estimated regression

coefficients for the control population were non-significant and with high standard errors

associated to the regression estimates: 0.405 ± 0.695 (P = 0.57) and −0.078 ± 0.487 (P = 0.88)

for Replicates 1 and 2, respectively (Fig 1E).

Correlated response of other sleep traits to selection for night sleep

Traits that are genetically correlated with night sleep might also respond to selection for long

or short night sleep [59]. Indeed, some sleep and activity traits have been previously shown to

be phenotypically and genetically correlated [11, 83, 84]. We examined the other sleep and

activity traits for evidence of a correlated response to selection. Night and day average bout

length (P = 0.0008 and P = 0.0391, respectively) and sleep latency (P = 0.0023) exhibited a cor-

related response to selection for night sleep across generations 0–13, while night and day bout

number, day sleep, and waking activity did not (S2 Fig; S2 Table). In the case of day average

bout length, the correlated response was sex-specific to males (P = 0.0140) (S2 Table). Signifi-

cant correlated responses for night and day average bout length and sleep latency did not

occur in all generations (S3 Table). Night average bout length responded to selection for night

sleep in most generations, while day average bout length responded in only four of the last six

generations. Sleep latency responded to selection after the second generation. In addition, we

observed significant differences between the long-sleeping and short-sleeping populations for

the CVE of all sleep traits except waking activity CVE (S2 Fig; S5 Table). However, the pattern

of the CVE for each trait appeared to be more random across time. These correlated responses

concur with previous observations we made in selected populations originating from the same

outbred population for night sleep and night average bout length, and night sleep and sleep

latency [10]. However, unlike the previous study, we did not see a correlated response between

night sleep and day sleep, and night sleep and day bout number [10]. The lack of correlated

response reflects the relatively low genetic correlation these two traits have with night sleep

[11, 84].

Phenotypes in flies used for RNA-Seq

Every generation, we harvested RNA from flies chosen at random from the 200 measured for

sleep in each selection population, with the exception of the flies chosen as parents for the next

generation. We extracted RNA from two replicates of 10 flies each per sex and selection popu-

lation. Since these flies amount to only 20% of the flies measured for sleep each generation,

their sleep may or may not be representative of the group as a whole. We therefore correlated

the mean night sleep for each generation in the flies harvested for RNA with the mean night

sleep of all flies measured to determine how similar night sleep was to the total in the group

(S3 Fig). The correlations were very high for the selected populations: long-sleeper flies har-

vested for RNA were very well correlated with the total measured in each population [r2 = 0.99

and 0.96 (all P< 0.0001) for Replicate 1 and 2 respectively], as were short-sleepers [r2 = 0.99

for Replicate 1 and 0.97 for Replicate 2 (all P< 0.0001)]. The control populations, which did

not undergo selection, were somewhat less well correlated. Replicate 1 of the control popula-

tion had an r2 of 0.75 (P = 0.0001) and Replicate 2 had an r2 of 0.85 (P< 0.0001). The lower

correlations observed in control flies indicate that they were less inbred than the selected popu-

lations. Thus, the flies harvested for RNA are very good representatives of each population as a

whole.
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Hierarchical Generalized Linear Model analysis reveals that selection for

night sleep impacts gene expression

For each gene, the linear model analysis produced posterior distributions for the parameters

as well as log-likelihood values for the full and reduced models. Point estimates (MAP) are

shown in S6 Table for females and S7 Table for males. For the male flies 11,778 genes passed

the filtering for low expression, of which 405 were found to have a significant selection

scheme effect over the generations of artificial selection (i.e., significant likelihood ratio test

for the sel × gen term). Thus, the expression level shift given by the slope of the generalized

linear model is different from controls and attributable to selection for long and/or short

sleep. For the females 820 genes out of 9,370 with detectable expression were found to be sig-

nificant. Genes with opposite trends in the short and long selection schemes were compared

using the group-level parameter μshort×gen and μlong×gen (i.e. the effect that best explains both

replicates): 384 genes in females (S8 Table) and 204 genes in the males (S9 Table showed

opposite trends by that criterion. Between males and females, 85 genes were common to

both sexes. Known functions of these 85 genes from the DAVID gene ontology database are

presented in S10 Table. We used these 85 genes in subsequent analyses; see below. Fig 2

shows the fit for one gene.

Pairwise Spearman correlation is non-specific and significant for a large

fraction of genes

We computed Spearman correlations for all pairwise combinations of the 85 genes common

between sexes (S11 Table). Correlations computed using the Spearman method were found

to be significant at 95% confidence for 2,999 of the 3,570 possible pairs. The confidence

intervals for the correlation coefficients showed no overlap with controls for either short

sleepers, long sleepers, or both populations in 1,348 of 3,570 pairs. Thus, a simple correla-

tional analysis identifies a minimum of 38% of the possible interactions among genes as

relevant.

Fig 2. Fit of Hierarchical Generalized Linear Model to gene CG1304 for flies selected for short sleep, unselected controls, and selected for long

sleep. The solid lines show the expected value of full model, dashed lines for reduced model, and shaded regions show the 95% credibility interval.

Replicate 1 data points are shown in dark gray, Replicate 2 in light gray.

https://doi.org/10.1371/journal.pcbi.1011389.g002
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Gaussian Process model analysis uncovers nonlinear trends and specifically

identifies covariance in expression between genes

As noted above, a simple correlational analysis suggested that large numbers of genes are

potentially interacting to alter sleep. Because direct computation of linear model-based corre-

lations cannot account for non-linear effects or spurious confounding trends we fit Gaussian

Process models that can account for temporal variation in multiple genes even in the absence

of actual interactions between them. The 85 significant genes overlapping between males and

females potentially have 3,570 pairwise interactions. To that end, the parameter of interest in

the Gaussian Process model is the signal covariance between each pair of genes. This covari-

ance is a measure of the degree of their interaction. We applied the Gaussian Process model

for each of the 3,570 pairs for each selection scheme (long, short, and control). As an example,

the model fit for one pair of genes from the female gene expression data is shown in Fig 3.

Convergence for all three runs was on the order of jR̂ � 1j � 10� 4, and close to the 4,000

samples expected for each run; therefore, the wide confidence intervals are likely a product of

the large dispersion in the data itself. Correlation between gene expression patterns of the two

genes is computed by dividing the signal covariance by the square root of the signal variance

of each gene—e.g. rl ¼ s
2
lðijÞ=slðiÞslðjÞ ¼ s

2
longðLysC;CG1304Þ

=slongðLysCÞslongðCG1304Þ—that is, similar to

Fig 3. Fit of Gaussian Process model to pair of genes LysC and CG1304, for female flies selected for short sleep, unselected controls, and

selected for long sleep. The solid lines show the expected value, while the shaded regions show the 95% credibility interval. Replicate 1 data

points are shown in dark gray, Replicate 2 in light gray). The expectation for correlations (ρsel) is shown for each selection scheme. An asterisk

indicates significant difference from controls in selection scheme, as opposed to non-significance (n.s.).

https://doi.org/10.1371/journal.pcbi.1011389.g003
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computing a correlation coefficient from variances and covariances, but taken as the expecta-

tion over the posterior distribution obtained from MCMC.

Fig 3 illustrates the nonlinear trajectories of gene expression that cannot be detected by the

GLM model. The two trajectories exhibited high signal covariance between the expression of

the two genes in the long sleepers (ρl = 0.89) that was significantly different from controls;

however, intermediate covariance in the short sleepers (ρs = 0.53) did overlap with that of con-

trols, and therefore was not significantly different.

S4 Fig part A shows a pair where interactions in both short and long selection schemes are

different from controls, S4 Fig part B shows another pair of genes where neither scheme is dif-

ferent from controls. This illustrates a range of possibilities, including a case where Spearman

correlations are significant but GP correlations are not (the opposite also occurs). Parts C and

D of S4 Fig fit each gene individually, and the fit does not change substantially between single

to multiple channel models.

The 85 single-channel fits were good despite varying levels of dispersion and occasional

outliers, indicating no issues with the Gaussian Processes’ ability to fit the temporal patterns of

any one gene. For the two-channel inference, upwards of 90% of the chains initially converged

under the criterion that 0:95 < R̂ < 1:05; because the inference method is stochastic it is

expected that by chance some chains may not converge and/or mix well with their replicates.

Chains that initially failed were rerun up to two times. After three runs over 99% of the chains

converged; the reasons for lack of convergence of the remaining were not investigated further.

Fig 4 shows six heat maps (one for each sex and selection scheme combination) with the

Fig 4. Signal variances and covariances normalized to range [-1,1] for females and males in each of the selection schemes: Short, control, and

long. Each off-diagonal square is the expected value of the interaction between two of 85 genes, for a total of 3,570 pairs.

https://doi.org/10.1371/journal.pcbi.1011389.g004
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correlations for all pairs of genes calculated as described in the previous figure, summarizing

the inferred interactions. Of the 3,570 correlations, 1,612 were greater than 0.5 and 98 greater

than 0.9.

In addition to computing expected values, the posterior distributions were used to compare

the signal covariances between selection schemes and set a cutoff. Distributions of the parame-

ter for each sex-selection scheme were assembled from the parallel MCMC runs; 145 gene

pairs in the selected populations are found to be different from controls (i.e. do not overlap

with them at 95% credibility for either short, long or both populations). Out of the 145, twelve

gene pairs were common between males and females selected for long night sleep and one pair

to males and females selected for short sleep; one gene pair was common to females in both

selection schemes, and three pairs were common to males. S11 Table shows the expected val-

ues of signal covariances normalized by the variances for all two-way interactions side by side

with the Spearman correlations. S12 Table shows the subset of significant Gaussian Processes

correlations.

We constructed a network for each sex/selection scheme combination based on the magni-

tude of the correlation between genes. The network for males selected for long sleep having

significant gene interactions is shown in Fig 5 (S5 Fig shows the networks for the remaining

three sex-selection scheme combinations). S13 Table lists the number of connections (degrees)

that each gene has with the others in the network. The average number of connections for

long-sleeper males was 2.6; the other three networks had average degrees of 2.0 or less (2.0 for

long-sleeper females and short-sleeper males; 1.75 for short-sleeper females).

For comparison, looking at significant (ρsel 6¼ 0) Spearman correlations keeps almost three

thousand interactions (i.e. excludes just a bit more than a tenth of the genes), and comparing

the distributions ρsel versus ρcontrol—similar to how the Gaussian Processes are compared—still

has over thirteen hundred. Therefore, computing correlations between genes using covariance

estimates from the Gaussian Processes appears to increase specificity over direct correlations.

Furthermore, the Gaussian Processes appear to be more sensitive in finding 68 gene pairs that

are not found to be significant by the first Spearman approach and 18 not found by the

second.

Finally, we examined known interactions between the 85 genes and any other genes using

the Drosophila Interaction Database, DroID [85]. We found 2,830 interactions; 8 of these were

one of the 3,570 between the 85 genes, but none of them overlapped with the 145 gene pairs

found to be different from controls. The gene interactions we observed may therefore be

unique to sleep.

Mutational analyses confirms role of candidate genes and interacting gene

expression networks in sleep

We tested five genes for differences in sleep as compared to their isogenic control: CG12560,

CG13793, Cytochrome P450 6a16 (Cyp6a16), highwire (hiw), and Jonah 65Aii (Jon65Aii) (S1

Table). All of the Minos insertions altered night sleep (Fig 6). Night sleep increased from 50—

115 minutes beyond the w1118 control line (all P-values < 0.0125, the Bonferroni-corrected P-

value; S1 Table). Flies having a Minos insertion in Jon65Aii slept 66 minutes less than their cor-

responding y1w67c23control (P< 0.0001). All Minos insertions had the same directional effect

on night sleep for both males and females, but only the CG12560 and Jon65Aii insertions had

statistically significant effects on night sleep on each sex separately (S1 Table). Thus, all genes

affected night sleep duration, but CG12560 and Jon65Aii had the greatest effect on both sexes.

Gene expression decreased significantly in the CG12560 and Jon65Aii Minos insertions rel-

ative to their controls (S6 Fig). The remaining Minos insertion lines had some changes in gene

PLOS COMPUTATIONAL BIOLOGY Transcriptional shifts in Drosophila selected for night sleep duration

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011389 August 10, 2023 17 / 31

https://doi.org/10.1371/journal.pcbi.1011389


expression relative to the control, however, the changes were not formally significant. Potential

reasons for the lack of a significant change in gene expression in the remaining lines include:

the position of the insertion within the targeted gene, which has variable effects on its expres-

sion; the relatively low statistical power of the experiment; confining our observation to a sin-

gle timepoint during the day; or pooling whole flies, which might obscure gene expression

changes occurring at a single-tissue level.

Our baseline expectation was that expression levels between knockdown and control lines

should not be affected for most genes. For candidate genes, we hypothesized that the ratio of

Fig 5. Gene interaction network in males selected for long sleep. Edges represent signal covariances whose posterior distributions do not overlap

with that of controls at 95% credibility. Colors and line thickness indicate indicate the strength and the direction of the correlation. Thin gray lines

show all 145 interactions significant for at least one of the four sex-selection scheme combinations.

https://doi.org/10.1371/journal.pcbi.1011389.g005
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gene expression between the Minos insertion line and its respective control would differ con-

siderably from 1.0; conversely, the ratio of gene expression between Minos insertion line and

control would be approximately 1.0 for unrelated genes—that expectation is confirmed by the

distributions consistently centered around unity (median = 0.995). We plotted the ratios of

candidate genes against the distributions of the matching random sets (Fig 7). Our supposition

was largely realized for CG12560 and Jon65Aii, the two genes having significant knockdown in

gene expression (S7 Fig and S14 Table).

Discussion

We have shown that robust, reproducible phenotypic changes in Drosophila melanogaster
sleep are associated with hundreds (405 in males, 820 in females) of individual shifts in gene

expression—and as a consequence hundreds of thousands of potential combinations

[ 405

2

� �
> 8 � 104 and 820

2

� �
> 3 � 105]. Nevertheless, unique interactions important to the pheno-

types are a comparatively small number (145 out of 85

2

� �
¼ 3570 possible combinations of the

85 genes common to males and females). We have also shown that these interactions cannot

be found with linear model analyses or conventional correlation calculations only, but are spe-

cifically identified using a combination of an informative experimental design with densely-

sampled time points to generate a large scale data set, and a nonparametric, nonlinear model-

based approach that explicitly accounts for covariance in gene expression.

Fig 6. Night sleep in Minos mutations. The figure compares night sleep duration in each mutant with that of its respective control. Blue circles

indicate Minos insertions with w1118 control strain; red triangles indicate Minos insertions with y1w67c23 control strain. **** or ####, P< 0.0001;

***, P< 0.001, three-way ANOVA. All P-values are less than the Bonferroni-corrected P-value of 0.0125.

https://doi.org/10.1371/journal.pcbi.1011389.g006
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The genes we identify herein overlap and extend previous work. Of the 1,140 genes impli-

cated in the generalized linear model, 151 (13.2%) overlapped with previous candidate gene,

random mutagenesis, gene expression, and genome-wide association studies of sleep and cir-

cadian behavior in flies [10, 11, 84, 86–99]. Notably, previous studies identified the genes

CG17574, cry, dro, mip120, Mtk, NPFR1, pdgy, PGRP-LC, Shal, and vari as affecting sleep dura-

tion [84, 88–91, 93, 97, 99]. Two genes, ringer and mip120, overlapped with our previous study

of DNA sequence variation in flies selected for long and short sleep [10]. In that study we iden-

tified a polymorphism in an intron of ringer that changed in allele frequency with selection,

Fig 7. Comparison of ratios of gene expression between genes with significant Gaussian Process correlations and unrelated genes for CG12560
and Jon65Aii mutants. Purple lines show the ratio of mutant gene expression to control for genes with significant Gaussian Process correlations. The

distribution of gene ratios for 1, 000 unrelated genes is plotted in the background. Genes having the most extreme ratios are indicated; see S14 Table

for the calculations. (A) CG12560 females; (B) CG12560 males; (C) Jon65Aii females; (D) Jon65Aii males.

https://doi.org/10.1371/journal.pcbi.1011389.g007
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with increases in the population frequency of the ‘G’ allele with increasing sleep, while the fre-

quency of the ‘A’ allele increased with decreasing sleep. When the selective breeding procedure

was relaxed, the frequency of the ‘G’ allele increased in short-sleeping populations, paralleling

an increase in sleep [100]. One possibility is that this polymorphism contributes to the changes

in gene expression in ringer that we observed in the present study. Of the 85 genes common to

both sexes that we used in the gene interaction networks, 11 (13%) appear in other studies of

sleep: CG10444, CG2003, CG5142, CG6785, CG9114, CG9676, CR42646, hiw, NPFR1, Tie, and

wb [11, 89, 92, 95]. Thus, our study corroborates genes known to affect sleep, and identifies

new candidate genes for sleep as well.

Interestingly, our Gene Ontology analysis identified nine genes from the 85-gene network

with predicted Serine endopeptidase/peptidase/hydrolase activity: CG1304, CG10472,

CG14990, CG32523, CG9676, grass, Jon65Ai, Jon65Aii, and Jon99Fii. All of these genes are

expressed in neurons and epithelial cells, and all genes are expressed at the adult stage [101].

Serine proteases are a large group of proteins (257 in Drosophila) that perform a variety of

functions [102]. Their predicted enzymatic activity suggests a putative role in proteolysis. This

is an intriguing observation given pioneering work in mammals which suggested a role for

sleep in exchanging interstitial fluid and metabolites between the brain and cerebral spinal

fluid [8]. Recent work demonstrated that a similar function is conserved in flies via vesicular

trafficking through the fly blood-brain barrier [103]. It would be interesting to determine

whether these genes function in this process.

We observed changes in night sleep duration for all Minos insertions tested, and the effects

were more prominent in females. Sex-specific effects of mutations on sleep are common in

flies [84, 104–108], and sex-biased effects are often noted in females [109–113]. Remarkably,

we noted gene expression relationships among genes with predicted significant Gaussian Pro-

cess correlations in the Minos insertion lines despite the fact that the sleep was neither

extremely long or short in mutants or controls, and the genetic background of these lines

(w1118 or y1w67c23) is completely different from the outbred Sleep Advanced Intercross Popula-

tion that we used for artificial selection.

Here we extracted RNA from flies at a single circadian timepoint, ZT6. However, gene

expression is known to cycle in fly heads and bodies, begging the question of whether the

genes we identified at a single timepoint are subject to cycling over the 24-hour day. We there-

fore compared our list of genes that were significantly associated with selection scheme over

generation (405 genes for males; 820 genes for females; 85 genes overlapping both sexes) with

genes known to have cycling expression [114–120]. We found that 47 of the 405 genes identi-

fied for males cycle (11.6%), 170 of the 820 genes identified for females cycle (20.7%), and 13

of the 85 genes overlapping between males and females cycle (15.3%). Thus, most of the genes

we identified are not known to cycle over the 24-hour day.

That complex traits can be mostly explained by additive effects of individual genes (and

their expression) is a common and sometimes useful assumption. While it underpins prelimi-

nary analyses that allow whole-transcriptome data to be understood, it eliminates the ability to

infer interactions between them from the data and stops short from identifying relevant pro-

cesses. Complex traits involve multiple genes, and the actual interactions giving rise to pheno-

types are likely to be highly nonlinear [121]. These nonlinearities are not a mathematical

construct, but a biological reality arising from chemical kinetics. Favoring approaches that

account for these features will not only increase statistical power, but understanding of actual

biological mechanisms beyond simple network representations of gene expression [122].

In most correlation and information-theory based methods the dimension (e.g. time or

space) across which samples covary is only implicit [36]; the only possible conclusion from a

significant correlation between two sets of observations is that one may have an effect on the
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other—i.e. the data alone does not allow the distinction between actual interactions and spuri-

ous correlation. Bioinformatic pipelines that have correlation as their starting point—in addi-

tion to carrying over its limitations—are not straightforwardly comparable to our approach

(see S1 Appendix). In the context of Gaussian Processes, correlation between all pairs of data

points—including within the same time series, i.e. autocorrelation—is explicit in time (or

other dimension), so similar trends do not necessarily imply covariance between the sets of

observations. Therefore, on the one hand GPs are a nonparametric method that requires no

more biological knowledge than that for computing a linear correlation; on the other hand,

while not an explicit description of dynamic biological processes, it is also a model-based

approach that can be used within more mechanistic formalisms like differential equations [41,

43], or potentially be used to formulate specific hypotheses and build mechanistic models.

Although somewhat self-evident, it is important to highlight the fact that to describe corre-

lations along time, multiple time points are needed—put another way, the use of a nonlinear

model requires enough resolution in the data that the trajectory can be identified. To that end,

a single high-resolution, large data set with a specific design, like the one generated in this

work, will be more useful than several small data sets, for instance with only initial and final

time points and allowing only two-sample linear comparison. Gene expression measured at

the terminal generation of selection and compared among selected and control groups does

identify candidate genes [24, 25, 28, 29, 31–33], but the relationship between pairs of genes is

lost. Some studies evaluated gene expression during the last 2–3 generations of selection [27,

30]; however, the additional sampling was used to confirm consistency rather than change

across time. Our approach of sampling over time enabled us to derive interactions between

genes and demonstrated that unique gene expression network profiles develop in long sleepers

as compared to short sleepers.

When employing methods of increasing complexity or sophistication there is always the

question of how relevant the inference is or, in other words, how “real” are the parameters or

processes in the model. This pursuit of simplicity may favor the use of methods based on linear

models as more palpable approaches and less prone to arbitrary assumptions about how the

parameters are put together; however, it is important to realize that linear coefficients are no

more real than those of any other model. On the contrary, biological processes are not restricted

by our ability to comprehend them. Therefore, what may seem as an Occam’s Razor-like sim-

plicity will probably hinder accurate description of nature. Systems-level understanding of com-

plex biology requires not only more and more detailed data, but better descriptions of the

processes and methodology that captures higher-order phenomena. Equivalently, experimental

validation of these phenomena will be more technically challenging to accomplish. Despite the

additional difficulties, it must be recognized that methods that cannot possibly match the com-

plexity of nature are doomed to scratch all over the surface without realizing a deeper under-

standing. The Gaussian Processes we apply herein have broad applications to other

experimental designs, such as gene expression measured at varying time intervals over the circa-

dian day, or time-based sampling of gene expression responses to drug administration.

Supporting information

S1 Fig. Principal Component Analysis (PCA). PCA on matrix of normalized expression data

shows complete separation of sexes along the first component, which explains 65% of the vari-

ance in the data.

(PDF)

S2 Fig. Correlated response to selection for long/short night sleep and associated coeffi-

cient of environmental variation. A, day bout number; B, day bout number coefficient of
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environmental variation (CVE); C, day sleep; D, day sleep CVE; E, night bout number; F, night

bout number CVE; G, night sleep; H, night sleep CVE; I, waking activity; J, waking activity

CVE; K, sleep latency; L, sleep latency CVE; M, day average bout length; N, day average bout

length CVE; O, night average bout length; P, night average bout length CVE; Q, night sleep

standard deviation. Light green, Replicate 1 long-sleeper population; Dark green, Replicate 2

long-sleeper population; Orange, Replicate 1 short-sleeper population; Red, Replicate 2 short-

sleeper population; Gray, Replicate 1 control population; Black, Replicate 2 control population.

CVE, coefficient of environmental variation.

(PDF)

S3 Fig. Correlation of night sleep between flies harvested for RNA and all flies in the popu-

lation. A, long-sleeping Replicate 1; B, long-sleeping Replicate 2; C, short-sleeping Replicate 1;

D, short-sleeping Replicate 2; E, control Replicate 1; F, control Replicate 2.

(PDF)

S4 Fig. Gaussian Process model fits to selected genes. A, fit of Gaussian Process model to

pair of genes haf and CG1304; B, fit of Gaussian Process model to pair of genes CR43242 and

CG1304; C, fit of single-channel Gaussian Process model to CG1304 gene; D, fit of single-chan-

nel Gaussian Process model to LysC gene.

(PDF)

S5 Fig. Gene interaction networks. A, Males selected for short sleep; B, Females selected for

long sleep; C, Females selected for short sleep.

(PDF)

S6 Fig. Gene expression in Minos mutants. For each candidate gene, the gene expression in

the Minos mutant and corresponding control are plotted. * or #P< 0.05 by Kruskal-Wallis

test. A, CG12560; B, Jon65Aii; C, CG13793; D, Cyp6a16; E, hiw.

(PDF)

S7 Fig. Comparison of ratios of gene expression between genes with significant Gaussian

Process correlations and unrelated genes for CG13793, Cyp6a16, and hiw Minos mutants.

A, CG13793 females; B, CG13793 males; C, Cyp6a16 males; D, hiw females; E, hiw males.

(PDF)

S1 Appendix. Notes on multichannel Gaussian Processes.

(PDF)

S1 Table. Effects of Minos insertions on sleep. For each gene the table lists the Flybase ID,

Bloomington Drosophila Stock Center (BDSC) number, Minos genotype, and isogenic control

line. For each sleep trait, the number of flies tested and mean sleep phenotype is given for

sexes combined and females and males separately. P-values are listed for each term in the

ANOVA model for sexes combined and for males and females separately. Significance is indi-

cated by bold P-values.

(XLSX)

S2 Table. Quantitative genetics of the response to selection for long or short night sleep

and related sleep parameters. For each trait, the ANOVA analysis results are presented.

Source indicates each factor in the model. gen, generation; rep, replicate; sel, selection

scheme; d.f., degrees of freedom; M.S., Type III mean squares; F, F ratio statistic; P, P–

value.

(XLSX)
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S3 Table. Quantitative genetics of the response to selection for long or short night sleep

per generation. For each sleep trait, the ANOVA analysis results are presented for each gener-

ation. Source indicates each factor in the model. rep, replicate; sel, selection scheme; d.f.,
degrees of freedom; M.S., Type III mean squares; F, F ratio statistic; P, P-value.

(XLSX)

S4 Table. Quantitative genetics of control populations. For each sleep trait, the ANOVA

analysis results are presented. Source indicates each factor in the model. gen, generation; rep,

replicate; d.f., degrees of freedom; MS, Type III mean squares; F, F ratio statistic; P, P-value.

(XLSX)

S5 Table. Correlated response of sleep trait coefficient of environmental variance (CVE) to

selection for long or short night sleep duration. For each sleep trait listed, the ANOVA

results are presented. Source indicates each factor in the model. gen, generation; sel, selection

scheme; d.f., degrees of freedom; M.S., Type III mean squares; F, F ratio statistic; P, P-value.

(XLSX)

S6 Table. GLM analysis results for females. GLM analysis results for each gene in females are

shown as a row; the Maximum a Posteriori (MAP) parameter estimates and log-likelihoods

are shown as well as p-values computed from the likelihood ratio test. Significance statistics

corrected for multiple testing are also included, as well as the normalized counts for all sam-

ples.

(XLSX)

S7 Table. GLM analysis results for males. GLM analysis results for each gene in males are

shown as a row; the Maximum a Posteriori (MAP) parameter estimates and log-likelihoods

are shown as well as p-values computed from the likelihood ratio test. Significance statistics

corrected for multiple testing are also included, as well as the normalized counts for all sam-

ples.

(XLSX)

S8 Table. Genes with opposite slopes for the short and long interaction terms of generation

in females. Columns have the same meaning as those in S6 Table.

(XLSX)

S9 Table. Genes with opposite slopes for the short and long interaction terms of generation

in males. Columns have the same meaning as those in S7 Table.

(XLSX)

S10 Table. Gene Ontology (GO) analysis results for 85 significant genes common to males

and females. The table lists GO classification (Biological Process (BP), Molecular Function

(MF), or Cellular Component (CC)); the GO term description; the number of genes associated

with each GO term and their percentage relative to the total number of genes with that GO

term in D. melanogaster; the enrichment P value, and the Benjamini-adjusted P value.

(XLSX)

S11 Table. Correlations obtained from normalizing Gaussian Process signal covariances

(GP correlation) and from Spearman Correlation for each of the six sex and selection

scheme combinations.

(XLSX)

S12 Table. Expected values for the correlations obtained from normalizing Gaussian Pro-

cess signal covariances (GP correlation) that do not overlap with controls for each of the
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six sex and selection scheme combinations. The value is missing if there is an overlap with

controls in that condition.

(XLSX)

S13 Table. Degree for each gene in the GP network. For each sex and selection scheme, the

table lists the number of genes connected to the gene in the network. NA, not applicable.

(XLSX)

S14 Table. Gene expression ratios calculated from Minos insertion line and control RNA-

Seq data. For each target gene the table lists the corresponding control line, the Flybase ID and

gene symbol of the gene predicted to interact with the target gene, the normalized expression

of the interacting gene for the Minos target gene line and isogenic control line, and the ratio of

normalized expression (Minos/control).

(XLSX)

S15 Table. Night sleep phenotypes. For each selection scheme, sex, generation, and popula-

tion replicate, the number of flies, mean night sleep, and standard deviation (SD) of night

sleep are listed.

(XLSX)
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