
MMP-7 marks severe pancreatic cancer and alters tumor cell 
signaling by proteolytic release of ectodomains

Steven R. Van Doren*,1,2

1Department of Biochemistry, University of Missouri, Columbia, MO 65211 USA

2Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211 USA

Abstract

Pancreatic cancer incurs the worst survival rate of the major cancers. High levels of the protease 

matrix metalloproteinase-7 (MMP-7) in circulation correlate with poor prognosis and limited 

survival of patients. MMP-7 is required for a key path of pancreatic tumorigenesis in mice 

and is present throughout tumor progression. Enhancements to chemotherapies are needed for 

increasing the number of pancreatic tumors that can be removed and for preventing relapses after 

surgery. With these ends in mind, selective inhibition of MMP-7 may be worth investigation. An 

anti-MMP-7 monoclonal antibody was recently shown to increase the susceptibility of several 

pancreatic cancer cell lines to chemotherapeutics, increase their apoptosis, and decrease their 

migration. MMP-7 activities are most apparent at the surfaces of innate immune, epithelial, 

and tumor cells. Proteolytic shedding of multiple protein ectodomains by MMP-7 from such 

cell surfaces influence apoptosis, proliferation, migration, and invasion. These activities warrant 

targeting of MMP-7 selectively in pancreatic cancer and other tumors of mucosal epithelia. 

Competitive and non-competitive modes of MMP-7 inhibition are discussed.
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Introduction

6 to 7 % of cancer deaths in Western countries are attributable to pancreatic cancer [1]. 

Pancreatic cancer could increase from fourth to second leading source of cancer deaths in 

the U.S. by 2030 [2]. Surgical resection of pancreatic ductal adenocarcinoma (PDAC) is 

regarded as “curative”, with a 5-year survival rate of 30% and median survival of 26 months 
[3,4]. However, the tumor can be resected in only 10 or 15% of patients [4]. Consequently, 

clinical goals are to shrink tumors enough for resection, use better prognostics before 

committing to surgery, and apply chemotherapy more successfully after surgery [3,5].
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In advanced pancreatic cancer and colon cancer, matrix metalloproteinase-7 (MMP-7 or 

matrilysin) was prominent at the invasive edges of the tumors [6–9]. In models of metaplastic 

conversion in the pancreas, MMP-7 is upregulated and increases tumor size and metastases 
[10,11]. In the key, early acinar-to-ductal switch, both MMP-7 and the cell death signal FasL 

were implicated in acinar metaplasia [12]. Proteolysis of FasL by MMP-7 is one of the 

strategic proteolytic activities of MMPs at plasma membranes that influence cell signaling 
[13,14].

Matrix metalloproteinases (MMPs) comprise about two dozen proteases [13]. MMP-1, −2, 

−3, −7, −8, −9, −10, −12, −19, −28 and MT1-MMP were each implicated in inflammation 

or its resolution [15,16]. Meta-analysis implicated MMP-9 most often in chronic wound 

healing, MMP-2 and −7 often in acute wound healing, and also MMP-1, −3, −8, −12 and 

−13 [17]. MMP-1, −2, −7, −9, and MT1-MMP were implicated in regulating angiogenesis 
[18,19]. MMPs depend upon zinc and calcium ions in their catalytic domain for structure and 

activity in the interstices and extracellular matrix. Activation requires that the pro-domain be 

removed, often by a proteolytic cascade, to uncover the zinc-containing catalytic cleft. Most 

MMPs have a C-terminal hemopexin-like domain that binds protein substrates. MMP-7 

and −26, the matrilysins, lack this accessory domain [13,20]. The collagenases comprise 

MMP-1, −8, −13, and −18 [13,20,21]. Of the MMPs with a transmembrane helix, MT1-MMP, 

MT2-MMP, and MT3-MMP digest collagen, but not MT5-MMP [22]. MT4- and MT6-MMP 

are anchored to plasma membranes by glycosylphosphatidylinositol [22]. Gelatinases A 

and B, i.e. MMP-2 and −9, respectively, have fibronectin-like inserts that support their 

activity towards collagen IV of basement membranes and other collagens [21,23–26]. The 

stromelysins are MMP-3, −10, and −11 [27]. Other soluble enzymes are MMP-12, −19, −20, 

−21, −23, −27, and −28 [20].

Inhibitors of a broad range of MMPs failed in clinical trials, prompting the search for MMP-

selective inhibitors [13,20,28–35]. Overall and Kleifeld argued that most MMPs are either 

protective in cancer or too little understood. They proposed that MMPs −1, −2, −7, and 

tentatively −11 (if its substrates are discovered) should be prioritized for selective inhibition 
[29]. For the brevity of focusing on MMP-7, these other key MMPs in tumor progression 

are neglected herein. This review considers MMP-7 as a marker of PDAC, influencer of 

pancreatic tumor progression and microenvironment through release of protein ectodomains 

(ECDs) from cell surfaces, resistance to apoptosis, needs for therapeutic agents, and avenues 

for inhibitor development. Specific topics addressed below are summarized in Figure 1.

Guardian of mucosal epithelia

MMP-7 regulates innate immunity, wound healing, and inflammation in epithelial mucosa 
[14,36–38]. In normal tissues and benign tumors, MMP-7 was detected on the luminal side of 

glands such as Paneth cells in the intestine, breast ducts, and prostate [6]. Bacterial infection 

induces expression and activation of MMP-7 in lung epithelia [39,40]. In intestinal crypts, 

MMP-7 activates bactericidal alpha-defensins [41]. MMP-7 governs wound healing in the 

lung [36,37,42]. In injured lung epithelia, MMP-7 localizes neutrophil activation to the site of 

need [43–45] and sheds the ectodomains of E-cadherin [46] and syndecan-1 [42]. Due to the 

influence on epithelia, the maturation of the zymogen to active MMP-7 is regulated by the 
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glycosaminoglycan (GAG) chains of heparan sulfate proteoglycans (HSPGs) that it binds on 

cell surfaces [47,48].

MMP-7 as prognostic of severe pancreatic cancer

Reliable markers of PDAC are needed to aid decisions about surgery [5]. MMP-7 appears 

valuable as a marker of poor survival of PDAC. Elevated MMP-7 is associated with two- 
to three-fold shorter mean survival times in patient cohorts in Japan, the UK, and the 

US [7,8,11,49]. The levels of MMP-7 positively correlated with severity of all categories of 

pathological tumor-node-metastasis staging, and tended to be abundant at the invasive edge 

of tumors [7,8]. MMP-7 was not detected in healthy pancreas but was detected in 31 of 

32 cases of invasive PDAC, all of the tumor-associated metaplastic duct lesions, and most 

pancreatic intraepithelial neoplasia (PanIN) lesions studied [12]. (PanIN lesions can progress 

to PDAC [50]). Most differentiated, invasive tumor cells expressed MMP-7, in contrast to the 

poorly differentiated invasive tumor cells [12].

In one study, all PDAC patients without lymph node involvement had < 20 ng/ml of MMP-7 

in their serum vs. the > 20 ng/ml in all patients with metastases [11]. The prognostic value 

of serum MMP-7 was proposed for use in assessing tsurvival benefit before undertaking 

the severe demands of tumor resection and recovery [11,51]. This assertion was tested by 

a surgical study that found that > 13.5 ng/ml of MMP-7 in serum (~15% of the cohort 

of PDAC patients) was very predictive of either unresectable tumors or nodal involvement 
[5]. Combined use of the levels of MMP-7 and the carbohydrate antigen 19–9 (CA19–9) in 

plasma or sera improved the predictive value and discrimination of pancreatic cancer [52,53]. 

Elevated levels of MMP-7 are also prognostic of poor survival of colorectal cancer [9,54–57], 

gastric cancer [58], prostate cancer [59], and other cancers [60].

In discrimination of pancreatic cancer that used immunohistochemical detection of protein, 

elevation of MMP-7 in tumor cells (P < 0.0001) held an advantage over elevation of 

MMP-11 in the stroma (P < 0.004) [49]. Using RT-PCR detection of RNA, however, 

elevation of MMP-11 transcripts is more diagnostic [49], with more reliability across RT-

PCR databases for pancreatic cancer [61]. MMP-11 expression appears to be a stromal 

response that both fosters and suppresses tumor progression [62].

MMP-7 in development of pancreatic cancer in transgenic mice

In genetically engineered murine models (GEMMs) of PDAC, MMP-7 was distinctively 

expressed in epithelial tumor cells [63]. Tumor size, stage, spread, metastasis, and Kras 

mutations all strongly correlated with MMP-7 mRNA expression [8]. Knockout of MMP-7 

in a GEMM of PDAC eliminated metastases to lymph nodes, dramatically decreased 

metastases to liver, and decreased the size of the tumors in the pancreas [11]. Acinar 

cells and acinar-to-ductal metaplasia are one potential source for the development of 

metaplastic ductal lesions (a replacement of acinar cells)[64–66], PanINs, and PDAC [67]. 

These observations imply MMP-7 involvement in early stages of progression toward PDAC 
[12,68], analogous to apparent MMP-7 involvement in tumor formation in other epithelial 

tissues [69–71].
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In a GEMM featuring PanIN development driven by activated KrasG12D, Stat3 promoted 

cell proliferation, inflammation, and MMP-7 expression [11]. The MMP-7 expression was 

associated with pancreatitis, tumor size, and metastases in the mice [11]. (Pancreatitis is 

a risk factor prior to PDAC in < 5% of patients [72]. The fibrosis of pancreatitis appears 

to be promoted by MMP-2 activities of digestion of the type IV collagen and activation 

of pancreatic stellate cells [73].) The importance of Stat3 and MMP-7 in initiation and 

progression of PDAC suggested them both to be therapeutic targets [11]. The impacts of 

several MMP-7 activities upon cell signaling appear relevant.

MMP-7 activation of Notch signaling in pancreatic tumorigenesis

The Notch pathway regulates cell fate decisions, including development of the pancreas 
[67,74]. In development of pancreatic cancer, individual Notch receptors have distinct, 

context-dependent, and opposing roles [67,74]. Juxtacrine Notch signaling transmits 

bidirectionally between stroma and tumor cells via ligands of the Delta and Jagged families 

binding large Notch receptors [74]. This triggers proteolytic activation of Notch by a 

metalloproteinase, and ensuing intramembrane cleavage by γ-secretase that releases the 

Notch intracellular domain to traffic to the nucleus. There it binds a CSL transcription factor 

to recruit transcriptional co-activators such as Mastermind-like [74].

In GEMMs driven by the activity of KrasG12D, MMP-7 proved necessary and sufficient 

to induce Notch-dependent transdifferentiation of acinar cells into metaplastic ductal cells, 

which is an early precursor to PanINs [68]. In acinar cells, TGF-α induced expression of 

MMP-7 which digested the extracellular domain of Notch1 or Notch2 to activate them, with 

the downstream transcriptional effects of dedifferentiation of the cells en route to formation 

of a duct-like phenotype [68].

Release of cell surface members of death receptor pathways by MMP-7

Death receptors on the surface of tumor cells comprise the members of the tissue necrosis 

factor superfamily known as TNFR, Fas (CD95), and TNF-related apoptosis inducing ligand 

receptors. These respond to TNF-α, FasL, and TRAIL, respectively [75]. Binding of these 

protein ligands to their respective death receptors recruits the Fas-associated death domain 

and procaspase-8 and −10 into the death-inducing signaling complex (DISC) that activates 

caspase-8 to initiate proteolytic cascade in the cells [76]. PDAC cells require mitochondrial 

activity in order to activate caspase-8 and carry out apoptosis [76,77].

MMPs were implicated in proteolytic processing of membrane-bound mFasL to its soluble 

ectodomain sFasL (Fig. 2). This processing is known as ectodomain shedding. Inhibition 

of shedding accumulated mFasL and depleted sFasL [78–80]. MMP-7 was identified as the 

MMP that generates sFasL from mFasL [81]. In a GEMM of acinar-to-ductal metaplasia, 

MMP-7 generated sFasL [12].This is analogous to the shedding of TNF-α from the surfaces 

of macrophages by MMP-7 [82]. As soluble TNF-α can be elevated in the serum of 

pancreatic cancer patients with cachexia [83], it is possible that MMP-7 had shed part of 

this circulating TNF-α.
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Important and less discussed in the literature is the shedding of the ectodomain of the Fas 

receptor (CD95) by MMP-7 [84] (Fig. 2). The shedding of Fas inhibits apoptosis, and can be 

impeded by an MMP inhibitor [84]. The site of proteolysis of Fas in its “pre-ligand assembly 

domain” is likely to interfere in the pre-oligomerization of Fas needed for ligand binding 

that is functional in apoptosis [84].

MMP-7 support of tumor cell survival and resistance to chemotherapy

Increased tumor cell survival due to MMP-7 activity is widely accepted. Its mechanisms 

may be varied. Importantly, the competence of sFasL (shed by MMP-7) to induce apoptosis 

has been controversial, as discussed [19,85]. MMP-7 generated sFasL that was more active 

than mFasL in inducing apoptosis of HEK 293 epithelial cells work done in found to 

be more active in inducing apoptosis [81]. This also appeared true of murine prostate 
[81] and early tumor cell lines with short exposures to MMP-7 [85]. However, lymphoma, 

lymphoblastoma, and carcinoma cell lines resisted apoptosis upon treatment with sFasL but 

underwent apoptosis in response to mFasL [86–88]. Fas-resistance is normal in cancer cells 

and can develop in cell transformation by many types of defects in the apoptosis pathway 
[89]. Oligomerizaton or cross-linking of the sFasL restored apoptosis of the cancer cell lines, 

apparently by restoring formation of DISC complexes [88]. More reconciliation of disparate 

sFasL activities came from evidence that constitutive MMP-7 exposure caused early cancer 

cells to undergo less apoptosis in response to sFasL [85]. (Recall that high MMP-7 can 

be a characteristic of aggressive tumor cells [19,60]). Ideas offered for the development of 

resistance to sFasL were that (i) MMP-7 expression by tumor cells should stifle immune 

infiltration and (ii) FasL expression by tumor cells could induce apoptosis in cytotoxic T 

cells (the “Fas counterattack”) [85,89,90]. The subsequent report of MMP-7 shedding the Fas 

receptor [84] should nonetheless be a major consideration in MMP-7-dependent resistance to 

apoptosis.

MMP-7 expression partly protected tumor cells from the toxicity of DNA-damaging agents 

such as chemotherapeutics [85,91]. Broad-spectrum MMP inhibitors increased the apoptosis 

induced in Fas-sensitive cell lines by the chemotherapeutic agent doxorubicin [79]. The 

pertinent target of this inhibition was identified as MMP-7 [91]. The chemotherapeutic 

oxaliplatin increased expression of MMP-7, depleted Fas due to proteolysis by MMP-7, 

and shifted Fas signaling from apoptosis to MAP kinase signaling which promotes survival 
[92]. Consequently, inhibition of MMP-7 for enhancing the therapeutic potential of standard 

chemotherapy was proposed [91,93,94], and tested very recently [95].

Proteoglycan of PDAC growth shed by MMP-7

Heparan sulfate proteoglycans are important in cell proliferation, migration, and cellular 

interactions. Expression of the heparan sulfate proteoglycan syndecan-1 in pancreatic tissues 

from patients increased with progression to pancreatic cancer [96]. Transgenic mice models 

of PDAC, driven by oncogenic KRAS expression, prominently expressed syndecan-1, 

employed it in tumor maintenance, and required syndecan-1 for micropinocytosis to feed 

tumor growth [97]. MMP-7 was demonstrated to shed syndecan-1 complexes with CXC 

chemokine from cell surfaces (murine CXCL1/KC or primate CXCL8/IL-8) [43,44]. Since 
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syndecan-1 ectodomain was reported in human pancreatic cancer tissues [96], it is possible 

that MMP-7 shed part of the syndecan-1 in these patient specimens. The MMP-7 - 

syndecan-1 axis is established in spatially localizing neutrophil activation to epithelia [43–45]. 

The potential effect of MMP-7 shedding of syndecan-1 on micropinocytosis in PDAC 

remains to be tested, however.

Proteolysis at cell surfaces by MMP-7 that promotes cell proliferation

Independent studies of human pancreatic surgical specimens found that loss of epithelial 

cadherin (E-cadherin) correlated with stage of pancreatic tumor progression, with lost E-

cadherin even being prognostic of poor outcome [98–100]. Loss of E-cadherin is important 

in epithelial-to-mesenchymal transition in cancer [98,101]. Proteolytic shedding of E-cadherin 

by metalloproteinases is one of several mechanisms that can deplete E-cadherin from cell-

cell junctions [98,102]. MMP-7 processing of E-cadherin increased epithelial cell migration 

of transformed MDCK canine kidney cells [103], A549 human lung adenocarcinoma cells, 

and non-transformed MDCK and C57MG cells [104]. The processing disrupted tight cell 

adherens junctions, and importantly increased cell proliferation with enhanced RhoA 

GTPase activity and increased cyclin D1 in non-transformed epithelial cells [104]. Proteolytic 

fragmentation of E-cadherin is likely to alter cell signaling [104]. Indeed, MMP-7 processing 

of E-cadherin cell promotes proliferation and migration of epithelial cells in vitro [46,103,104].

At adherens junctions, small proportions of E-cadherin and the EGF receptor (EGFR) 

associate in complexes, requiring the ECD of E-cadherin [105–108]. Association with E-

cadherin activated EGFR signaling in an immortalized keratinocyte epithelial cell line 

(HaCat) [106] and a mammary epithelial cell line (MCF10A)[107], but inhibited activation 

of EGFR and other receptor tyrosine kinases (RTKs) in the MDCK line [108]. Since 

interference in E-cadherin-dependent cell adhesion disrupted regulation of an RTK [108], 

proteolytic shedding of E-cadherin by MMP-7 [103,104] may analogously interfere in 

regulation of RTKs such as EGFR.

EGFR activated by HB-EGF stimulates the proliferation of pancreatic stellate cells [109]. 

MMP-7 activated the related ErbB4 receptor by processing pro-HB-EGF to HB-EGF, not 

only in promoting the cell survival of uterine and mammary epithelia [110], but also in 

tumorigenesis in mammary epithelia [111].

Key strategies of colocalization of MMP-7 with substrates at cell surfaces

The glycosaminoglycan (GAG) chains radiating from heparin sulfate proteoglycans 

(HSPGs) anchored in plasma membranes recruit MMP-7 to substrates on cell surfaces that 

modulate cancer progression [19,48], as well to substrates for antibacterial defenses [41,47,48]. 

For example, the GAG chains of the HSPGs syndecan-1 and syndecan-2 recruit MMP-7, 

resulting in shedding of the syndecans [44,48,112]. The negative charges of the GAG chains 

are attracted to the cationic patch on the back of the catalytic domain (Fig. 3) and nearly 

encircling proMMP-7 [113,114]. HSPGs recruit MMP-7 to process proHB-EGF and release 

ErbB4 receptor from cells, thereby modulating the EGFR pathway [110,111,115].
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Not only do anionic GAGs recruit MMP-7, but so also do membranes that contain sterols, 

anionic lipids, or especially anionic sterols [116,117]. Cholesterol sulfate recruitment of 

MMP-7 promotes homotypic cell adhesion and cleavage of laminin-332 and fibronectin 
[117–119]. The binding site of MMP-7 for anionic bilayers lies on the catalytic domain remote 

from the active site [120] and overlaps the chief binding site for GAG chains [114]. That mode 

of binding is rotated 80° and deeper than the association with zwitterionic bilayers [120] 

shown for better clarity in Fig. 3.

Maturation of proMMP-7 to active MMP-7

Endometrial cells harbored active MMP-7 rather than the proMMP-7 zymogen [116]. The 

recruitment of MMP-7 can be mediated both by the GAG chains of HSPGs [48,110,113] and 

by cholesterol sulfate [116,117]. GAG chains trigger activation of the zymogen by bridging 

them together into aggregates in which activation occurs in trans, i.e., with one enzyme 

proteolytically removing the pro-domain from a neighbor [121]. This or allosteric activation 

upon binding a lipid bilayer [120] are potential mechanisms of activation of MMP-7 at apical 

surfaces of epithelial cells; see ref [19].

Therapeutic priorities

Surgical resection is the centerpiece to treatment, but often becomes infeasible with 

advanced tumor progression impinging on blood vessels [3]. Neoadjuvant therapy has been 

proposed to shrink tumors to dimensions suitable for resection, in order to increase the 

number of PDAC patients who can be treated successfully [3]. The resistance of pancreatic 

cancer to chemotherapy poses an ongoing need for improvement of adjuvant therapy 

after surgery [3]. Immunotherapies have failed and therapeutic agents have been unable to 

penetrate the desmoplastic pancreatic tumor microenvironment [3,122]. To overcome barriers 

to entry, a chemotherapeutic was delivered to hepatocellular carcinoma tumors by localized 

heating of liposomes using focused ultrasound. Though this failed to increase progression-

free survival in clinical trials, it increased overall survival by 2.1 years over radiofrequency 

ablation only [123,124]. This promising new delivery strategy [125] entered a phase I clinical 

trial in 2021 for non-resectable PDAC [126].

Multiple studies have suggested MMP-7 to be a promising target for therapeutic 

development to treat PDAC [7,8,11,12,19,49,68]. Inhibition of MMP-7 to enhance 

chemotherapy is a longstanding idea for improving adjuvant therapy [11,91,93,94]. The most 

effective time for inhibition of MMPs was asserted to be early in tumor progression, before 

or during metastasis, i.e., the neoadjuvant stage [33]. This proposal attributed the failures of 

clinical trials of MMP inhibitors largely to their testing at stages of cancer that were too 

advanced [33]. Earlier critiques attributed the failures to lack of selectivity for MMPs that 

foster cancer progression [28–30,127].

Allosteric inhibitors

High conservation of MMP active sites resulted in broad spectrum inhibition by the 

competitive inhibitors developed [35]. This limitation and the need for selectivity has 
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motivated searches for compounds that inhibit non-competitively by binding remotely to less 

conserved sites [20,32,34,128]. Targeting of remote exosites that distinguish among MMPs has 

been expected to provide selectivity [20,32,34,35,129,130]. Doxycycline was the first inhibitor 

demonstrated to bind remotely from the MMP-7 active site and to cause conformation 

adjustment [131]. While doxycycline inhibition of a broad spectrum of MMPs and other 

proteins could be a concern, it is the sole MMP inhibitor in clinical use [32], not to mention 

the use of closely related tetracycline for decades. Doxycycline is used for periodontal 

disease, promising in clinical trials for multiple sclerosis, and investigated in neuronal 

disease [132]. Doxycycline binds two sites, probably on the β-sheet where it slows deuterium 

exchange [131] (Fig. 3). One site is near the structural zinc ion [131], while the other adjoins 

the site of binding of a GAG chain (Fig. 3).

It was hypothesized that selective inhibition of MMP-7 in cancer could be accomplished 

if its GAG-triggered maturation could be blocked to prevent activity [48]. The GAG chains 

can be targeted, but without specificity [133]. We located the principal GAG binding sites 

on the back side of the catalytic domain (Fig. 3) and spanning from the pro-domain to the 

catalytic domain [114] (not shown). We also noticed allosteric, remote influences on MMP-7 

activation [120] and catalytic velocity [121], confirming the zymogen and activated forms to 

be allosteric indeed. Preliminary evidence suggests that compounds can be found that bind 

remotely and modulate or inhibit GAG-triggered activation [134].

Selective inhibition at the active site

Selective inhibition of some MMPs other than MMP-7 has been achieved by engineering 

of tissue inhibitors of metalloproteinases [31,33,135]. Monoclonal antibodies (mAbs) have 

provided selective inhibition of several MMPs [20,31–33,35,136]. An inhibitory mAb selective 

for MMP-7 looks promising indeed [95]. This mAb, GSM-192, binds with high affinity 

epitopes around the active site of MMP-7 (Fig. 2), probably covering the active site [95]. Low 

micromolar concentrations of GSM-192 exhibited characteristics sought in MMP inhibitors. 

It clearly selects MMP-7 over its close homologues of MMP-9, MMP-12, MMP-13, and 

MMP-14 [95]. GSM-192 decreased the motility of an MMP-7-expressing pancreatic cancer 

cell line to half in a scratch assay [95]. This mAb markedly increased the apoptosis of 

MMP-7-expressing pancreatic cancer cell lines, apparently by protecting an active form of 

FasL from loss, presumably by preventing proteolytic attack by MMP-7 [95]. As proposed by 

Mitsiades and coworkers [91,93,94], GSM-192 enhanced the sensitivity of MMP-7-expressing 

pancreatic cancer cell lines to the DNA-damaging chemotherapeutics gemcitabine and 

oxaliplatin (standard for PDAC [3]), in some cases halving their IC50 values [95]. This 

synergism could result from GSM-192 partly overcoming the elevation of MMP-7, shedding 

of Fas, and resistance to apoptosis that results from chemotherapy; see refs [84,91,92].
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Abbreviations

CSL CBF-1/Su(H)/LAG1

DISC death-inducing signaling complex

E-cadherin epidermal cadherin

ECD ectodomain

EGF epidermal growth factor

EGFR epidermal growth factor receptor

GAG glycosaminoglycan

GEMM genetically engineered murine model

HB-EGF heparin-binding epidermal growth factor

HEK human embryonic kidney cells

HSPG heparan sulfate proteoglycan

MMP matrix metalloproteinase

mAb monoclonal antibody

NMR nuclear magnetic resonance

PanIN pancreatic intraepithelial neoplasia

PDAC pancreatic ductal adenocarcinoma

RTK receptor tyrosine kinase

TMD transmembrane domain

TNF tissue necrosis factor

TNFR tissue necrosis factor receptor
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Perspectives

• Combining the circulating MMP-7 and CA19–9 levels of a patient increases 

prognostic accuracy for severe pancreatic cancer.

• Selective inhibition of MMP-7 offers a potential means of enhancing 

neoadjuvant and adjuvant therapy, in combination with chemotherapy, to 

increase apoptosis of tumor cells. This has potential to increase successful 

resection of pancreatic tumors.

• Promising MMP-7-selective mAbs await evaluation in genetically engineered 

mice models of PDAC. This may test the question of bioavailability in the 

tumors.
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Figure 1. 
MMP-7 roles, structure, function, and inhibition discussed herein.
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Figure 2. Ectodomains of FasL and Fas receptor are proteolytically shed by MMP-7 to interfere 
in apoptosis.
The upper sphere symbolizes the T cell or macrophage and the lower sphere the tumor cell 

or epithelial cell targeted. The spheres are vesicles of 12:0 phosphatidylcholine constructed 

at the CHARMM-GUI server [137]. The death domains of Fas and DISC complex are not 

pictured. PDB accession codes of the structural coordinates used are 4MSV for the FasL 

trimer and the FasL complex with Fas (by truncating the decoy DcR3 receptor present) [138]; 

3TJE for the Fas ectodomain [139]; 2NA7 for the trimeric Fas transmembrane domain [140] 

and FasL transmembrane domain; and 2MZH for MMP-7 associated with a bilayer [120].
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Figure 3. MMP-7 sites of binding of inhibitors and cell surface features.
The MMP-7 solution structure bound to a zwitterionic bilayer [120] (upper right, PDB: 

2MZH) is plotted. Blue spheres mark the zinc ions. The mode of binding of an 8-residue 

heparin chain [114] (PDB: 5UE5) is superimposed and plotted with sticks at right. Sites that 

doxycycline slowed in deuterium exchange [131] are pointed out in light green. Predicted 

sites of contact with the mAb GSM-192 lie within the dashed rectangle with orange coloring 
[95]. Orange sidechains mark positions proposed to confer specificity [95]. To prevent GAG-

induced activation of proMMP-7 as proposed [48], a potential region to target lies in the 

dashed ellipse, an area that might overlap a site of doxycycline binding.

Van Doren Page 23

Biochem Soc Trans. Author manuscript; available in PMC 2023 August 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Guardian of mucosal epithelia
	MMP-7 as prognostic of severe pancreatic cancer
	MMP-7 in development of pancreatic cancer in transgenic mice
	MMP-7 activation of Notch signaling in pancreatic tumorigenesis
	Release of cell surface members of death receptor pathways by MMP-7
	MMP-7 support of tumor cell survival and resistance to chemotherapy
	Proteoglycan of PDAC growth shed by MMP-7
	Proteolysis at cell surfaces by MMP-7 that promotes cell proliferation
	Key strategies of colocalization of MMP-7 with substrates at cell surfaces
	Maturation of proMMP-7 to active MMP-7
	Therapeutic priorities
	Allosteric inhibitors
	Selective inhibition at the active site
	References
	Figure 1.
	Figure 2.
	Figure 3.

