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Patients with severe congenital heart disease (CHD) are at risk for impaired neurodevelopment. Cerebral blood supply may be
diminished by congenital anomalies of cardiovascular anatomy and myocardial function. The aim of this scoping review was to
summarize the current knowledge on cerebral hemodynamics in infants with severe CHD. A scoping review was performed. Five
databases were searched for articles published from 01/1990 to 02/2022 containing information on cerebral hemodynamics
assessed by neuroimaging methods in patients with severe CHD within their first year of life. A total of 1488 publications were
identified, of which 26 were included. Half of the studies used Doppler ultrasound, and half used magnetic resonance imaging
techniques. Studies focused on preoperative findings of cerebral hemodynamics, effects of surgical and conservative interventions,
as well as on associations between cerebral hemodynamics and brain morphology or neurodevelopment. Cerebral perfusion was
most severely affected in patients with single ventricle and other cyanotic disease. Neuroimaging methods provide a large variety
of information on cerebral hemodynamics. Nevertheless, small and heterogeneous cohorts complicate this field of research. Further
studies are needed to improve our understanding of the link between CHD and altered cerebral hemodynamics to optimize

neuroprotection strategies.

Pediatric Research (2023) 94:931-943; https://doi.org/10.1038/541390-023-02543-z

IMPACT:

® Postnatal cerebral hemodynamics are altered in infants with congenital heart disease (CHD) as compared to healthy controls,
especially in most severe types such as single ventricle or other cyanotic CHD. Associations of these alterations with brain

volume and maturation reveal their clinical relevance.

® Research in this area is limited due to the rarity and heterogeneity of diagnoses. Furthermore, longitudinal studies have rarely

been conducted.

® Further effort is needed to better understand the deviation from physiological cerebral perfusion and its consequences in

patients with CHD to optimize neuroprotection strategies.

INTRODUCTION

Children with severe congenital heart disease (CHD) are at risk for
delayed brain maturation, brain injuries, and clinical neurodeve-
lopmental impairment.' The underlying causes have not yet been
fully established. Low intra- and perioperative cerebral oxygena-
tion in CHD neonates has already been associated with structural
and functional brain alterations.>”> Moreover, anomalies in cardiac
anatomy and function may impact brain development, causing
alterations in cerebral hemodynamics and blood supply.

In healthy infants, postnatal cerebral perfusion increases rapidly
within the first weeks of life,® together with an increase of flow
velocities in intracerebral vessels.” This early increase is thought to
reflect the closure of the arterial duct in neonates, as well as the
high metabolic activity in the developing brain®° Moreover,
general body growth and weight gain lead to an increase in

cardiac output within the first years of life and may also impact
cerebral perfusion.'®"

The hemodynamic situation in infants with severe CHD differs
from that in healthy peers and undergoes several changes within
the first year of life. Prenatally, a brain-sparing mechanism has
already been found in fetuses with single ventricle physiology.'? In
contrary to healthy fetuses, vascular resistance in cerebral arteries
was found to be decreased as compared to placental arteries, and
therefore enhances blood flow to the brain.'? After birth, CHD
patients may require prolonged systemic-to-pulmonary shunt
(e.g., patent/stented arterial duct or surgical shunt) and cardiac
surgery with the restructuring of vascular pathways and changes
in cardiac function. Surgical treatment for severe CHD includes
complete biventricular repair, such as arterial switch operation in
d-transposition of great arteries (TGA) or staged palliation for

'Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland. ?Center for MR-Research,
University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland. 3Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich,
Switzerland. “Department of Diagnostic Imaging, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland. *University Library, University of Zurich, Zurich,
Switzerland. ®These authors contributed equally: Ruth O'Gorman, Walter Knirsch. email: walter.knirsch@kispi.uzh.ch

Received: 25 November 2022 Revised: 8 February 2023 Accepted: 8 February 2023

Published online: 21 March 2023

SPRINGER NATURE


http://crossmark.crossref.org/dialog/?doi=10.1038/s41390-023-02543-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41390-023-02543-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41390-023-02543-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41390-023-02543-z&domain=pdf
https://doi.org/10.1038/s41390-023-02543-z
mailto:walter.knirsch@kispi.uzh.ch
www.nature.com/pr

A.A. De Silvestro et al.

Records identified through
database searching

Medline (n=658)

EMBASE (n=704)
Cochrane (n=35)

Web of Science (n=908)
Scopus (n=816)

Records identified through

other sources
(n=0)

Records identified
(n=3121)

Duplicates removed
(n=1633)

v

(n=1488)

Records screened

Records excluded
(n=1328)

v

eligibility
(n=160)

Full-text articles assessed for

Full-text articles excluded,
with reasons
(n=134)

A4

91 Reviews/letters/abstract only

22 No absolute/relative values of
cerebral hemodynamics

11 Population not according to
protocol

9 Time point of measurement
not according to protocol

1 Language (Romanian)

Studies included
(n=26)

Fig. 1 Flowchart for study selection.

patients with single ventricle CHD. Staged palliation consists of
neonatal stage | procedure (i.e, Hybrid or Norwood), stage Il
procedure in infancy (bidirectional cavopulmonary anastomosis/
Glenn procedure), and stage Ill procedure in early childhood (total
cavopulmonary connection/Fontan procedure).

We hypothesized that brain development in patients with
severe CHD will not only be influenced by neonatal cardiac
surgery and perioperative management but also by the steady
state of altered cardiac function and subsequent effects on
cerebral blood and oxygen supply. Therefore, this work reviews
postnatal cerebral hemodynamics in patients with severe CHD and
its changes with surgical and conservative interventions. Insight
into the cerebral hemodynamic situation can be achieved by
neuroimaging techniques as they provide absolute values of
cerebral blood flow and perfusion parameters.

This scoping review focuses on the postnatal course of cerebral
hemodynamics in patients with severe CHD during early infancy,
measured with neuroimaging methods. We aimed to (1) review
neuroimaging methods for the measurement of cerebral hemo-
dynamics and (2) summarize the current state of research on the
postnatal course of cerebral hemodynamics in infants with
severe CHD.

METHODS

This scoping review was carried out following the PRISMA
guidelines.'”® A research protocol was written in advance of the
literature search (see Supplementary material).

Eligibility criteria

Inclusion criteria were the following: (1) neonates and infants
younger than 1 year of age, (2) severe CHD as defined by cardiac
surgery required within the first 3 months of life, and (3) studies
reporting absolute or relative values of cerebral hemodynamics,
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measured by imaging methods. Exclusion criteria were: (1)
associated genetic syndrome, (2) prematurity, and (3) measure-
ments performed intraoperatively or within 24 h postoperatively.

Data search

A literature search was performed in collaboration with a librarian
(MG) within Medline (OVID), EMBASE (via embase.com), Cochrane,
Web of Science, and Scopus databases for the period between
January 1990 and February 2022. The last data search update was
conducted on February 11, 2022. The search string for Medline is
provided in the Supplementary material; equivalent search strings
were used in the further databases. Original, peer-reviewed
research studies, including population-based register studies,
retrospective and prospective cohort studies, cross-sectional
studies, and case-control studies, were included. Reviews,
editorials, or commentaries were screened for relevant studies
but excluded from the results. No language limitation was
performed for the data search.

Screening

In the first step, one investigator screened the title and abstract of
each article on the basis of the eligibility criteria. In the second
step, the full text of the screened studies was analyzed. A PRISMA
flow diagram (Fig. 1) presents the screening process. The reasons
for study exclusion were documented. Uncertainties about study
eligibility were discussed with co-investigators (WK and RO), and
eligibility was decided by consensus.

Data charting process/data extraction

Studies were searched for: First author, year of publication, study
design, country of study origin, sample size, study population and
subgroups, control cohort, age of participants, imaging method and
parameter, the time point of measurements, use of sedation, research
focus, and results. Data items were selected from full-text publications.

Pediatric Research (2023) 94:931-943



RESULTS

Description of the studies

A total of 160 studies were screened for eligibility by full text. Of
those, 89 reviews, editorials, and commentaries were searched
without the detection of additional publications. One study was
excluded due to the Romanian language. Twenty-six studies were
finally included in the review. Tables 1 and 2 present an overview
of the characteristics and findings of dUS and MRI studies,
respectively.

Study characteristics. The study design was prospective for 24
(92%) and retrospective for 2 (8%) studies. Twenty (77%) studies
reported data for single time points: 16 studies assessed cerebral
hemodynamics preoperatively, 2 studies postoperatively to the
first cardiac surgery, and 2 studies preoperatively to stage Il
procedure in patients with single ventricle disease. Six (23%)
studies had a longitudinal design and assessed changes before
and after surgical procedures; all of them used dUS methods.
Research foci varied widely and included the assessment of
preoperative cerebral hemodynamics, the effects of surgical and
conservative interventions, and the evaluation of associations
between cerebral hemodynamics and brain morphology or
neurodevelopment. Most of the included studies were published
in English (25 studies, 96%), while one study was published in
Spanish.

Population characteristics. In total, this scoping review includes
the cerebral hemodynamic assessment of 629 patients. The mean
CHD sample size was 24.2 (range 1-63). A control cohort was used
in six (23%) studies.

Eighteen (69%) studies included different types of CHD with
subgroup analyses in 11 studies, 7 (27%) studies focused on a
single type of CHD, most frequently Hypoplastic Left Heart
Syndrome (HLHS), and in one study, CHD diagnosis was not clearly
defined. Use of sedation or general anesthesia was reported for six
MRI studies, as well as for one dUS study. Eight (31%) studies did
not report the sedation strategy during measurements.

Methods of cerebral hemodynamic assessment

Cerebral hemodynamics were assessed by dUS (13 studies, 50%)
and two MRI techniques (13 studies, 50%) using various
hemodynamic parameters (Table 3).

Doppler ultrasound. Cerebral vascular blood flow velocity is
evaluated by dUS determining peak-systolic (PSV), end-diastolic
(EDV), and mean velocity (MV) of the main cerebral arteries. These
Doppler measurements, together with the assessment of velocity
time integral (VTI), are angle-dependent. Nine studies assessed
velocities, and one study VTI. Angle correction was not reported in
the studies. The resistance index (RI) and/or pulsatility index (PI)
was calculated in 10 dUS studies to investigate blood flow
independent of the insonation angle. The middle cerebral artery
was most often studied (MCA, n=11), beside anterior cerebral
(ACA, n=2), proximal callosomarginal (n=1), internal carotid
(ICA, n=1), and basilar artery (BA, n=1). A disadvantage of dUS
regarding the assessment of cerebral hemodynamics in neonates
is the small vessel size; hence the caliber cannot be measured
adequately, and absolute cerebral blood flow (CBF) calculation is
not possible.”'* If reported (n=8), the pulsed-wave Doppler
technique was used.

Magnetic resonance imaging: phase contrast and arterial spin
labeling. Neonatal cerebral MRI is challenging due to the small
brain size and high susceptibility to motion.'> Two noninvasive
MRI techniques had been used in the included studies to estimate
CBF without the application of contrast agents: phase contrast
(PC) in eight studies and arterial spin labeling (ASL) sequences in
six studies; one study combined both methods.
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In PC MRI, CBF (ml/min) is calculated from the velocity and
cross-sectional area of the blood within the main feeding arteries,
usually measured in both ICAs and the BA.'® Blood velocity is
estimated using bipolar flow-encoding gradients.'® Vascular flow
can be converted to the average (whole-brain) indexed cerebral
blood flow (iCBF, in ml/min/100 g or ml/min/100 ml brain tissue)
by dividing the total vascular flow by the total brain volume (in
grams or milliliters).'® The terms “indexed cerebral blood flow/
iCBF” and “cerebral perfusion” are used as synonyms in this
review.

In ASL, cerebral perfusion (in ml/min/100 g) is calculated from the
brain tissue signal using a subtraction method."® Radiofrequency
pulses applied to the neck region invert the blood signal during a
preparation phase.'® After a certain delay allowing the inverted spins
in cervical arteries to reach the brain tissue, the labeled image is
acquired and subtracted from a native image, resulting in an image
with signal intensities proportional to CBF.'® The included studies
used different ASL methods: three used pulsed ASL (PASL), two used
pseudocontinuous ASL (pCASL), and one study combined both
(Table 2). Whereas PASL uses a thick slab of 10 cm for the inversion
pulse in a short time range of 5-20 ms, pCASL uses a thinner slab for
a longer duration (1-2s).'® pCASL is more dependent on blood flow
velocity, but the quality of pCASL tends to be higher than for PASL
images.'” For either technique, multiple control-label sets need to
be acquired to increase the signal-to-noise ratio, requiring a longer
acquisition time with the difficulty of possible motion artifacts.®
Spin labeling signal is furthermore dependent on patient character-
istics like age and hematocrit, and measurements need to be
adapted accordingly.'®'® In contrast to PC, ASL allows not only the
assessment of global cerebral perfusion but also regional perfusion,
as acquired in two'>?° of the six ASL studies. ASL has a shorter post-
processing time than PC, whereas PC MRI has a higher signal-to-
noise ratio.'®

Research topics

Preoperative cerebral hemodynamics

CHD vs. healthy neonates: After birth, a preoperative age-
dependent increase of global cerebral perfusion was found in
neonates with CHD, similar to the physiological findings in healthy
controls.?’ While preoperative global cerebral perfusion values did
not differ between cohorts of diverse CHD patients and healthy
controls in two studies (determined by PC*" and ASL,'®), they were
lower than in comparable healthy literature reports in one study
(determined by PC??). In subanalyses of specific CHD types as
compared to healthy controls, lower cerebral perfusion was
revealed in patients with single ventricle disease, both globally
and regionally in the basal ganglia and in the thalami in patients
with cyanotic CHD."?

Similarly, an age-dependent increase of preoperative cerebral
oxygen delivery (CDO, and indexed per brain volume: iCDO,;
calculated from CBF/iCBF, hemoglobin and oxygen saturation,
Table 3) was found in a cohort of different types of CHD.2' But, in
contrast, this age-dependent increase of CDO,/iCDO, was weaker
in CHD patients than in controls.?' In disease-specific subanalyses,
CDO, of patients with single ventricle disease and TGA was lower
than in controls, whereas no difference was found between
patients with coarctation of the aorta and controls?'.

Differences within CHD subgroups: Patients with cyanotic CHD
were shown to have similar global cerebral perfusion but
decreased regional perfusion in thalami, basal ganglia, and
occipital white matter, as compared to patients with acyanotic
CHD.'® On the other hand, patients with aortic arch obstruction
had increased global perfusion, as well as regionally in thalami,
basal ganglia, occipital, and frontal white matter, than those
without aortic arch obstruction.'® These findings are supported by
Kelly et al.,”® who reported the lowest global blood flow (ml/min)
and CDO, values (ml O,/min) for HLHS, Truncus arteriosus
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Table 3. Hemodynamic parameters.
Abbreviation Parameter Formula Unit
Doppler ultrasound
PSV Peak-systolic velocity cm/s
EDV End-diastolic velocity cm/s
Mv Mean velocity cm/s
RI Resistance index (PSV-EDV)/PSV
PI Pulsatility index (PSV-EDV)/MV
VTl Velocity time integral cm
Magnetic resonance imaging Sequence used in
studies
CBF Cerebral blood flow ml/min PC
iCBF Indexed cerebral blood flow or ml/min/100g or ml/ ASL or PC
cerebral perfusion min/100 mI®
CDO, Cerebral oxygen delivery EEFCZ’%; 5a0, x Hb x 1.36° x ml O,/min PC
iCDO, Indexed cerebral oxygen delivery iCDO, = Sa0, x Hb x 1.36° x iCBF ml O,/min/100g PC
O,D Cerebral oxygen delivery 0O,D = CBF X ((0.003 x PO,) + (1.34 Not given PC
x O,Sat x Hb))*?
iCMRO, Cerebral metabolic rate of oxygen iCMRO, = Ca x CBF x OEF?? (OEF: ml O,/min/100 g PC

consumption

(Sa0,—Sv0,)/Sa0,)*?

ASL arterial spin labeling, Ca arterial oxygen concentration, Hb hemoglobin concentration, MRl magnetic resonance imaging, OEF oxygen extraction fraction,
0,Sat oxygen saturation, PC phase contrast, PO, partial pressure of oxygen, SaO, arterial oxygen saturation, SvO, venous oxygen saturation.

2Convertible to ml/min/100 g by multiplying with brain tissue density.

The value 1.36 is the amount of oxygen bound per gram of Hb at 1 atmosphere (Hiifner’s constant).?’

communis, and tricuspid atresia, medium values for TGA patients
and the highest values for aortic coarctation, pulmonary atresia,
and Fallot patients, although those values were not indexed per
brain volume.

No differences in cerebral perfusion/iCBF were found for the
following comparisons: uni- vs. biventricular CHD,'® TGA with vs.
without preoperative balloon-atrial septostomy'® within cardiac
subgroups (not further specified).>* CBF of CHD groups with
abnormal mixing vs. left-sided vs. right-sided lesions did not differ,
either.® No CDO, difference between male and female patients
was found.?®

Therapeutic effects on cerebral hemodynamics
Duct- or surgical shunt-dependent pulmonary and systemic
circulation:  Patent ductus arteriosus (PDA)

In healthy infants, cerebral diastolic velocity increases within the
first months after birth?” due to the closure of PDA and an
increase in cardiac output.’® In several types of severe CHD,
persistent blood flow across the arterial duct is needed either by
using prostaglandin E1 infusion or by duct stenting. Duct-
dependent systemic circulation may result in an unfavorable
balance of systemic and pulmonary perfusion.?® Furthermore, in
HLHS patients undergoing Hybrid palliation with pulmonary artery
banding and patent ductus arteriosus, postoperative cerebral
perfusion remains duct-dependent and retrograde through the
aortic arch.?’

In some patients, already preoperatively, not only low diastolic
velocity but a diastolic runoff was detected in cerebral arteries and
described as “ductal steal phenomenon”.?® It implies a relatively
large pulmonary flow due to overshunting.?® In HLHS patients
after Hybrid palliation, cerebral diastolic velocity remained low?’
or even decreased.®® The low diastolic velocity causes the Pl to
remain high both pre-?’2" and postoperatively.”” Systolic velo-
cities of cerebral arteries did not change from pre- to post-
operative, up to 7 days after Hybrid palliation.° In later follow-ups
at 2, 4, and 6 months, an increase with time was found, as
expected from infant growth.”” Within an observational period

Pediatric Research (2023) 94:931-943

from birth to the age of 6 months before and after Hybrid
palliation, all flow velocities (systolic, diastolic, mean) in cerebral
arteries of HLHS patients with open ducts remained lower than in
healthy controls.?’”

Surgical  shunts:  Systemic-to-pulmonary  shunt  (modified
Blalock-Taussig (mBT) shunt) and right ventricle-to-pulmonary artery
(RV-PA) conduit

The mBT shunt connects the right subclavian and right
pulmonary artery, whereas the RV-PA conduit connects the right
ventricle and pulmonary artery. Side-specific measurements of
cerebral arterial velocities were conducted pre- and postoperative
to mBT shunt procedure in a study including diverse types of
CHD.?® Postoperatively, a lack of increase in diastolic velocity was
shown unilateral to the shunt, right-sided, with a consequently
higher RI,%° similar to the observations in patients with an open
arterial duct. In all four patients with preoperative ductal steal
phenomenon (reverse diastolic flow), no shunt steal was detected
postoperatively to the mBT shunt procedure.?® Bilateral PSV and
contralateral diastolic velocity of ICA increased after the mBT
shunt procedure.?

The “ductal steal” or “shunt steal” phenomenon has the
potential for cerebral hypoperfusion and contribution to subtle
neurologic injury.?”?° In one patient, a shunt steal, manifested by
early diastolic reverse flow at both ICAs after the mBT shunt
procedure,”® was observed. The patient died 1 week after
surgery.?

Comparing patients after the mBT shunt vs. RV-PA conduit
procedure, no differences in cerebral blood velocities and Rl of the
right MCA were found.*?

From surgical shunt to cavopulmonary anastomosis in univen-
tricular palliation

With Glenn operation (stage Il in univentricular heart palliation),
the shunt (PDA, mBT, or RV-PA shunt) is removed, and a superior
bidirectional cavopulmonary anastomosis is created. After shunt
removal (mBT or RV-PA shunt), diastolic velocity or Rl did not
change postoperatively, but systolic and mean velocities
decreased in comparison with preoperative values (right-sided

SPRINGER NATURE
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measurements).>®> Both pre- and postoperatively, mean and
diastolic velocity remained lower and Rl higher than reported
for healthy infants3® Consistent with the findings from post-
operative to stage 1,>% no differences in cerebral hemodynamic
variables between patients with mBT shunt and RV-PA conduit
were found pre- or postoperatively to Glenn surgery.®

Vasoactive agents: Hypercarbia therapy

Increasing partial pressure of carbon dioxide in arterial blood
(PaCO,) causes cerebral vasodilation.>* Moreover, a decrease in
partial pressure of oxygen (PaO,) with hypoxic gas ventilation
therapy induces an increase in pulmonary vascular bed resistance
with a consecutive decrease in pulmonary blood flow.>* These
reactions lead to a reduction of diastolic runoff of cerebral to
pulmonary circulation by PDA3® or other systemic-to-pulmonary
shunts.

In the reviewed studies, hypercarbia resulted in an increase of
diastolic velocity and a consequential decrease of Rl in dUS
measurements of MCA>® as well as in an increase of global
cerebral perfusion in MRl methods (ASL,>*3” PC**38), In line with
this finding, the opposite, higher fractions of inspired oxygen,
resulted in a trend of decreased blood flow in MCA (VTI, measured
by dUS)>® Measurements were done before cardiac
surgery?>24283637 in studies including different types of CHD, as
well as before Glenn surgery,®® suggesting that CO, reactivity of
cerebral vessels is competent at both time points. CO, reactivity of
cerebral perfusion did not differ between CHD types.>*

Together with a preoperative increase of brain perfusion with
hypercarbia, Jain et al.?? found an increase in venous O, saturation
in the superior sagittal sinus and a decrease in oxygen extraction
fraction. The cerebral metabolic rate of oxygen consumption
(CMRO,, Table 3) did not change with hypercarbia.?

Milrinone

Milrinone is a specific phosphodiesterase Il inhibitor that
increases cardiac output and decreases systemic vascular resistance,
which leads to a redirection of pulmonary and systemic blood flow.

Bianchi et al>® found an effect of Milrinone on cerebral
hemodynamics (ACA and MCA) during short-term preoperative
use in CHD neonates with duct-dependent perfusion. Similar to
the increase of cardiac output (25% increase from baseline) over
the 48 hours of therapy, cerebral artery velocities (PSV and MV)
increased to a value of 30-40% above baseline. Both increases in
cardiac output and cerebral artery velocities were greater than
would be expected by term infant physiologic adaptation after
birth.3® However, no effect of Milrinone®® or other vasoactive
support>’ was found on EDV, RI, and PL.

Associations of cerebral hemodynamics with brain morphology and
function. CHD neonates are at risk for delayed brain maturation,
reduced brain volumes, and brain lesions like white matter injuries
or focal strokes.! Furthermore, the neurodevelopmental outcome
in later life may be impaired.*°

Brain maturation and volume: Preoperative cerebral perfusion
was not strongly associated with delayed brain maturation
(incomplete closure of the operculum) or microcephaly.®* In
contrast, preoperative cerebral oxygen delivery (CDO, and iCDO,)
was associated with multiple variables of brain maturation and
volume. CDO, was linked with total brain volume'*2¢ grey
matter volume®>?® and iCDO, was associated with grey matter
volume, too, but to a lesser extent than non-indexed CDO,.%®
CDO, and iCDO, were both associated with total maturation
score,?! and CDO, with gyrification index (but not after indexing
per total brain volume?®).

In microstructural analyses, CDO, was associated with cortical
orientation dispersion index (ODI)** and with atypicality indices
within the whole brain tissue *' as further parameters of brain
maturation. Conversely, voxel-wise brain structure, investigating

SPRINGER NATURE

microstructural brain shape and volume, was not associated with
CDO, or CBF.®

Brain lesions: Preoperatively, periventricular leucomalacia (PVL)
was associated with lower iCBF, as well as with poor CO,
reactivity.>* Another preoperative study found no relation of white
matter changes with CBF/iCBF or CDO,/iCDO,,*" and investigation
of univentricular patients preoperative to stage Il surgery revealed
no relation of brain lesions (e.g., focal tissue loss, PVL) and CBF/
iCBF, O, delivery (O,D), or CO, reactivity.42

Neurodevelopmental outcome: No evidence for strong correla-
tions of cerebral blood velocities or RI/PI measurements and
neurodevelopmental outcome at 6 or 12 months was found in
dUS studies®”*® at the predefined time range of this review. To
date, no study assessed the association between cerebral
perfusion and neurodevelopmental outcome. For CDO,, no direct
relation was found with neurodevelopmental outcome at
22 months, but reduced CDO, was indirectly associated with
poor cognitive abilities in early childhood through the mediating
effect of reduced volumetric brain development in several brain
regions.”’

DISCUSSION

Twenty-six neuroimaging studies investigating postnatal cerebral
hemodynamics in patients with severe CHD were identified. A
large variety of topics was investigated at different time points in
the course of cardiac treatment within the first year of life, using
dUS and MRI methods. Comparisons of cerebral hemodynamics
with healthy controls, differences within CHD diagnoses, as well as
therapeutic effects and associations with brain morphology and
function were assessed.

Imaging methods

dUS and MRI techniques as complementary methods are sensitive
to different developmental and pathological changes in the brain.
While MRI studies revealed knowledge of global and regional
cerebral perfusion together with associations of brain morphol-
ogy, dUS studies provided knowledge of cerebral vascular flow
and resistance, even longitudinally, revealing hemodynamic
changes with treatment. For delicate cohorts such as CHD
patients, ultrasound is a noninvasive bedside tool with good
accessibility. On the other hand, objectivity and reproducibility
may be limited. In contrast, PC methods showed high inter-
observer agreement,®' and both PC and ASL results correlated
well with measurements using diffuse optical and correlation
spectroscopy.?>*” Near-infrared spectroscopy (NIRS) methods are
additional techniques to provide noninvasive insight into micro-
vascular tissue oxygenation. They evolved into important clinical
tools offering bedside neuromonitoring and, furthermore,
advanced calculation of oxygen metabolism and indices of
microvascular CBF.>2 However, because of spatial limitations
(standard use at frontal cortex only, limited penetration depth)
and technical challenges (challenges in separation of hemody-
namic changes arising from cerebral or extracerebral tissues, lack
of standardized signal processing and analysis methods),** these
methods were not within the scope of this review.

Cerebral hemodynamics

The age-dependent increase of cerebral perfusion in the early life
of healthy newborns had been described to represent high
metabolic activity in the neonatal period, e.g., due to high energy
consumption of oligodendrocytes for myelination.** In CHD
patients, the age-dependent increase of CBF/iCBF was compar-
able, but the increase of CDO,/iCDO, was weaker, and Doppler
flow velocity values remained lower as compared to those in
healthy newborns.?'
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As a major finding, global and/or regional cerebral perfusion was
decreased in patients with single ventricle disease and other
cyanotic CHD.'® However, the cause is not yet entirely clear and may
be multifactorial. The ductal- or shunt steal phenomenon with
diastolic runoff into the lung may result in lower cerebral perfusion,
as seen in the most severe CHD diagnoses. A number of dUS studies
described this phenomenon,??°73! reporting decreased diastolic
velocity and high Rl and PI in cerebral arteries. In consequence,
these findings imply that the brain-sparing mechanism seen in fetal
patients with severe CHD, consisting of low cerebral resistance to
enhance cerebral perfusion,’> seems not to persist after birth,
possibly as a result of the hemodynamic shunt effect. The steal
phenomenon may not only compromise blood flow to the brain but
also to other vital organs,®’ such as the heart (coronary arteries),
kidneys, or the gastrointestinal tract, with a risk for corresponding
hypoperfusion injuries. It seems like the hemodynamic balance
could only be improved by the closure or removal of the systemic-
to-pulmonary shunt. Nevertheless, MCA RI did not change after
Glenn surgery (bidirectional cavopulmonary anastomosis and
removal of shunt), Rl remained higher, and velocities were lower
than reported for healthy infants.>® As a further effect of Glenn
surgery, central venous pressure increases, resulting in an impaired
venous blood flow from the brain to the heart. However, an acute
impact on cerebral hemodynamics has not been described in the
analyzed studies. Two years after the Glenn surgery, a trend toward
impaired neurodevelopmental outcomes associated with higher
central venous pressure was reported.*®

Concerning the type of systemic-to-pulmonary shunt, no
difference in cerebral hemodynamics was detected between
patients treated with mBT shunt vs. RV-PA conduit directly after
shunt procedure,*> and both pre- and postoperative to Glenn
surgery.®® A potential bias factor of these findings is the unilateral
measurement of the right MCA only, as side-specific differences
may not have been detected. Moreover, because of bilateral blood
supply via the circle of Willis, MCA measurements may provide
shunt effects to a lesser extent than ICA measurements.

In addition to the impacts of systemic-to-pulmonary shunts,
cerebral perfusion is influenced by blood oxygenation. CO, and O,
reactivity of the cerebral vessels in CHD patients are existent:
cerebral perfusion increased with hypercarbia.?>*¢~3® But, cyanotic
patients were found to have reduced regional thalamic perfusion,
and single ventricle patients were found to have reduced global
and regional perfusion as compared to healthy controls.'
Cerebral autoregulation to guarantee adequate blood supply
may therefore be impaired or disrupted (e.g., by the shunt steal
effect) in the most severe types of CHD. Unfortunately, blood
pressure or intracranial pressure was not assessed in the reviewed
studies to accurately investigate cerebral autoregulation.

Reduced CBF may be a critical insult?' In CHD patients, low
cerebral perfusion was associated with PVL.2* Other brain lesions
like WMI?' were not associated and may represent rather acute
events, e.g., during surgery. No association between cerebral
perfusion and brain microstructure or maturation has been found
so far. But, CDO, as a combined parameter of perfusion, arterial
oxygenation saturation, and hemoglobin concentration, was
found to be decreased in CHD patients as compared to healthy
controls,®’ and was associated with brain maturation,®'**2%4! as
well as with cognitive abilities in early childhood through the
mediating effect of reduced volumetric brain development.*'
Therefore, low cerebral perfusion combined with hypoxemia,
causing cerebral hypoxia and hindering optimal oxygen and
nutrition supply, may contribute to the alterations in brain
development in CHD patients.

Limitations

The heterogeneity of cohorts with different types of CHD and
surgical procedures is a well-known limitation of this research
field. Sample sizes were rather small, and a number of publications
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reported results for the total cohort without taking differences in
diagnoses into account. Most of the studies assessed a
preoperative time point, and long-term studies are rare. Long-
itudinal MRI studies are lacking completely. One study?® found
asymmetries in cerebral Doppler measurement, but most ultra-
sound studies investigated one side only, most frequently the
right side, whereas other studies did not report the side at all.
Furthermore, although associations of cerebral hemodynamic
parameters with age, the existence of shunt, or the use of
vasoactive agents during measurement have been found, most of
the MRI studies did not use these variables as covariates in their
analyses. It was shown that CDO, is associated with brain volume
21,2526 byt not all studies adjusted for it.

As a further limitation of this review, we included neuroimaging
data only. Data from other techniques as NIRS or amplitude-
integrated electroencephalography (aEEG), may additionally con-
tribute to the understanding of altered cerebral hemodynamics
and its consequences.

Research gap

The alterations in cerebral hemodynamics of CHD neonates need
to be studied in more detail, as they may represent a cause for the
deviations from healthy neurodevelopment, in addition to the
higher frequency of acute brain damage caused by invasive
treatment in early life. Long-term studies assessing cerebral
perfusion after the postnatal time point are needed to investigate
the chronic state of cerebral blood and oxygen supply in CHD
patients. Furthermore, the effect on long-term neurodevelop-
mental outcomes (after 2 years of life) is of high clinical interest
but has not yet been explored.

Objective measurement of cerebral hemodynamics is compli-
cated by numerous patient-, therapy- or method-related influ-
ences. Larger sample sizes, for example, provided by multicenter
studies, would be beneficial to study these factors more system-
atically. Furthermore, the association between cardiac function
(e.g., by cardiac output) and cerebral hemodynamics has not been
well investigated yet. In addition, more information on regional
perfusion may uncover signs of redistribution or brain-sparing
effects.

CONCLUSION

To date, a large variety of cerebral hemodynamic assessments
have been conducted in CHD infants. Cerebral perfusion of most
severe cases like single ventricle and other cyanotic disease is
decreased, and reduced cerebral oxygen delivery has been
associated with delayed brain maturation in mixed CHD cohorts.
The clinical impact on long-term neurodevelopment is not yet
clear. Further studies researching the longitudinal course of
cerebral hemodynamics in patients with CHD and its impact on
neurodevelopmental outcomes are key for optimal care and
neuroprotection.
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