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Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, 
utilizing glucose fermentation for energy production, known as the Warburg 
effect. However, there are a lack of comprehensive reviews summarizing the me-
tabolic reprogramming, bioenergetic alteration, and their oncogenetic links in 
gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of 
emerging anticancer drugs targeting these alterations in GI cancers require further 
evaluation. This review highlights the interplay between aerobic glycolysis, the 
tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in 
cancer cells, as well as hypotheses on the molecular mechanisms that trigger this 
alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, 
and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, 
and GI cancer are also discussed. This review emphasizes the potential of targe-
ting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. 
Emphasizing the potential of targeting bioenergetic regulators for GI cancer 
therapy, the review categorizes these regulators into aerobic glycolysis/ lactate 
biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail 
various anti-cancer drugs and strategies that have produced pre-clinical and/or 
clinical evidence in treating GI cancers, as well as the challenges posed by these 
drugs. Here we highlight that understanding dysregulated cancer cell bioener-
getics is critical for effective treatments, although the diverse metabolic patterns 
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present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of 
inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics 
to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
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Core Tip: This review discusses the bioenergetic alteration and metabolic reprogramming in gastrointestinal (GI) cancers, 
including the interplay between aerobic glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. The review also 
highlights potential strategies for targeting bioenergetic regulators for anti-cancer therapy in GI cancers, summarizing the 
efficacy and challenges of several drugs.
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INTRODUCTION
Cells require energy to carry out their functions, and the most common form of cellular energy is adenosine triphosphate 
(ATP). This energy is typically produced by oxidative phosphorylation (OXPHOS) in the mitochondria of normal cells[1]. 
However, in cancer cells, there is a shift in the way energy is generated. Instead of using OXPHOS, cancer cells use 
glycolysis, a process that results in increased uptake of glucose and secretion of lactate[2]. This phenomenon is known as 
the Warburg effect and is observed in many types of cancer[3,4]. By understanding the altered energy metabolism in 
cancer cells, researchers can gain new insights into cancer cell biology and identify potential targets for cancer therapy.

Glycolysis is the process by which glucose is broken down to produce ATP, and it does not require oxygen (Figure 1). 
Glucose enters cells through glucose transporters and is converted to glucose-6-phosphate (G6P) by hexokinase (HK). 
Glucose-6-phosphate isomerase (G6PI) converts G6P to fructose-6-phosphate (F6P), which is used in both the glycolytic 
pathway to generate pyruvate or lactate and the pentose phosphate pathway (PPP) to produce nucleotides and nicoti-
namide adenine dinucleotide phosphate (NADPH). Phosphofructokinase-1 (PFK1) converts F6P and fructose-2,6-
bisphosphate (F2,6BP), a metabolite from a branch driven by fructose-2,6-biphosphatase 3 (PFKBP3), to fructose-1,6-
bisphosphate (F1,6BP), which is further processed by aldolase to generate glyceraldehyde-3-phosphate (G3P) and 
dihydroxyacetone phosphate (DHAP). G3P is converted by glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to 1,3-
bisphosphoglycerate (1,3BPG), which is further converted to 3-phosphoglycerate (3PG) by phosphoglycerate kinase 
(PGK1). The 3PG is subsequently converted by phosphoglycerate mutase (PGAM) to 2-phosphoglycerate (2PG). The 2PG 
then serves as a substrate for enolase (ENO) to convert to phosphoenolpyruvate (PEP). Pyruvate kinase isozyme M1/M2 
(PKM1/2) catalyzes the conversion of PEP to pyruvate, which can be converted to acetyl-CoA or lactate. This process 
generates NAD+ from NADH, which is important for the continuation of the glycolysis process. Although glycolysis 
itself does not require oxygen, the fate of the pyruvate produced by glycolysis depends on the availability of oxygen, and 
the overall efficiency of ATP production is much higher when oxygen is present[5].

Pyruvate, a product of glycolysis, enters the mitochondria where it is converted to acetyl-CoA. The resulting acetyl-
CoA can then enter the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle, which plays a pivotal role in 
generating ATP through the electron transport chain (ETC). The TCA cycle completes the breakdown of glucose by 
breaking down acetyl-CoA into carbon dioxide (CO2) and water, releasing energy in the form of NADH and flavin 
adenine dinucleotide (FADH2). NADH and FADH2 donate their electrons to the ETC at Complex I and II, respectively. 
The ETC, specifically Complexes I-IV, transfers electrons from NADH and FADH2 to generate a proton gradient across 
the inner mitochondrial membrane. This gradient is then used by ATP synthase to produce ATP. Complex I, also known 
as NADH dehydrogenase or NADH ubiquinone oxidoreductase, is the largest of the five mitochondrial complexes and 
marks the initiation of the ETC[6]. Electrons are transferred from Complex I to coenzyme Q (CoQ) across the inner 
mitochondrial membrane and then from CoQ to Complex III, although an alternative pathway exists via Complex II, 
succinate dehydrogenase (SDH)[7,8]. Following reduction of succinate by Complex II, electrons are transported to CoQ 
and then transferred to Complex III. Complex III and cytochrome c transfer electrons to Complex IV, cytochrome c 
oxidase (COX). The ETC complexes act as proton pumps, creating an electrochemical gradient across the inner mito-
chondrial membrane, and this energy is harnessed by Complex V, ATP synthase, which generates ATP by using the 
energy from the movement of protons down their electrochemical gradient. This whole process is known as OXPHOS 
and is a time-consuming process compared to glycolysis, but is the most efficient way to generate ATP in the cell, 
producing up to 36-38 ATP molecules per glucose molecule. Complexes I-IV are known as the ETC, while Complex V 
(ATP synthase) does not (Figure 1). Except for Complex II, all OXPHOS-related complexes are partially encoded by 
mitochondrial DNA (mtDNA)[9]. Unfortunately, OXPHOS also produces reactive oxygen species (ROS) as a byproduct, 
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Figure 1 Illustration of the pathway of glucose metabolism. Glucose is taken up by cells and undergoes a series of reactions to convert it to pyruvate via 
the process of glycolysis. Pyruvate can then enter the tricarboxylic acid cycle in the mitochondria to produce energy, or it can be converted to lactate in the cytosol 
under anaerobic conditions. The key enzymes involved in these reactions are highlighted in pale-purple, and linked pathways are depicted in pale-green. The 
mitochondrial complexes that are critical for oxidative phosphorylation and adenosine triphosphate production are shown in pale-blue. GLUT: Glucose transporter; 
HK: Hexokinase; G6P: Glucose-6-phosphate; G6PI: Glucose-6-phosphate isomerase; F6P: Fructose-6-phosphate; NADPH: Nicotinamide adenine dinucleotide 
phosphate; PFK1: Phosphofructokinase-1; F2,6BP: Fructose-2,6-bisphosphate; PFKBP3: Fructose-2,6-biphosphatase 3; F1,6BP: Fructose-1,6-bisphosphate; G3P: 
Glyceraldehyde-3-phosphate; DHAP: Dihydroxyacetone phosphate; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase; 1,3BPG: 1,3-bisphosphoglycerate; 3PG: 
3-phosphoglycerate; PGK: Phosphoglycerate kinase; PGAM: Phosphoglycerate mutase; 2PG: 2-phosphoglycerate; ENO: Enolase; PEP: Phosphoenolpyruvate; 
PKM1/2: Pyruvate kinase isozyme M1/M2; LDH: Lactate dehydrogenase; MCT: Monocarboxylate transporter family; PDH: Pyruvate dehydrogenase; IDH: Isocitrate 
dehydrogenase; α-KG: α-ketoglutarate; OAA: Oxaloacetate; SDH: Succinate dehydrogenase; FH: Fumarate hydratase; I: Mitochondrial complex I; II: Mitochondrial 
complex II; III: Mitochondrial complex III; IV: Mitochondrial complex IV; V: Mitochondrial complex V; Q: Co-enzyme Q; cyto C: Cytochrome c; ATP: Adenosine 
triphosphate; ADP: Adenosine diphosphate; FADH2: Flavin adenine dinucleotide; e-: Electrons.

which can cause damage to mitochondrial or nuclear DNA and activate oncogenic signaling pathways, potentially 
leading to diseases and carcinogenesis[10-12]. Mutations in mtDNA are also implicated in cancer[13]. Overall, the process 
of OXPHOS is vital for cellular energy production, but careful regulation is necessary to prevent the damaging effects of 
ROS production.

In cancer cells, certain enzymes and molecules involved in the conversion of glucose to energy are upregulated, which 
provides an attractive target for anti-cancer therapies[14]. Disrupting this process could prevent cancer cells from 
producing energy and lead to their death. In addition to the upregulation of these enzymes, alterations in certain 
mitochondrial enzymes and oncometabolites have been identified in cancer cells. Oncometabolites are small molecules 
that are produced in cancer cells and contribute to their growth and proliferation[15]. These alterations can be caused by 
genetic and epigenetic changes in the genes involved in energy production[13,16]. Recent research has focused on 
understanding these bioenergetic alterations in gastrointestinal (GI) cancers, such as esophageal cancer (ESCA), gastric 
cancer (GC), hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), pancreatic cancer (PAC), and colorectal cancer 
(CRC). Understanding these specific metabolic changes in cancer cells can provide insight into developing more effective 
targeted therapies for GI cancers. In addition to the potential for targeted therapy, these metabolic changes could also 
serve as biomarkers for cancer diagnosis and prognosis. By identifying alterations in the genes and molecules involved in 
energy production, clinicians may be able to more accurately diagnose and predict the course of the disease. Overall, 
understanding the bioenergetic alterations in cancer cells is a promising avenue for developing new therapies and 
improving cancer diagnosis and treatment. In this review, we summarize the latest findings on bioenergetic alterations in 
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various GI cancers, and discuss the potential therapeutic strategies that target these alterations. Such strategies may 
include inhibitors of specific enzymes or molecules involved in energy production, as well as interventions aimed at 
modulating the metabolic environment of cancer cells. Further research in this area could lead to new and more effective 
treatments for GI cancers.

BIOENERGETIC ALTERATION AND THE WARBURG EFFECT
The process of bioenergetic alteration in cancer involves changes in the way cancer cells generate energy. One well-
known component of bioenergetic alteration is the Warburg effect. This phenomenon describes how cancer cells prefer to 
use glucose fermentation to produce energy even in the presence of oxygen[2]. This process, called aerobic glycolysis, is 
less efficient than mitochondrial OXPHOS in terms of ATP production[17,18]. However, it has been noted that respiration 
alone can maintain tumor viability, suggesting that glucose and oxygen must be eliminated to kill cancer cells by 
depriving them of energy[2]. The underlying mechanisms of the Warburg effect have been investigated for decades. Otto 
Warburg originally proposed that mitochondrial dysfunction could be responsible for aerobic glycolysis[19]. This theory 
was later confirmed and explored by another group that demonstrated the Warburg effect could be caused by an 
imbalance of intracellular pH and mitochondrial ATPase dysfunction[20]. Moreover, it was observed that aerobic 
glycolysis could be controlled by cascade signaling mediated by growth factors and oncogenes, questioning whether the 
Warburg effect was a mere bystander in the pathogenesis of cancer[21-24]. It was not until later that the Warburg effect 
was discovered to be crucial for tumor growth in genetic and pharmacological studies[25,26].

Scientists have been trying to understand why cancer cells prefer aerobic glycolysis to mitochondrial OXPHOS for 
decades, given that the ATP generated by aerobic glycolysis is much lower than that produced by mitochondrial 
OXPHOS[27-29]. Recent studies have shed light on this phenomenon. For example, when changes in the cellular 
environment increase ATP demand through alteration of ATP-dependent membrane activity, aerobic glycolysis increases 
rapidly and OXPHOS remains unchanged[30]. Another study showed high aerobic glycolysis as a metabolic strategy 
which cancer cells use to optimally respond to fluctuating energy availability[31]. Together, this literature suggests that 
the Warburg effect is a metabolic strategy that allows flexibility among cancer cells under an unpredictable tumor 
microenvironment.

THE DYNAMIC INTERPLAY BETWEEN OXPHOS AND AEROBIC GLYCOLYSIS
Not all pyruvate produced during glycolysis is converted to lactate. Indeed, a significant amount of pyruvate can enter 
the TCA cycle for oxidation and further metabolism. The intermediates generated during the TCA cycle, such as NAD+/
NADH and NADP+/NADPH, can continue to enter the OXPHOS pathway, which can further generate bioenergy[32,
33]. Although the role of the Warburg effect in cancers remains controversial, interfering with tumor metabolism and 
targeting both aerobic glycolysis and mitochondrial OXPHOS pathways have been shown to be necessary[34-37]. It is 
evident from current literature that there exists crosstalk between aerobic glycolysis, the TCA cycle, and coupled 
OXPHOS, suggesting cooperative and competitive roles in cancer. Interestingly, some studies suggest that targeting 
mitochondrial metabolism alone may not be sufficient to inhibit tumor growth, as cancer cells can redirect their 
metabolism to rely on other energy sources. In such cases, blocking both the glycolytic and mitochondrial pathways may 
be necessary to prevent cancer cell growth[34-37]. Therefore, a better understanding of the metabolic pathways in cancer 
cells and their interactions is required to develop effective cancer therapies.

Although the exact molecular mechanism that triggers the Warburg effect in cancer remains unclear, multiple 
hypotheses have been proposed, including the involvement of tumor suppressors (e.g., p53) and oncogenes (e.g., PI3K, 
AKT, mTOR), all of which appear to converge on the role of hypoxia-inducible transcription factors (HIFs), particularly 
HIF-1. HIF-1 is a transcription factor that regulates cellular responses to oxygen deprivation, and it was initially identified 
as a protein that is present only under hypoxic conditions[38-41]. However, it was later discovered that HIF-1 can also be 
stabilized under normoxia in a microenvironment with high lactate concentration[42,43]. Under normal conditions, HIF-1
α, a subunit of HIF-1, is targeted for degradation by prolyl hydroxylases (PHDs), which utilize molecular oxygen to 
hydroxylate HIF-1α, leading to its recognition by the von Hippel-Lindau tumor suppressor (VHL), and degradation via 
proteasome-mediated pathways[44-47].

HIF-1 regulates the expression of several key glycolytic enzymes, such as glucose transporter-1 (GLUT1), GLUT3, HK, 
aldolase A (ALDOA), PGK1, PKM1/2, ENO1, pyruvate dehydrogenase kinase (PDKs), and lactate dehydrogenase 
subunit A (LDHA), by directly promoting their expression[48-54]. This leads to an increased level of pyruvate, the final 
product of glycolysis. However, it is important to note that cancer cells with high glycolytic activity are not guaranteed to 
catabolize all pyruvate to lactate, as significant amounts of pyruvate can enter the TCA cycle for oxidation and 
metabolism. In cancer cells, it is suggested that the HIF-1 induced increased expression of PDKs can inhibit the function 
of pyruvate dehydrogenase (PDH), which blocks pyruvate entry into the TCA cycle and promotes lactate production. 
Since HIF-1 also promotes the expression of LDHA, an important subunit of LDH necessary for lactate biosynthesis from 
pyruvate, it is thought to be crucial in cancers affecting terminal lactate levels[55] (Figure 2). Therefore, HIF-1 plays a 
significant role in the Warburg effect, which may have implications for cancer diagnosis and treatment. While the precise 
molecular mechanism behind the Warburg effect remains to be elucidated, the involvement of HIF-1 is clear. 
Understanding the interplay between HIF-1, glycolysis, and OXPHOS in cancer cells may lead to the development of 
novel cancer therapies that target both pathways.
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Figure 2 The complex interplay between glycolysis and oxidative phosphorylation in cancer cells. This figure highlights the signaling networks and metabolic regulation in both Warburg-like and oxidative cancer cells. p53 induces 
PTEN and represses PI3K activity, which inhibits glycolysis and opposes the Warburg effect. Hypoxia and the subsequent activation of hypoxia-inducible factor 1 (HIF-1) play a crucial role in modulating various aspects of cancer cell metabolism, 
including glycolysis, lactate production, and the tricarboxylic acid (TCA) cycle. Hypoxia counteracts the degradation of HIF-1 by prolyl hydroxylases and von Hippel-Lindau, which stabilizes and activates HIF-1. HIF-1 then transcriptionally activates genes 
such as hexokinase, phosphofructokinase-1, aldolase A, PGK1, PGAM1, ENO1, and LDHA, as indicated by the red arrows. During glycolysis, excessive lactate can be exported to the extracellular environment, leading to microenvironmental changes 
such as a lower pH. Intracellular lactate can also be transferred to adjacent cells and re-converted to pyruvate, which can enter the TCA cycle and drive oxidative phosphorylation in oxidative cancer cells. GLUT: Glucose transporter; HK: Hexokinase; 
G6P: Glucose-6-phosphate; G6PI: Glucose-6-phosphate isomerase; F6P: Fructose-6-phosphate; NADPH: Nicotinamide adenine dinucleotide phosphate; PFK1: Phosphofructokinase-1; F2,6BP: Fructose-2,6-bisphosphate; PFKBP3: Fructose-2,6-
biphosphatase 3; F1,6BP: Fructose-1,6-bisphosphate; G3P: Glyceraldehyde-3-phosphate; DHAP: Dihydroxyacetone phosphate; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase; 1,3BPG: 1,3-bisphosphoglycerate; 3PG: 3-phosphoglycerate; PGK: 
Phosphoglycerate kinase; PGAM: Phosphoglycerate mutase; 2PG: 2-phosphoglycerate; ENO: Enolase; PEP: Phosphoenolpyruvate; PKM1/2: Pyruvate kinase isozyme M1/M2; LDH: Lactate dehydrogenase; MCT: Monocarboxylate transporter family; 
PDH: Pyruvate dehydrogenase; IDH: Isocitrate dehydrogenase; α-KG: α-ketoglutarate; OAA: Oxaloacetate; SDH: Succinate dehydrogenase; FH: Fumarate hydratase; I: Mitochondrial complex I; II: Mitochondrial complex II; III: Mitochondrial complex III; 
IV: Mitochondrial complex IV; V: Mitochondrial complex V; Q: Co-enzyme Q; cyto C: Cytochrome c; HIF-1: Hypoxia-inducible factor 1; PHD: Prolyl hydroxylases; VHL: Von Hippel-Lindau.
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The concept of lactate as a metabolic waste product has been revised with the latest findings in lactate metabolism and 
transport. It is now known that lactate can serve as an alternative fuel for certain types of cells, including cancer cells[56,
57]. In cancer, the excess lactate is transported between the intracellular and extracellular matrix by the monocarboxylate 
transporter family (MCT1-4), which depends on the gradients of the protons and monocarboxylate ions[58,59]. Imported 
extracellular lactate can be converted to pyruvate via LDH primarily composed by the LDHB subunit[60,61]. In oxidative 
cancer cells with a functional TCA cycle and OXPHOS, pyruvate can be further converted to acetyl-CoA through PDH, 
thus linking aerobic glycolysis and OXPHOS[62,63]. It has been demonstrated that HIF-1 and downstream oncometa-
bolite lactate play causal roles in these regulatory events. Therefore, current findings provide a possible explanation for 
the Warburg effect and crosstalk of bioenergetic homeostatic transition between aerobic glycolysis and OXPHOS 
observed in cancer. The importance of lactate in cancer metabolism and its potential as a therapeutic target have been 
recognized by others in the field. Thus, a better understanding of the metabolic pathways and their interactions could 
lead to the development of new strategies for cancer treatment.

THE LINK BETWEEN HYPOXIA-RELATED ENZYMES, BIOENERGETIC CHANGES, AND GI CANCER: A 
GENETIC AND EPIGENETIC PERSPECTIVE
Cancer cells often undergo a metabolic shift characterized by increased glycolysis and decreased mitochondrial 
respiration, a phenomenon known as the Warburg effect. This metabolic reprogramming has been linked to the activity of 
HIF-1 under low-oxygen conditions[64,65]. Genetic and epigenetic alterations in HIF-1 regulatory genes contribute to the 
development of the Warburg effect in cancer. Methylation-induced epigenetic changes can drive transcriptional changes, 
leading to impaired expression of key enzymes involved in bioenergetic homeostasis. Additionally, mutations in nuclear 
and mitochondrial genomes may cause a loss of function or decreased expression of glycolytic/OXPHOS enzymes. 
Therefore, mutations, transcriptional changes, or epigenetic alterations that enhance HIF-1 stability or activity can lead to 
increased aerobic glycolysis, resembling the Warburg effect (Table 1).

Studies have found that alterations in PHD enzymes, which target HIF-1 for degradation, contribute to cancer 
development and progression. Reduced expression or loss-of-function due to PHD2 mutations lead to constitutive 
activation of HIF-1 and have been found to stimulate HCC and CC development and progression in mouse models[66,
67]. In contrast, decreased PHD1-3 expression correlates with increased HIF-1 and vascular endothelial growth factor 
(VEGF) levels, invasive tumor behavior, and poor prognosis in certain GI cancers such as HCC[68], GC[69-71], and CRC
[72]. Interestingly, the opposite effect has been observed in patients with PAC[73]. Another protein involved in HIF-1 
stabilization, VHL, also plays a role in GI cancers. Mutations or promoter methylation within the VHL gene lead to 
increased cytoplasmic HIF-1 levels and an unfavorable prognosis in patients with PAC and CRC[74,75]. However, the 
general status of VHL protein expression in GI cancers remains unclear, with the exception of HCC, whose levels have 
been shown to decrease, and low levels correlate with poor prognosis[76]. Further investigation is needed to determine 
the impact of mutations, genetic, or epigenetic alterations in these hypoxia-associated enzymes on bioenergetic alterations 
in GI cancers, since understanding the mechanisms behind the Warburg effect and the role of HIF-1 regulatory genes 
could potentially provide new therapeutic targets for treating GI cancers.

THE LINK BETWEEN MITOCHONDRIAL AND NUCLEAR GENE EXPRESSION, BIOENERGETIC 
HOMEOSTASIS, AND THE PROGRESSION OF GI CANCERS
Cancer development and progression are often accompanied by changes in cellular metabolism that contribute to tumor 
growth and survival. In addition to genetic and epigenetic alterations in hypoxia-associated regulatory enzymes that 
promote aerobic glycolysis, emerging evidence suggests that changes in nuclear-encoded genes for enzymes and subunits 
involved in OXPHOS and the TCA cycle may also play a role in driving the switch to glycolysis and altering bioenergetic 
homeostasis in cancer. Studies have shown that changes in the expression of key enzymes involved in OXPHOS, such as 
cytochrome c oxidase (COX) and ATP synthase, as well as the TCA cycle enzymes isocitrate dehydrogenase (IDH), 
fumarate hydratase (FH), and succinate dehydrogenase (SDH), may contribute to glycolysis transition and cancer 
progression[77-80]. Furthermore, mutations and copy number alterations in mtDNA have also been identified as 
important factors in the development and progression of GI cancer by altering bioenergetic homeostasis[81]. These 
emerging factors and their potential contribution to the complex mechanisms underlying the progression of GI cancer are 
discussed in more detail in the following sections.

ROLE OF MITOCHONDRIAL-NUCLEAR ENCODED COX SUBUNITS IN BIOENERGETIC CHANGES AND 
PROGRESSION OF GI CANCERS
The COX complex, also known as respiratory chain complex IV, is a multi-subunit enzyme complex, consisting of 14 
subunits, and a vital component of the final step in the mitochondrial ETC responsible for catalyzing the transfer of 
electrons from cytochrome c to oxygen, a crucial step in the process of OXPHOS[82]. Recent studies have shown that 
alterations in the expression of both mtDNA-encoded and nuclear-encoded COX subunits are associated with tumori-



Chu YD et al. Bioenergetic alteration in GI cancers

WJG https://www.wjgnet.com 4505 August 7, 2023 Volume 29 Issue 29

Table 1 Genetic and epigenetic alterations in hypoxia-related enzymes correlated with the development and progression of 
gastrointestinal cancers

Cancer 
type Gene Type of change Consequence Model Ref.

HCC and 
CCA

PHD2 Haplo-deficiency Stabilized HIF-1 and promoted carcinogenesis and progression of HCC/CCA Mice [66,
67]

HCC PHD3 Reduced tumor level Correlated with elevated levels of HIF-1, aggressive tumor behavior, and a poor 
prognosis in HCC patients

HCC 
patient

[68]

GC PHD3 Reduced tumor level Correlated negatively with tumor size and stage, as well as HIF-1 and VEGF 
expression

GC 
patient

[69,
70]

GC PHD2 Reduced tumor level Correlated with shortened overall survival GC 
patient

[71]

CRC PHD1-
3

Reduced tumor level Although not correlated with HIF-1 expression, PHD2 was the only factor found to 
be associated with unfavorable overall survival

CRC 
patient

[72]

PAC PHD1-
3

Increased tumor level PHD1-3 expression was elevated, and specifically PHD3 expression was found to 
be associated with unfavorable overall disease-specific survival

PAC 
patient

[73]

PAC VHL Promoter methylation or 
deletion of VHL

Correlated with decreased VHL expression and poor prognosis PAC 
patient

[74]

CRC VHL VHL mutation Elevated cytoplasmic expression of HIF-1 in tumors CRC 
patient

[75]

HCC VHL Reduced tumor level Negative VHL expression was correlated with an unfavorable prognosis HCC 
patient

[76]

ESCA: Esophageal cancer; GC: Gastric cancer; HCC: Hepatocellular carcinoma; CCA: Cholangiocarcinoma; PAC: Pancreatic cancer; CRC: Colorectal 
cancer; PHD: Prolyl hydroxylase; VHL: Von Hippel-Lindau tumor suppressor.

genesis, cancer progression, and bioenergetic homeostasis in cancer. In GI cancers, alterations in the expression of the 
mitochondrial-nuclear encoded subunits of the COX complex have been implicated in driving disease progression. 
Studies have shown that the overall levels of the COX complex are increased in GI cancers, and higher levels have been 
associated with poor clinical outcomes[83,84]. Of the three mtDNA-encoded core subunits essential for the basic functions 
of the COX complex, including MTCO1, MTCO2, and MTCO3[85], MTCO1 is the most frequently investigated in GI 
cancers (Table 2). In ESCA, MTCO1 expression was found to be elevated but did not correlate with clinicopathological 
variables or survival[86]. On the other hand, elevated levels of MTCO1 were associated with diffuse GC types, suggesting 
a link between MTCO1 expression and GC carcinogenesis, de-differentiation, and distant metastasis[87,88]. In contrast, 
defective MTCO1 expression was observed in patients with HCC and CCA, while MTCO1 levels have been shown to 
predict postoperative survival in patients with HCC[89,90]. Elevated MTCO3 levels have been observed only in HCC, 
especially among patients with hepatitis B virus (HBV)-related HCC. This is likely due to the ability of the HBV X protein 
(HBx) to interact and increase MTCO3 expression[91,92]. Additionally, genetic variants identified within MTCO1 and 
MTCO3 are associated with increased carcinogenic risk in CRC[93,94], GC[95], and HCC[96], possibly due to reduced 
COX activity leading to intrinsic proton leak and a reduction in overall bioenergetic production efficiency[93,94]. 
However, studies on the expression or genetic variation of MTCO2 in GI cancers are relatively few and need further 
investigation.

While the three core mtDNA-encoded COX subunits have been extensively studied, 11 nuclear-encoded protein 
subunits are also required for the full functionality of the COX complex[97]. Of these 11 subunits, six can be replaced by 
isoforms, leading to heterogeneity in the composition and activity of this large complex[98]. In GI cancers, altered 
expression of nuclear-encoded COX subunits has been shown to play a crucial role in the switch to glycolysis and the 
promotion of tumor growth and progression (Table 2). For example, in ESCA, the silencing of COX4I1 and COX5B has 
been shown to promote bioenergetic changes and increased aggressiveness of ESCA cells in vitro[99]. In HCC and CRC, 
COX5B levels were found to correlate with prognosis, and changes in COX5B expression were associated with alterations 
in bioenergetics, cell proliferation, tumor growth, migration, and chemosensitivity. HCC and CRC, however, showed 
different COX5B expression patterns[100-102]. Similarly in CRC, increased COX4I2 has been shown to promote cell prolif-
eration, migration, tumorigenesis, and angiogenesis[103]. COX6C and COX6B2 were also found to be increased in PAC, 
with changes in expression levels of COX6C affecting COX activity and cell growth in vitro. Meanwhile, COX6B2 levels 
were associated with prognosis, metastatic potential in PAC cells, and altered bioenergetic homeostasis[104,105].

The roles of remaining subunits in GI cancer are currently unknown, and studies focusing on the level of nuclear-
encoded COX subunit in GI cancer largely suggest that altered expression leads to decreased OXPHOS activity in a 
Warburg effect-like phenotype. Increased GI cancer growth and/or progression is also suggested. Together, these 
findings highlight the crucial role COX subunits play in GI cancer progression and underscore the need for continued 
research. The identification of altered COX subunit expression and function may lead to the development of novel 
therapeutic targets for the treatment of GI cancers. Therefore, further research on the COX complex and its subunits is 
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Table 2 Defects in cytochrome c oxidase subunits correlated with bioenergetic alterations and the growth or progression of 
gastrointestinal cancers

Type Gene Type of defect Consequence Model Ref.

GC Full COX complex Increased expression Correlated with poor prognosis GC patient [83]

CRC Full COX complex Increased expression May be involved in the initiation of carcino-
genesis, but not in cancer progression

CRC patient [84]

ESCA MTCO1 Increased expression There is no correlation with clinical variables or 
survival

ESCA patient [86]

GC MTCO1 Increased expression Correlated with gastric tumorigenesis, de-
differentiation, and distant metastasis, but 
showed no significant correlation with 
prognosis

GC patient [87,88]

HCC MTCO1 Reduced expression Correlated with postoperative prognosis HCC patient [89]

CCA MTCO1 Reduced expression Reduced MTCO1 correlates with increased 
VDAC1 expression but not with other 
clinicopathological factors

CCA patient [90]

HCC MTCO3 Increased expression HBx interacted with MTCO3, leading to an 
increase in MTCO3 expression levels and an 
enhancement in OXPHOS activity

Cell line [91,92]

CRC MTCO1 Genetic variation The Gly125Asp substitution in MTCO1 
correlated with an increased risk of CRC and 
caused proton leak in COX

CRC patient [93,94]

GC MTCO3 Genetic variation Polymorphisms at mtDNA positions 9540 and 
9548 correlated with an increased risk of GC

GC patient [95]

HCC MTCO3 Genetic variation Polymorphisms at mtDNA position 9545 
correlated with an increased risk of HCC

HCC patient [96]

ESCA COX4I1 Expression silenced Promotes alterations in cellular bioenergetics 
and increases cancer cell aggressiveness

ESCA Cell line [99]

ESCA COX5B Expression silenced Promotes alterations in cellular bioenergetics 
and increases cancer cell aggressiveness

ESCA Cell line [99]

HCC COX5B Increased in tumor Correlated with prognosis, regulated 
bioenergetic alterations, and influenced cell 
proliferation, tumor growth, and migration

HCC patient, cell line, 
mouse model

[100]

CRC COX5B Reduced in tumor Correlated with prognosis, modulated COX 
activity, and controlled cell proliferation, 
apoptosis, and response to chemotherapy

CRC patient and cell 
line

[101,102]

CRC COX4I2 Increased in tumor Promoted cell proliferation, migration, tumori-
genesis, and angiogenesis

CRC patient and cell 
line

[103]

PAC COX6C Increased expression Modulated COX activity and cell proliferation PAC cell line [104]

PAC COX6B2 Increased in tumor Correlated with prognosis, and modulated 
cancer cell metastatic potential, and altered 
bioenergetic homeostasis

PCA patient and cell 
line

[105]

COX: Cytochrome c oxidase; GI: Gastrointestinal; ESCA: Esophageal cancer; GC: Gastric cancer; HCC: Hepatocellular carcinoma; CCA: 
Cholangiocarcinoma; PAC: Pancreatic cancer; CRC: Colorectal cancer; MTCO1: Mitochondrially encoded cytochrome c oxidase I; MTCO2: Mitochondrially 
encoded cytochrome c oxidase II; MTCO3: Mitochondrially encoded cytochrome c oxidase III; COX4I1: Cytochrome c oxidase subunit 4I1; COX4I2: 
Cytochrome c oxidase subunit 4I2; COX5B: Cytochrome c oxidase subunit 5B; COX6C: Cytochrome c oxidase subunit 6C; COX6B2: Cytochrome c oxidase 
subunit 6B2.

needed to fully elucidate their role in GI cancer.

THE ROLE OF ATP SYNTHASE SUBUNITS IN DRIVING BIOENERGETIC CHANGES AND GI CANCER 
PROGRESSION
ATP synthase, also known as Complex V, is a crucial mitochondrial protein complex that plays a vital role in cellular ATP 
synthesis. The F1 beta-catalytic subunit (ATP5F1B) is a critical component that has been extensively studied to find a 
significant reduction in various cancer types, including GI cancers[106] (Table 3). However, the expression patterns of 
ATP5F1B in patients with GC remain controversial. While one study reported increased ATP5F1B expression in tumors, 
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Table 3 Implications of defects in adenosine triphosphate synthase subunits on bioenergetic alterations and the development or 
progression of gastrointestinal cancer

Type Gene Type of defect Consequence Model Ref.

GC ATP5F1B Increased in tumor Higher ATP5B expression correlated with poor prognosis. 
Over-expression of ATP5F1B increased intracellular and 
extracellular ATP levels, cell proliferation, migration, and 
invasion

GC patient, cell line, and 
xeno-transplantation mouse 
model

[107]

GC ATP5F1B Reduced in tumor Reduced ATP5F1B expression correlated with elevated 
glycolytic enzyme levels

GC patient [108]

HCC ATP5F1B Reduced in tumor Reduced ATP5F1B expression correlated with impaired 
OXPHOS

HCC patient [109,
110]

ESCA ATP5F1B Reduced in tumor Reduced ATP5F1B expression correlated with elevated 
glycolytic enzyme levels

ESCA patient [108]

CRC ATP5F1B Reduced in tumor Reduced ATP5F1B expression correlated with poor prognosis 
in CRC patients

CRC patient [109]

PAC ATP5F1B Reduced in tumor Unknown PAC patient and cell line [111]

CRC ATP5F1A Increased in liver 
metastasized tumor

Silencing of ATP5F1A inhibited cell invasion and reduced cell 
proliferation in CRC cancer cells

CRC patient and cell line [112]

CRC ATP5F1E Increased in tumor Higher ATP5E levels correlated with poor prognosis. 
Silencing of ATP5F1E inhibited cancer cell migration and 
invasion in vitro, and distal metastasis in vivo

CRC patient, cell line, and tail 
vein injected mouse model

[113]

CRC ATP5F1D Increased in liver 
metastasized tumor

Higher ATP5F1D expression correlated with poor prognosis, 
and silencing of ATP5F1D inhibited cell invasion

CRC patient and cell line [112]

ATP: Adenosine triphosphate; GI: Gastrointestinal; ESCA: Esophageal cancer; GC: Gastric cancer; HCC: Hepatocellular carcinoma; CCA: 
Cholangiocarcinoma; PAC: Pancreatic cancer; CRC: Colorectal cancer; ATP5F1A: ATP synthase F1 subunit alpha; ATP5F1B: ATP synthase F1 subunit beta; 
ATP5F1D: ATP synthase F1 subunit delta; ATP5F1E: ATP synthase F1 subunit epsilon.

correlating with poor prognosis[107], consistent findings from other GI cancer studies indicate that decreased ATP5F1B 
expression results in reduced ATP production efficiency from OXPHOS and a subsequent shift towards the glycolysis-
dependent Warburg effect phenotype[108-111]. These findings highlight the critical role of ATP synthase in GI cancer 
progression, suggesting that mitochondrial defects in ATP synthesis may contribute to the bioenergetic alterations 
observed in these cancers.

Apart from the F1 beta-subunit, other subunits of the ATP synthase F1 region have been implicated as crucial to CRC 
carcinogenesis/progression. Interestingly, in contrast to the finding that ATP5F1B generally decreases in tumors, 
ATP5F1A, ATP5F1E, and ATP5F1D were found to be increased in patients with CRC. Moreover, higher levels correlated 
with poorer prognosis as well as increased risk of CRC liver metastasis[112,113]. Currently, there are no reports on the 
expression patterns or role of ATP synthase subunits in CCA. The mechanisms underlying opposing expression patterns 
in ATP synthase subunits are thus unknown pending further investigation.

To provide more insight into the development of novel therapeutic targets for the treatment of GI cancers, further 
research on ATP synthase expression and function is necessary. In this regard, potential avenues of research may focus on 
clarifying the controversial findings regarding ATP5F1B expression patterns in GC and elucidating the mechanisms 
underlying these opposing expression patterns seen in differing ATP synthase subunits in CRC. Such research may 
uncover novel therapeutic targets, leading to improved treatment outcomes.

LINKING IDH, FH, AND SDH TO BIOENERGETICS AND GI CANCER PROGRESSION
Fumarate and succinate are critical metabolites that are produced during the TCA cycle, which is an essential process for 
energy production in cells. While these metabolites are important for normal cellular function, they have been shown to 
act as oncometabolites in various types of cancer by inducing pseudohypoxia[114]. Specifically, aberrant fumarate and 
succinate accumulation resulting from mutations or abnormal expression in FH and SDH, respectively, can impede the 
production of α-ketoglutarate in the TCA cycle, which is a key substrate in tumor suppression pathways. Similarly, 
mutations in IDH enzymes, which are responsible for α-ketoglutarate synthesis, can directly reduce the levels of α-
ketoglutarate. This reduction in α-ketoglutarate can limit the availability of substrate for the hydroxylation of HIF-1 by 
PHDs for subsequent degradation by the proteasome. Consequently, stabilized HIFs activate the transcription of genes 
involved in cancer-related processes such as angiogenesis, glucose metabolism, and cell proliferation, thereby promoting 
cancer development and progression[114].

In addition to their effects on HIFs, high levels of fumarate and succinate have been shown to cause abnormal 
methylation of DNA and histones, leading to dysregulation of gene expression and cell function. This is due to 
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attenuation of enzymes responsible for DNA and histone demethylation such as tet-eleven translocation methyl-cytosine 
dioxygenase (TET) and lysine demethylase (KDM, also known as the Jumonji C domain-containing histone demethylase, 
JHDM)). Dysregulation of gene expression, increased carcinogenicity, and cancer progression can result from decreased α
-ketoglutarate under high fumarate and succinate levels[115,116] (Figure 3).

The FH and SDH enzymes responsible for the catabolism of fumarate and succinate have been implicated as tumor 
suppressors[117]. Genetic variants in FH or SDH complex subunits, including SDHA, SDHB, SDHC, and SDHD, have 
been associated with increased risk of certain cancers such as hereditary leiomyomatosis and renal cell cancer (HLRCC)
[118,119] as well as paraganglioma and pheochromocytoma[120-123]. Although there is limited evidence involving 
genetic mutants of FH or SDH complex subunit genes in GI cancer, an unusual mutation of the FH gene was found to be 
associated with the development of gastric leiomyoma following cutaneous and uterine leiomyomatosis[124]. Except for 
loss-of-function mutations, some researchers have revealed FH and SDH complex subunit gene single nucleotide 
polymorphisms (SNP) in patients with HCC and CRC[125,126]. Interestingly, FH was found to be downregulated in HCC 
patients with portal vein thrombosis due to currently unknown underlying mechanisms[127]. However, the role of FH 
and SDH in GI cancer remains largely unknown. Further investigation is thus necessary.

Understanding the role of oncometabolites in GI cancer could provide valuable insights into the development of novel 
therapeutic targets for the treatment of these cancers. Further research should be conducted to investigate the potential 
roles of FH and SDH in the development and progression of GI cancer and explore the possible therapeutic targets 
associated with the regulation of these enzymes. By gaining a better understanding of oncometabolites in GI cancer, we 
may be able to develop more effective therapies and improve patient outcome.

EXPLORING BIOENERGETIC REGULATORS AS TARGETS FOR GI CANCER THERAPY
Our current understanding of metabolic reprogramming and bioenergetic alterations in cancer has led to the emergence 
of several potential drugs that target the bioenergetics of cancer cells, offering a promising avenue for anti-cancer therapy. 
These drugs can be classified into two main categories based on their mode of action: targeting aerobic glycolysis/lactate 
biosynthesis and transportation, or targeting the TCA cycle and coupled OXPHOS (Figure 4).

To target aerobic glycolysis, several strategies have been developed including blocking glucose import by targeting 
GLUT1, reducing glycolysis activity by targeting hexokinase 2 (HK2), PKMFB3, and PKM2, inhibiting lactate biosynthesis 
by targeting LDHA and PDK, and blocking lactate transportation through targeting MCT1/2. Targeting the TCA cycle 
and OXPHOS involves PDH and mitochondrial complex inhibitors. Several bioenergetic-targeted drugs have provided 
pre-clinical or clinical evidence in treating GI cancers. Table 4 provides a summary of these drugs. In the following 
sections, we will discuss the details of such strategies and the drugs used to target bioenergetic regulators during GI 
cancer therapy.

UNLOCKING THE POTENTIAL OF GLUCOSE METABOLISM TARGETS IN GI CANCER THERAPY
Cancer cells typically rely on increased glucose uptake, a phenomenon known as the Warburg effect, to meet energy 
requirements, making glucose uptake a promising target for anti-cancer therapy. As a result, GLUT1 has been identified 
as a potential drug target for blocking glucose uptake. Several GLUT1 inhibitors, including genistein, apigenin, fasentin, 
WZB117, WZB27, WZB115, STF-31, and BAY-876 have shown an ability to block glucose uptake[14]. Genistein and 
apigenin are natural compounds belonging to the flavonoid group, and they have been shown to inhibit hypoxia-
inducible factor 1A (HIF1A) mRNA and protein expression, which leads to inactivation of downstream genes such as 
GLUT1 and HK2, thereby attenuating glycolysis activity[128-130]. In GI cancers, these compounds have demonstrated the 
ability to inhibit cancer cell proliferation, cell cycle progression, colony formation, migration, invasion, angiogenesis, 
stemness, spheroid formation, EMT, and to enhance cell death[131-146]. Although the majority of evidence pertaining to 
efficacy comes from in vitro cell-based assays, genistein and apigenin have entered clinical trials as a combination anti-
cancer therapy for patients with CRC (NCT10985763 and NCT00609310) and PAC (NCT02336087, NCT00376948 and 
NCT00882765). Moreover, dietary supplementation with apigenin has been shown to significantly prevent CRC 
recurrence in a prospective study[147]. Fasentin, WZB117, WZB27, WZB115, STF-31, and BAY-876 are synthetic chemicals 
with selective activity on GLUT1 inhibition. Fasentin, WZB27, and WZB115 have shown anti-cancer potential in other 
pre-clinical cancer models, although there is currently little to no research on GI cancers. WZB117 has been shown to 
reduce glucose uptake, inhibit cell proliferation/invasion, and enhance chemosensitivity in GI cancer cell lines, as well as 
in xenograft models[148-151]. STF-31 has been implicated in reducing cancer stem cell stemness, cell proliferation, 
viability, and tumor growth in PAC and CRC cell lines, as well as in xenograft models[152,153]. BAY-876 has been found 
to inhibit cell proliferation, tumor growth, glucose uptake, and promote chemosensitivity in ESCA, PCA, and CRC cell 
lines, and in xenograft mouse models[154-156]. Although these findings are promising, WZB117, STF-31, and BAY-876 
are not currently in clinical trials for GI cancer. Thus, their safety, dosage, and therapeutic response in GI cancer patients 
remain to be determined in future studies.

Another strategy to block glycolysis is by targeting glycolytic enzymes or attenuating glycolytic activity. A well-
studied example of this strategy is the use of 2-deoxy-D-glucose (2-DG), a glucose molecule with a 2-hydroxyl group 
replaced by hydrogen. 2-DG is taken up by cells with high glucose uptake ability, such as cancer cells, where it serves as a 
competitive inhibitor of glucose[157]. Once inside the cell, 2-DG enters the glycolytic pathway and is phosphorylated by 
HK2 to become 2-DG-6-phosphate (2-DG-6-P), which cannot be further processed by G6P isomerase and therefore 
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Figure 3 Tricarboxylic acid cycle dysfunction in cancer and its role in carcinogenesis, progression, and anti-cancer drug resistance. The 
left panel depicts the tricarboxylic acid cycle, with succinate dehydrogenase and fumarate hydratase as key regulatory enzymes responsible for the formation of 
oncometabolites succinate and fumarate. The isocitrate dehydrogenase enzyme synthesizes α-ketoglutarate, which serves as a substrate for tumor suppressor 
pathways, such as hypoxia-inducible factor 1 hydroxylation for degradation, as well as histone and DNA demethylation. These processes can lead to pseudohypoxia 
and aberrant gene expression, promoting carcinogenesis, progression, and anti-cancer drug resistance. The right panel provides a summary of these relationships. 
OAA: Oxaloacetate; SDH: Succinate dehydrogenase; FH: Fumarate hydratase; PDH: Pyruvate dehydrogenase; IDH: Isocitrate dehydrogenase; α-KG: α-
ketoglutarate; HIF-1: Hypoxia-inducible factor 1.

accumulates. Accumulated 2-DG-6-P reversely negatively inhibits HK2 activity, leading to a reduction in glycolytic 
activity. A derivative of 2-DG, fluorodeoxyglucose (18F-FDG), has been extensively employed in positron emission 
tomography (PET) to visualize the location and status of certain types of cancers[158]. In pre-clinical studies using GI 
cancer cell lines, as well as xenograft models and rat HCC and hamster PAC models, 2-DG has been shown to inhibit cell 
proliferation, tumor growth, and promote chemosensitivity[159-165]. Although 2-DG has entered clinical trials for other 
cancer types, only a phase I trial (NCT00096707) was conducted for patients with PAC, and the safety, dose, and efficacy 
of 2-DG in treating patients with other GI cancers are unknown.

Several other chemical drugs have been claimed to inhibit HK2 function, but their roles in GI cancers are unclear, with 
the exception of 3-bromopyruvate (3-BrPA) and lonidamine (LND). 3-BrPA is an analog of both lactate and pyruvate and 
shows an inhibitory effect on HK2, possibly due to its ability to induce protein alkylation[166,167]. In pre-clinical studies 
of GI cancers, 3-BrPA has shown its ability to inhibit cellular ATP generation, cell proliferation, tumor growth, induce 
mitochondrial depolarization, reduce animal serum VEGF levels, and promote cell death and chemosensitivity in GC, 
HCC, PAC, and CRC cell lines, as well as rabbit, transgenic mice, and xenograft mouse models[167-171]. Therapeutic 
efficacy and safety were only evaluated in a case report study, providing a safe and tolerable dose of 3-BrPA in patients 
with fibrolamellar HCC[172].

LND is an indazole derivative that was previously utilized as an anti-spermatogenic agent. In drug re-purposing 
studies, LND was found to have anti-cancer activity by affecting bioenergetic homeostasis, including the glycolytic 
pathway, through targeting HK2 via currently unclear mechanisms[173]. LND showed promising therapeutic efficacy by 
inhibiting cell proliferation, migration, invasion, cell cycle progression, and increasing chemosensitivity in HCC, CCA, 
and CRC cell lines, as well as in a hamster CCA model[174-179]. Encouraging results were observed in a clinical trial 
recruiting patients with GC, showing improved overall response rate and duration of disease progression[174]. Reversely, 
it was reported that administration of LND was ineffective and toxic in clinical trials recruiting patients with CRC[178,
179].

Targeting PFKFB3 is another approach to block cancer glycolysis, as it is considered an oncogene in cancers due to its 
high expression and role in glycolysis[180]. PFKFB3 is activated by multiple cancer-associated stimuli, including 
cytokines, chemokines, growth factors, and hypoxia, and then participates in glycolysis through catalyzing fructose-6-P to 
become F2,6BP, which can further positively enhance PFK1 activity and thus accelerate glycolysis[180]. Accordingly, 
PFKFB3 drugs have been identified and tested in pre-clinical and clinical studies. Among the list of candidate drugs that 
target PFKFB3, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one 
(PFK15), and 1-pyridin-4-yl-3-[7-(trifluoromethyl)-quinolin-2-yl]-prop-2-en-1-one (PFK158) have drawn more attention 
than others[181]. It was found that 3PO and PFK15 inhibit cell proliferation, reduce tumor growth, attenuate angio-
genesis, prevent fibrogenesis, and increase cell death in pre-clinical studies using GI cancer cell lines, transgenic mice, 
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Figure 4 Potent bioenergetic-targeting drugs for gastrointestinal cancers. Promising bioenergetic drugs for gastrointestinal cancers can be classified 
into two main categories based on their mode of action. The first category involves targeting aerobic glycolysis and lactate biosynthesis/transportation, while the 
second category involves targeting the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Strategies to target aerobic glycolysis include 
blocking glucose importation through the targeting of glucose transporter 1 with compounds such as genistein, apigenin, WZB117, STF-31, and BAY-876, reducing 
glycolysis activity by targeting HK2 with compounds such as 2-DG, 3-BrPA, and LND, and targeting PKMFB3 and PKM2 with compounds such as 3PO, PFK15, 
PFK158, shikonin, and TT-232. Lactate biosynthesis can be inhibited by targeting LDHA with compounds such as compound 24c, PSTMB, oxamate, galloflavin, 
FX11, and AT-101, and PDK with DCA. Lactate transportation can be blocked by targeting MCT1/2 with compounds such as AZD3965 and AR-C155858. Targeting 
the TCA cycle and OXPHOS involves using inhibitors of pyruvate dehydrogenase, such as CPI-613, and mitochondrial complex I with metformin, tamoxifen, IM156, 
IACS-010759, and complex III with atovaquone. GLUT: Glucose transporter; HK: Hexokinase; G6P: Glucose-6-phosphate; G6PI: Glucose-6-phosphate isomerase; 
F6P: Fructose-6-phosphate; NADPH: Nicotinamide adenine dinucleotide phosphate; PFK1: Phosphofructokinase-1; F2,6BP: Fructose-2,6-bisphosphate; PFKBP3: 
Fructose-2,6-biphosphatase 3; F1,6BP: Fructose-1,6-bisphosphate; G3P: Glyceraldehyde-3-phosphate; DHAP: Dihydroxyacetone phosphate; GAPDH: 
Glyceraldehyde 3-phosphate dehydrogenase; 1,3BPG: 1,3-bisphosphoglycerate; 3PG: 3-phosphoglycerate; PGK: Phosphoglycerate kinase; PGAM: 
Phosphoglycerate mutase; 2PG: 2-phosphoglycerate; ENO: Enolase; PEP: Phosphoenolpyruvate; PKM1/2: Pyruvate kinase isozyme M1/M2; LDH: Lactate 
dehydrogenase; MCT: Monocarboxylate transporter family; PDH: Pyruvate dehydrogenase; IDH: Isocitrate dehydrogenase; α-KG: α-ketoglutarate; OAA: 
Oxaloacetate; SDH: Succinate dehydrogenase; FH: Fumarate hydratase; I: Mitochondrial complex I; II: Mitochondrial complex II; III: Mitochondrial complex III; IV: 
Mitochondrial complex IV; V: Mitochondrial complex V; Q: Co-enzyme Q; cyto C: Cytochrome c; KGDHC: α-ketoglutarate dehydrogenase complex.

xenograft mouse models, and HCC rat models[182-189]. Intriguingly, it was also found that 3PO suppresses glucose 
uptake via a 14C-2-DG tracing system[184]. Although there is no pre-clinical evidence of efficacy in GI cancers, the safety, 
tolerated dose, and therapeutic efficacy of PKF158 have been evaluated in a Phase I clinical trial (NCT02044861) that 
involved patients with solid tumors[190].

One strategy proposed to inhibit glycolysis activity is to target the last enzyme in the glycolytic pathway –PKM2. 
PKM2 targeting is based on its glycolysis role as well as aberrant expression in cancer-associated events[191]. While many 
drugs have shown the ability to inhibit PKM activity, only two, TT-232 and Shikonin, have been confirmed efficacious in 
pre-clinical studies. Both TT-232 and Shikonin have been found to inhibit GI cancer cell proliferation, migration, invasion, 
cell cycle progression, and tumor growth, as well as enhance cell death[192-200]. However, the efficacy of these drugs in 
treating GI cancers is still unclear and requires further investigation. Both drugs have entered clinical trials for specific 
cancers, showing promise as cancer therapy targets.
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Table 4 Promising novel bioenergetics targeting drugs for gastrointestinal cancer therapy

Inhibitor Target GI model Consequence Clinical trial Ref.
Targeting glucose transportation

Genistein HIF1A, 
GLUT1 and 
HK2

GC, ESCA, HCC, 
CCA, PCA, and 
CRC cell lines

Inhibited cancer cell proliferation, cell cycle 
progression, migration, invasion, 
angiogenesis, stemness, spheroid 
formation, EMT, and promoted apoptosis

CRC patient, phase I/II (NCT10985763), 
and PAC patient, phase I/II 
(NCT02336087, NCT00376948 and 
NCT00882765)

[131-
140]

Apigenin HIF1A, 
GLUT1 and 
HK2

GC, ESCA, HCC, 
CCA, PCA, and 
CRC cell lines

Inhibited cancer cell proliferation, colony-
forming, cell cycle progression, migration, 
invasion, angiogenesis, and induced 
apoptosis

CRC patient, phase II (NCT00609310) [141-
146]

WZB117 GLUT1 HCC, CCA, 
PAC, and CRC 
cell lines, and 
xenograft 
models

Reduced glucose uptake, inhibits cell prolif-
eration, and invasion, and enhanced 
chemosensitivity

None in GI cancers [148-
151]

STF-31 GLUT1 PAC and CRC 
cell lines, and 
xenograft model

Reduced cancer stem cell properties, such 
as stemness, and inhibits cell proliferation, 
viability, and tumor growth

None in GI cancers [152,
153]

BAY-876 GLUT1 ESCA, PCA, and 
CRC cell lines, 
and xenograft 
mouse models

Reduced cancer cell proliferation, tumor 
growth, and glucose uptake, while also 
increased chemosensitivity

None in GI cancers [154-
156]

Targeting glucose metabolism

2-Deoxy-D-glucose 
(2-DG)

HK2 GC, ESCA, HCC, 
PAC and CRC 
cell lines, 
xenograft 
models, and rat 
HCC and 
hamster PAC 
models

Inhibited cell proliferation, tumor growth, 
and promoted chemosensitivity

PAC patient, phase I (NCT00096707) [159-
165]

3-Bromopyruvate (3-
BrPA)

HK2 GC, HCC, PCA, 
and CRC cell 
lines, and rabbit, 
transgenic 
mouse and 
xenograft mouse 
models

Inhibited cellular ATP generation, cell 
proliferation, and tumor growth. Also 
induced mitochondrial depolarization, 
reduced animal serum VEGF levels, and 
promoted cell death and chemosensitivity

HCC patient, case report[170] [167-
170]

Lonidamine (LND) HK2 HCC, CCA, and 
CRC cell lines, 
hamster CCA 
model, and GC 
and CRC 
patients

Inhibited cell proliferation, migration, 
invasion, and cell cycle progression. 
Increased chemosensitivity, patient overall 
response rate, and duration of disease 
progression in GC patients. However, was 
ineffective and toxic in advanced CRC 
patients

GC patient, phase II[172], CRC patients, 
phase II[176,177]

[174-
179]

3-(3-pyridinyl)-1-(4-
pyridinyl)-2-propen-
1-one (3PO)

PFKFB3 HCC, PAC, and 
CRC cell lines, 
and transgenic 
and xenograft 
mouse models

Inhibited glucose uptake, cell proliferation, 
tumor growth, angiogenesis, fibrogenesis, 
and promoted cell death

None in GI cancers [182-
184]

1-(4-pyridinyl)-3-(2-
quinolinyl)-2-propen-
1-one (PFK15)

PFKFB3 GC, HCC, PAC, 
and CRC cell 
lines, xenograft 
models, and 
HCC rat model

Inhibited cell proliferation, migration, 
invasion, cell cycle progression, tumor 
growth, and enhanced cell death

None in GI cancers [185-
189]

1-pyridin-4-yl-3-[7-
(trifluoromethyl)-
quinolin-2-yl]-prop-
2-en-1-one (PFK158)

PFKFB3 None in GI 
cancers

None in GI cancers Solid tumor patients, phase I 
(NCT02044861)

[190]

Shikonin PKM2 GC, ESCA, HCC, 
CCA, PCA, and 
CRC cell lines, 
and xenograft 
mouse models

Inhibited cell proliferation, migration, 
invasion, cell cycle progression, tumor 
growth, and enhanced cell death

None in GI cancers [192-
197]

HCC, PAC, and 
CRC cell lines, 

TT-232 PKM2 Inhibited cell proliferation, tumor growth, 
and enhanced cell death

None in GI cancers [198-
200]
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and xenograft 
mouse models

Targeting lactate biosynthesis

Dichloroacetate 
(DCA)

PDK GC, ESCA, HCC, 
PAC, and CRC 
cell lines, 
xenograft 
models, and 
B6C3F1 mice

Reduced lactate production, cell prolif-
eration, migration, and increased 
chemosensitivity. Showed synergistic anti-
cancer effects in HCC. However, promoted 
hepatocarcinogenesis in B6C3F1 mice

CRC patient, phase I (NCT00566410) [203-
207]

Compound 24c LDHA PAC cell lines, 
and xenograft 
model

Suppressed cell proliferation, colony 
formation, enhanced cell apoptosis, arrested 
cell at G2 phase, repressed xenograft 
growth, and re-programmed cancer 
metabolism, with minimal impact on mouse 
weight

None in GI cancers [210]

1-(Phenylseleno)-4-
(Trifluoromethyl) 
Benzene (PSTMB)

LDHA HCC and CRC 
cell lines

Inhibited cell proliferation, reduced cell 
viability, attenuated LDHA activity, 
lowered lactate levels, and induced 
mitochondria-mediated apoptosis

None in GI cancers [211]

Oxamate LDHA GC, ESCA, HCC, 
PCA, and CRC 
cell lines

Suppressed LDHA activity, lactate 
production, cell proliferation, migration, 
MMP9 expression, pro-inflammatory 
cytokines, EMT transition, and 
AKT/ERK/mTOR signaling pathways, 
while enhanced apoptosis, senescence, 
protective autophagy, and metabolic 
rewiring

None in GI cancers [212-
218]

Galloflavin LDHA HCC, PCA, and 
CRC cell lines

Reduced ATPase activity and expression 
levels of heat shock proteins, inhibited cell 
proliferation, lactate production, pro-
inflammatory cytokines, and EMT 
transition, while promoting apoptosis and 
senescence

None in GI cancers [215,
218-
220]

FX11 LDHA HCC, PCA, and 
CRC cell lines, 
and xenograft 
mouse models

FX11 reduced lactate production and ATP 
levels, suppressed cell proliferation, 
migration, invasion, and xenograft tumor 
growth, while enhancing apoptosis. 
However, in a PCA patient-derived mouse 
xenograft model, FX11 was only effective in 
attenuating tumor growth in the presence 
of mutant TP53

None in GI cancers [221-
225]

Gossypol (AT-101) or 
its derivatives

LDHA GC, ESCA, HCC, 
PAC and CRC 
cell lines, GC 
and xenograft 
mouse models, 
and ESCA 
patient

Reduced cell viability, suppressed cell 
proliferation, migration, and tumor growth, 
down-regulated cancer stem cell markers 
CD133, Nanog, LC3, and YAP-1, enhanced 
apoptosis, protective autophagy. and 
complete response rate/prognosis

ESCA patient, phase I/II (NCT00561197) [226-
240]

Targeting lactate transportation

AZD3965 MCT1/2 GC, ESCA, HCC, 
CRC cell lines

Inhibited cell proliferation and tumor 
growth, while increasing intracellular 
lactate concentration, TCA-related 
metabolites, mitochondrial metabolism, and 
chemosensitivity. Also decreased 
intracellular pH

None in GI cancers [242-
246]

AR-C155858 MCT1/2 GC, PAC, and 
CRC cell lines, 
and xenograft 
mouse models

Inhibited cell proliferation, spheroid 
forming ability, and tumor growth, while 
decreased glycolysis and increased 
intracellular lactate concentration, TCA-
related metabolites, mitochondrial 
metabolism, and chemosensitivity

None in GI cancers [247-
249]

Targeting mitochondrial OXPHOS

Metformin Mitochondrial 
complex I

GC, ESCA, HCC, 
CCA, PAC, and 
CRC cell lines, 
xenograft 
models, and 
ESCA, HCC, 
CCA, PCA and 
CRC patients

Suppressed cell proliferation, migration, 
cell cycle progression, and tumor growth 
while increasing chemosensitivity and cell 
death. Also re-programmed the tumor 
immune microenvironment in ESCA 
patients

ESCA patient, phase II (ChiCTR-ICR-
15005940), HCC patient, phase I 
(CTRI/2018/07/014865), CCA patient, 
phase Ib (NCT0249674), PCA patient, 
phase II (NCT01210911 and 
NCT01167738), and CRC patient, phase 
II (NCT01312467, NCT03047837, and 
NCT01941953)

[252-
265]
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Tamoxifen Mitochondrial 
complex I

GC, ESCA, HCC, 
CCA, PAC and 
CRC cell lines, 
CRC murine 
model, and 
ESCA, HCC and 
PAC patients

Inhibited cell proliferation, tumor growth, 
metastasis, and increased chemosensitivity. 
However, no prolonged survival benefits 
have been observed in HCC patients, and in 
some cases, there may even be a higher risk 
of death

ESCA patient, phase I (NCT02513849), 
PAC patient, phase II[272-274], and HCC 
patient, phase III (NCT00003424)

[267-
273,
277]

IM156 Mitochondrial 
complex I

GC and CRC 
patients

Considered tolerable in human subjects, 
with stable disease being the most common 
response. Combinatorial therapy may be 
necessary for improved efficacy

GC and CRC patients, phase I 
(NCT03272256), and PAC patient, phase 
Ib (NCT05497778)

[278]

IACS-010759 Mitochondrial 
complex I

PAC cell lines, 
and CCA, PAC, 
and CRC 
patients

Reduced cell viability and generally well 
tolerated, but may induce neurotoxicity, 
peripheral neuropathy, and 
behavioral/physiological changes in mice. 
Increased blood lactate levels

CCA, PAC, and CRC patient, phase I 
(NCT03291938)

[279,
280]

Atovaquone Mitochondrial 
complex III

GC, HCC, PAC 
and CRC cell 
lines, and 
xenograft 
models

Reduced OXPHOS, oxygen consumption 
rate, cell viability, cell proliferation, and cell 
cycle progression. Inhibited tumor growth 
and enhanced cell death

None in GI cancers [283-
285]

Targeting TCA cycle

CPI-613 PDH and 
KGDHC

GC, ESCA, PAC 
and CRC cell 
lines, xenograft 
mouse models, 
and GC mouse 
model

Inhibited cell proliferation, cell viability, 
tumor growth, and metastasis, while 
increased cell death and chemosensitivity. 
In PAC patients, also increased the overall 
response rate

PAC patient, phase I (NCT01835041) and 
III (NCT03504423), HCC and CCA 
patients, phase I/II (NCT01766219), and 
CRC patients, phase I (NCT05070104 and 
NCT02232152)

[287-
291]

GI: Gastrointestinal; ESCA: Esophageal cancer; GC: Gastric cancer; HCC: Hepatocellular carcinoma; CCA: Cholangiocarcinoma; PAC: Pancreatic cancer; 
CRC: Colorectal cancer; LDHA: Lactate dehydrogenase subunit A; MCT1/2: Monocarboxylate transporter family 1/2; HIF1A: Hypoxia inducible factor 1A; 
GLUT1: Glucose transporter 1; HK2: Hexokinase 2; PFKFB3: Fructose-2,6-biphosphatase 3; PKM2: Pyruvate kinase isozyme M2; PDK: Pyruvate 
dehydrogenase kinase; PDH: Pyruvate dehydrogenase; KGDHC: Alpha-ketoglutarate dehydrogenase complex; EMT: Epithelial-mesenchymal transition; 
OXPHOS: Oxidative phosphorylation.

EXPLORING LACTATE BIOSYNTHESIS AND TRANSPORT AS A POTENTIAL STRATEGY FOR GI  
CANCER THERAPY
As mentioned above, the Warburg effect is a common phenomenon in many cancers for which glycolysis is upregulated 
even in the presence of oxygen. This results in the accumulation of lactate, which is the last product of glycolysis. The 
PDK class of enzymes play a key role in deciding whether pyruvate is converted to lactate or enters the TCA cycle. Under 
hypoxia, PDKs are transcriptionally upregulated by HIF1A in cancers, promoting the inactivation of PDH through PDK-
mediated phosphorylation. This leads to elevated lactate biosynthesis, resulting in excessive lactate levels that can 
promote carcinogenesis or progression[201]. Therefore, targeting PDKs is a potential strategy to inhibit lactate synthesis. 
Although several candidate drugs that target PDKs have been proposed, dichloroacetate (DCA) has been the most 
convincing inactivator of PDKs[202]. DCA has been shown in numerous pre-clinical studies on GI cancer to reduce lactate 
production, cell proliferation, migration, and increase chemosensitivity[203-207]. It has also shown synergistic anti-cancer 
activity in HCC despite concerns that it may promote hepatic carcinogenesis in B6C3F1 mice[205,208]. Despite promising 
pre-clinical results, clinical studies are still necessary to determine the efficacy and safety of DCA during cancer therapy. 
A clinical trial recruiting patients with CRC has been conducted to evaluate DCA as a potential anti-cancer drug 
(NCT00566410).

In previous studies on lactic acid inhibitors for anti-cancer therapy, the focus has been on inhibiting the enzymes 
responsible for lactate biosynthesis, namely LDH. TLDH complex composition has been investigated as a crucial factor in 
determining the fate of lactate biosynthesis or catabolism, and LDHA homo-tetramer (LDH5 or A4) has been considered 
the most effective complex for lactate biosynthesis. Accordingly, the currently established strategy is to identify LDH 
inhibitors with high selectivity against LDHA[209]. Although many candidates exist, including small peptides, small 
interfering RNAs (siRNAs), small chemical molecules, and natural compounds, only a few have progressed towards 
clinical use in anti-cancer therapy. Compound 24c and 1-(Phenylseleno)-4-(Trifluoromethyl) Benzene (PSTMB) are small 
compounds that have recently been identified as capable of selectively inhibiting LDHA, suppressing cancer cell aggress-
iveness, and enhancing cell death in both PCA cells and xenograft mouse models[210] as well as HCC and CRC cells
[211]. Notably, Compound 24c has little effect on mouse weight, perhaps due to its relatively strong activity to reprogram 
metabolic profiling[210]. In contrast, oxamate, galloflavin, and FX11 have a longer history than Compound 24c and 
PSTMB in targeting LDHA. Pre-clinical evidence shows promise in suppressing GI cancer cell aggressiveness by targeting 
LDHA and other cancer-associated signaling pathways, suggesting possible treatment of GI cancers[212-225]. Despite this 
evidence, there is still a lack of clinical results to support the safety and efficacy of these LDHA-targeting drugs in GI 
cancer patients. An early natural compound, gossypol (AT-101), derived from the cotton plant, is one exception. Gossypol 
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and its derivatives have proven potent inhibitors of LDHA[226]. Gossypol not only reduces the aggressiveness of GI and 
other cancers, but also has a strong cytotoxic effect on cancer cells[226-240]. Most importantly, gossypol has entered a 
phase I/II clinical trial (NCT00561197) to evaluate its safety and efficacy in treating patients with esophageal cancer, 
showing significant improvement in complete response and survival rates[231]. Therefore, gossypol may be the most 
promising clinical drug targeting LDHA to date for use in GI cancers.

Excessive intracellular accumulation of lactate is a hallmark of many cancer types, which necessitates MCTs in 
transporting lactate from highly glycolytic cancer cells. Secretory lactate can acidify the extracellular microenvironment, 
which can impact the tumor microenvironment[241]. While secretory lactate was initially considered a waste product of 
cancer cells, recent evidence has suggested that it serves as an alternative fuel for oxidative cancer cells, leading to 
enhanced aggressiveness[56]. Therefore, MCT targets have emerged as an alternative strategy for anti-cancer therapy
[241]. Among the various compounds proposed to target MCTs in cancer, AZD3965 and AR-C155858 have received more 
attention from researchers. Both drugs have demonstrated potential in targeting MCTs, inhibiting GI cancer cell aggress-
iveness, and stunting tumor growth both in vitro and in vivo[242-249]. While AZD3965 has entered the clinical trial phase, 
further investigation is needed to determine the safety and therapeutic efficacy of these drugs in patients with GI cancer. 
Notably, the development of MCT inhibitors has faced several challenges, including the presence of MCT isoforms and 
the need for inhibitors that selectively target cancer cells without affecting normal tissues[58,250]. In this regard, 
approaches and strategies to develop selective MCT inhibitors are being actively pursued. While MCT inhibitors hold 
promise as a potential anti-cancer therapy, further research is needed to fully understand their mechanisms of action and 
optimize their clinical applications.

TARGETING OXPHOS AS A POTENTIAL THERAPEUTIC STRATEGY FOR GI CANCER
Excessive OXPHOS activity has been observed in certain cancers and has been associated with more aggressive 
phenotypes/unfavorable clinical outcomes, making it a novel target for anti-cancer therapy[251]. Attenuating OXPHOS 
activity has been proposed as the best strategy to target OXPHOS, leading to the identification of a large number of 
candidate compounds that target mitochondrial complex I. Metformin, a compound that has long been used to treat 
diabetes, has been reported to exhibit mitochondrial complex I inhibition activity and can impact cancer cell aggress-
iveness/tumor growth in both GI cancer cell lines and xenograft models[252-265]. Metformin has advanced to clinical 
trials in combination with other anti-cancer regimens for patients with GI cancers, such as ESCA patients in Phase II 
(ChiCTR-ICR-15005940), HCC patients in Phase I (CTRI/2018/07/014865), CCA patients in Phase Ib (NCT0249674), PCA 
patients in Phase II (NCT01210911 and NCT01167738), and CRC patients in Phase II (NCT01312467, NCT03047837, and 
NCT01941953). It was found that metformin combination therapy can provide benefit to patients, perhaps through 
reprogramming the tumor immune microenvironment[258].

Recent studies have proposed several candidates as mitochondrial complex I-targeting compounds in addition to 
metformin. Among them, tamoxifen, IM156, and IACS-010759 have gained attention as potential anti-cancer agents. 
Tamoxifen is an anti-estrogen agent that has been clinically used to treat breast cancer patients with positive estrogen-
receptor (ER) expression[266]. Interestingly, tamoxifen has also been shown to inhibit cancer cell aggressiveness, tumor 
growth, metastasis, and increase chemosensitivity in GI cancers[267-273]. This effect is thought to be through an ER-
independent anti-cancer pathway[269]. Tamoxifen has been used as a monotherapy or combined therapy in several 
clinical trials, including an early phase trial in ESCA patients, Phase II trials in PAC patients[274-276], and a Phase III trial 
in HCC patients (NCT00003424). Tamoxifen has been found to be tolerable, safe, and with manageable adverse effects, 
while a Phase III trial in HCC patients found that tamoxifen monotherapy either offered no effect or decreased survival in 
patients with unresectable HCC[277]. This result has slowed the advancement of tamoxifen in GI cancers and requires 
further investigation.

IM156 and IACS-010759 are two novel mitochondria-targeting drugs that specifically inhibit mitochondrial complex I. 
While both compounds have shown promising results in pre-clinical studies against certain cancer cell lines, their 
potential in treating GI cancers involves limited evidence. Interestingly, IM156 has entered Phase I clinical trials in 
patients with GC, CRC and PCA (NCT03272256 and Janku et al[278]), demonstrating tolerability and safety. However, 
IM156 monotherapy in patients with GC and CRC offered only disease stabilization, indicating the need for further study.

On the other hand, IACS-010759 has shown significant cell viability reduction in PCA cell lines[279], leading to the 
initiation of a Phase I clinical trial (NCT03291938) to evaluate clinical efficacy and safety in patients with solid tumors due 
to CCA, PAC, and CRC. However, a recent publication reported that although IACS-010759 was tolerable and safe, it 
increased blood lactate levels and neurotoxicity while offering only limited anti-cancer efficacy. A reverse translational 
study using mice also found IACS-010759 to induce behavioral and physiological changes indicative of peripheral 
neuropathy, minimizing the possibility of combined therapy with specific anti-cancer compounds (e.g., histone 
deacetylase 6 inhibitor). The development of mitochondrial complex I inhibitors is ongoing[280].

While the mitochondrial complex I inhibitors metformin, tamoxifen, IM156, and IACS-010759 hold promise as potential 
treatments for GI cancer, further studies are needed to evaluate their efficacy and safety, particularly in combination with 
other anti-cancer compounds. The development of more selective and potent mitochondrial complex I inhibitors may 
help overcome side effects and improve efficacy in cancer treatment.

The targeting of mitochondrial complexes other than complex I has also been proposed as a strategy for anti-cancer 
therapy[281]. One such compound of note is atovaquone, which was identified as a mitochondrial complex III inhibitor 
during a drug re-purposing study[282]. Pre-clinical studies have evaluated the potential of atovaquone as an anti-cancer 
agent in GI cancer cell lines and xenograft models, and have shown its ability to reduce OXPHOS, OCR, cell viability, cell 
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proliferation, cell cycle progression, and tumor growth, while enhancing cell death[283-285]. Despite promising results, 
atovaquone is currently in clinical trials for patients with non-small cell lung cancer (NCT04648033) and acute myeloid 
leukemia (NCT03568994) but not for patients with GI cancer. Further studies are needed to determine drug tolerability, 
safety, and therapeutic efficacy in patients with GI cancer. Nonetheless, the potential benefits of targeting OXPHOS make 
for a promising strategy in GI cancer therapy. However, the potential toxicity of these inhibitors in normal cells must be 
carefully evaluated before being considered as viable anti-cancer agents. In addition, the development of resistance to 
mitochondrial inhibitors, similar to the resistance seen with other anti-cancer agents, highlights the need for combination 
therapy.

POTENTIAL OF TCA CYCLE TARGETS IN GI CANCER THERAPY
The TCA cycle is a critical metabolic pathway that fuels bioenergetic processes in cells. Targeting the TCA cycle has 
emerged as a potential strategy for anti-cancer therapy[286]. Various agents have been tested for their anti-cancer efficacy, 
including AGI-5195, AG-221, AG-881, and CPI-613[286]. Among these compounds, CPI-613 is the only PDH and alpha-
ketoglutarate dehydrogenase complex (KGDHC) dual targeting agent that has shown promising anti-cancer properties in 
GI cancer models both in vitro and in vivo[287-291]. The tolerability and safety of CPI-613, alone or in combination with 
other agents, has been evaluated or is currently being studied in patients with HCC, CCA, and CRC (NCT01766219, 
NCT05070104 and NCT02232152). However, a recent Phase III trial (NCT03504423) evaluating the anti-cancer efficacy of 
CPI-613 in patients with advanced PAC failed to improve survival rate but improved overall response rate[292]. This 
outcome is disappointing, combining CPI-613 with other drugs such as gemcitabine or nab-paclitaxel may provide better 
results.

The TCA cycle is a complex pathway, and there are multiple enzymes and metabolites that could be targeted for anti-
cancer therapy. For example, the isocitrate dehydrogenase 1 and 2 (IDH1/2) enzymes play a crucial role in the TCA cycle, 
and mutations in these enzymes have been observed in several types of cancer, including gliomas and acute myeloid 
leukemia (AML)[293]. Enasidenib and ivosidenib are two IDH1/2 inhibitors that have been approved for the treatment of 
relapsed or refractory AML[294,295]. In GI cancers, however, the efficacy of IDH1/2 inhibitors is still under investigation
[296]. In addition to IDH1/2 inhibitors, other TCA cycle inhibitors are being explored for anti-cancer therapy. For 
example, IDH1/2 mutant tumors are sensitive to glutaminase inhibitor CB-839, which targets glutamine metabolism
[297]. Another TCA cycle inhibitor, BPTES, has shown anti-cancer efficacy in pre-clinical studies by blocking the activity 
of the glutaminase enzyme[298]. However, our understanding of these inhibitors in GI cancer treatment is still limited.

Targeting the TCA cycle and associated bioenergetic processes is a promising approach for anti-cancer therapy. While 
CPI-613 has shown some success in GI cancer models, the failure in Phase III trial underscores the need for continued 
research and combination therapy. Other TCA cycle inhibitors, such as IDH1/2 and glutaminase inhibitors, are being 
evaluated for their anti-cancer efficacy in GI cancers, offering hope for future treatments.

DISCUSSION AND FUTURE PERSPECTIVE
Cancer cells undergo significant metabolic changes which involve alteration to the nuclear and mitochondrial genomes as 
well as cell microenvironment. Understanding the molecular mechanisms behind these alterations is critical for the 
development of effective cancer therapies. Next-generation technologies such as metabolic profiling, single-cell 
sequencing, and metabolic tracing can provide insights into the regulation of mitochondrial metabolism in different 
cancer types. However, developing therapies based on altered metabolism is challenging due to the diverse metabolic 
patterns observed across different cancer cells.

Simply targeting a single bioenergetic enzyme or pathway may not be enough to effectively inhibit cancer cell growth, 
as metabolic symbiosis enables cancer cells to adapt to harsh tumor environments. One potential strategy is to treat the 
metabolic patterns of different cellular subpopulations in the tumor microenvironment to create a homogeneous 
metabolic population for targeting.

Bioenergetic enzymes have been explored as a way to inhibit cancer cell growth, with some small-molecule inhibitors 
of glucose metabolism showing significant inhibition in various cancers. However, clinical translation of these inhibitors 
has been limited by side effects. Other small-molecule inhibitors and natural products that regulate key bioenergy 
enzymes have also shown promise, but their specific mechanisms and targets require further investigation. Developing 
anticancer drugs targeting bioenergetic enzymes remains a significant challenge due to the unique metabolic features of 
cancer cells. Targeted drugs have shown anticancer effects in various tumor models, and combining them with conven-
tional anticancer drugs is a promising strategy.

High-throughput multi-omics and spatial omics can help elucidate the heterogeneity of cancer cells and provide 
opportunities for therapeutic drugs targeting the bioenergetics of malignant tumors. Unbiased CRISPR-Cas9 synthetic 
lethality screening of metabolic genes that favor anti-cancer responses, particularly in vivo, could provide an avenue 
towards the identification of bioenergetic targets of interest. The ultimate goal is to develop drugs that simultaneously 
disable cancer cells while synergizing with targeted therapies.

However, while targeting bioenergetic pathways in cancer cells shows promise, it also has the potential to affect 
normal cells and tissues that rely on these pathways. Therefore, careful consideration and further research are needed to 
ensure that therapies targeting bioenergetics in cancer cells are specific and effective while minimizing potential side 
effects on normal cells and tissues. Additionally, combination therapies that target multiple pathways may be necessary 
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to achieve optimal therapeutic effects.

CONCLUSION
The metabolic reprogramming and bioenergetic alteration of cancer cells, particularly their utilization of glucose 
fermentation (the Warburg effect) for energy production, are well-known phenomena. However, comprehensive 
summaries of these alterations and their oncogenetic links in GI cancers are lacking. This review provides a summary of 
the interplay between aerobic glycolysis, the TCA cycle, and OXPHOS in cancer cells, including the molecular 
mechanisms that trigger these alterations. It also explores the role of HIFs, tumor suppressors, and the oncogenetic link 
between hypoxia-related enzymes, bioenergetic changes, and GI cancer. Additionally, this review details various anti-
cancer drugs and strategies for treating GI cancers, along with the challenges associated with them. Understanding 
dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present 
challenges for targeted therapies. Further research is needed to comprehensively understand the specific mechanisms of 
inhibiting bioenergetic enzymes, address side effects, and utilize high-throughput multi-omics and spatial omics for 
insights into the heterogeneity of GI cancer cells in targeted bioenergetic therapies.
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