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ABSTRACT: The US Food and Drug Administration (FDA)
regulatory process often involves several reviewers who focus on
sets of information related to their respective areas of review.
Accordingly, manufacturers that provide submission packages to
regulatory agencies are instructed to organize the contents using a
structure that enables the information to be easily allocated,
retrieved, and reviewed. However, this practice is not always
followed correctly; as such, some documents are not well
structured, with similar information spreading across different
sections, hindering the efficient access and review of all of the
relevant data as a whole. To improve this common situation, we evaluated an artificial intelligence (AI)-based natural language
processing (NLP) methodology, called Bidirectional Encoder Representations from Transformers (BERT), to automatically classify
free-text information into standardized sections, supporting a holistic review of drug safety and efficacy. Specifically, FDA labeling
documents were used in this study as a proof of concept, where the labeling section structure defined by the Physician Label Rule
(PLR) was used to classify labels in the development of the model. The model was subsequently evaluated on texts from both well-
structured labeling documents (i.e., PLR-based labeling) and less- or differently structured documents (i.e., non-PLR and Summary
of Product Characteristic [SmPC] labeling.) In the training process, the model yielded 96% and 88% accuracy for binary and
multiclass tasks, respectively. The testing accuracies observed for the PLR, non-PLR, and SmPC testing data sets for the binary
model were 95%, 88%, and 88%, and for the multiclass model were 82%, 73%, and 68%, respectively. Our study demonstrated that
automatically classifying free texts into standardized sections with AI language models could be an advanced regulatory science
approach for supporting the review process by effectively processing unformatted documents.

■ INTRODUCTION
Regulatory documents are typically large and cover a broad
range of information. Individual reviewers usually focus on
specific sets of information, such as safety or efficacy, in
accordance with their review assignments. Therefore, regu-
latory documents need to be organized by using a structure
within which the information can be easily allocated, retrieved,
and reviewed. Unfortunately, this is not always the case,
although structured documents are recognized as crucial to an
improved regulatory review process. For example, the structure
and information in FDA labeling documents have changed
over the past 40 years. In 2005, the FDA published “Guidance
for Industry: Providing Regulatory Submissions in Electronic
Format − Content of Labeling”, which provided guidelines for
regulatory submissions in the Structured Product Labeling
(SPL) format.1 With the SPL format, texts are preannotated
into specific labeling sections, making it easier for FDA
researchers and reviewers to retrieve and analyze the
documents’ textual information.
Nevertheless, many labeling documents are still not well-

formatted, which hinders access to and use of the information

they contain. In addition, it would not be unusual if, in the
future, the structure of labeling documents is again revised to
enhance the clarity and organization of information. This
situation raises a question about how to normalize information
from a previous version of labeling with future formats to
provide a holistic view of drug safety and efficacy, particularly
when reviewing drugs from the same therapeutic area or
pharmaceutical class. Moreover, different countries have their
own formats for structuring information; to expand the FDA
knowledge base, their regulatory documents must be converted
to the format used in the FDA review process.

Text classification is one of the principal tasks in NLP, which
has significantly advanced with transformer-based language
models.2−4 While text classification models often focus on
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sentiment analysis,5−7 several studies have demonstrated NLP
application in classifying free (unstructured) texts into
predefined categories.8,9 For instance, Dernoncourt and Lee8

classified sentences into sections, (i.e., background, objective,
method, result, or conclusion), for approximately 200,000
medical abstracts with more than 90% accuracy. Moreover, in
an attempt to distinguish between sentences with and without
propaganda,9 a BERT-based classification model achieved 55−
80%+ accuracy for the various classification tasks in accordance
with 18 different propaganda techniques and categories.
Several studies have aimed to classify or group drugs and/or

drug labeling documents based on patterns within their
texts.10,11 In 2011, Bisgin et al.10 categorized drugs with
similar safety concerns, therapeutic uses, or both by applying
the unsupervised text mining method of topic modeling to
labeling documents for 794 FDA-approved drugs. Further-
more, in 2019, Wu et al.11 grouped drug labeling documents by
conducting a hierarchical cluster analysis to uncover similar
patterns among the MedDRA (Medical Dictionary for
Regulatory Activities) -preferred terms and adverse drug
reactions (ADRs) within the boxed warning sections of 367
single-ingredient drugs. These studies demonstrated that
hidden patterns exist within the texts of drug labeling

documents, enabling these documents and their sections to
be grouped with computer-aided or machine learning
technologies.

Our study expands on these concepts, and as such, we
developed a language model to automatically classify free-text
information from FDA drug labeling documents into defined
and standardized sections. We set the PLR labeling format as
the standard in constructing the language model. Given the
diversity of the drug labeling sections, we used various
categorical configurations when training the classification
model to examine how performance is impacted by specific
circumstances such as how results may change when the
number of categories is increased. The model was evaluated
with texts from PLR-formatted labeling documents and
subsequently applied to non-PLR-formatted labeling docu-
ments, the format usually found in older labeling documents.
We also applied the model to the classification of UK drug
labeling documents with the SmPC format.

■ MATERIALS AND METHODS
US FDA Drug Labeling. Based on the PLR, FDA prescription

drug labeling documents generally can have one of two formats. The
PLR format, first published by the FDA in 2006, is the gold standard

Figure 1. Excerpts from drug labeling document. (A) Indications and usage. (B) Warnings and precautions. (C) Adverse reactions.
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for prescription drug labeling formats, as all prescription drug labeling
submitted after June 2001 is required to conform to it (documents
submitted between June 2001 and 2006 were required to retroactively
update to the PLR format). On the other hand, nonprescription drug
labeling, such as those for over-the-counter (OTC) drugs, and
prescription labeling documents approved before 2001 are not
required to use PLR format and are considered non-PLR formatted
documents.

It is important to note the differences between the PLR and non-
PLR format. The FDA posits that the PLR format “enhances the safe
and effective use of human prescription drugs ... and reduces the
number of adverse reactions resulting from medication errors due to
misunderstood or incorrectly applied drug information”.12 Addition-
ally, the PLR format is important for making prescription information
more accessible to healthcare practitioners, patients, and researchers.
The FDA asserts that the PLR format’s modern approach to
communicating accurate drug use information makes prescription
information “more accessible for use with electronic prescribing tools
and other electronic information resources’.13 Despite the benefits of
using the PLR format vs the non-PLR format, some older labeling
documents remained in the non-PLR format; only new drug
applications (NDAs) and biologics license applications (BLAs)
approved from June 2001 to 2006 being retroactively updated to be
PLR compliant.12

With the PLR format being the preferred standard for retrieving
and using information from drug labeling documents, this study
aimed to organize all types of drug labeling into appropriate PLR-
formatted sections. To begin, 45,626 prescription drug labeling
documents were obtained and processed from DailyMed’s full release
of human prescription labeling (retrieved February 28, 2022).14 Of
these documents, 29,709 (65%) were in the PLR format, while 15,917
(35%) were in the non-PLR format. A total of 17,453,802 sentences
were extracted using Python and Natural Language Toolkit (NLTK)
libraries.15 These sentences were further mapped with logical
observation identifiers, names, and codes (LOINC),16 which are the
official codes used to determine the located sections in the labeling
documents. PLR and non-PLR labeling documents had to be
processed separately, because they have different LOINC codes.

Figure 1 provides examples of the contents included within various
major sections within FDA prescription drug labeling documents.
From a drug labeling document for the adalimumab-atto injection
(which this study is not associated with), Figure 1A is an excerpt from
the “indications and usage” section, Figure 1B is an excerpt from the
“warnings and precautions” section, and Figure 1C is an excerpt from
the “adverse reactions” section. Together, these figures provide a
general overview of what information can be expected within these
key drug labeling sections.

UK Drug Labeling. In the UK, the primary drug labeling
documents are SmPCs. These provide vital information to healthcare
professionals, such as how to use and prescribe medicines.17 SmPCs
are written and updated by pharmaceutical companies based on their
research, and are checked and approved by the UK or European
medicines licensing agencies. They are akin to FDA-regulated
prescription drug labeling in that each document contains labeling
sections comparable to those found in the PLR or non-PLR formats.
For instance, the SmPC section “Therapeutic Indications” contains
similar information to the FDA labeling section “Indications and
Usage.”

To determine if the language model produced in this study could
be applicable to external drug labeling documents, a collection of
9580 SmPCs was obtained from the UK medicine database Electronic
Medicines Compendium (retrieved June 26, 2022).17 Using similar
data processing techniques, we collected 2,180,388 sentences.

Summary of Data Sets. Table 1 summarizes the three data sets
used in this study. Overall, we collected over 55,000 labeling
documents and over 19 million sentences from (1) PLR, (2) non-
PLR, and (3) SmPC formatted documents.

Modeling Algorithms. In the primary task, we used BERT to
train the sentence classification model. BERT is a state-of-the-art
language model popularly used for a wide variety of NLP tasks,

including text classification, question answering, and next-sentence
prediction.18 As its full name implies, BERT is a multilayer encoder
with a transformer architecture, or an attention-based model.19 It was
pretrained on BooksCorpus (800 million words) and Wikipedia
(2500 million words). Given its self-attention mechanism, the trained
model could be further fine-tuned for a multitude of tasks by training
different heads on top of the model architecture.

Besides the basic BERT model (BERT-base), there are many
different BERT models. To explore the model’s impact on the results,
several alternative BERT models, ALBERT,20 DistilBERT,21 and
RoBERTa,22 were fine-tuned and tested on the same data. These
models were selected due to their unique and proven capabilities.
ALBERT implements parameter-reduction techniques to lower
memory consumption and increase the training speed of BERT
while limiting the loss of language understanding. DistilBERT
leverages knowledge distillation during the pretraining phase to
reduce model size and increase training speed while retaining most of
its language understanding capabilities. RoBERTa implements a
longer training phase with more data and dynamically changes the
masking pattern applied to the training data, enabling it to perform
equally well or better than models published after BERT. Random
forest (RF)23 and support vector machine (SVM)24 models from the
scikit-learn package25 were used as a baseline. For more information
about the models used in this study, see Table 2 for a brief overview
of each model.

Fine-Tuning the Model. To explore the model’s ability to predict
which section a given drug labeling sentence belonged to, a series of
binary and multiclass classification tasks were developed, with the
focus on several key PLR sections: (1) “Indications and Usage,” (2)
“Warnings and Precautions,” and (3) “Adverse Reactions”. For the
primary binary classification task, the end points were “Indications
and Usage” and “Warnings and Precautions”; and since texts from
these sections are easily discernible, this was expected to provide a
solid baseline of the model’s language understanding capabilities.
Conversely, the primary multiclass task included these end points plus
“Adverse Reactions” and “Other/Unknown” (including all the
remaining drug labeling sections), giving the model a much more
difficult task and providing a measure of its ability to differentiate
among a multitude of drug labeling sections. From here, the training
and testing data sets were prepared. For each classification modeling
task, 10,000 sentences were obtained for each of the end points
present in each data set, and as such, the data sets have balanced
classes.

For the BERT-based models, these data sets were tokenized using
their respective HuggingFace autotokenizer. The processed and
tokenized training data sets were split into 80% for training and 20%
for validation. For each BERT-based model, their respective
HuggingFace model was fine-tuned using a PLR-formatted training
data set. More specifically, each model was fine-tuned over the course
of 10 epochs using the model’s default parameters and the “Accuracy”
metric. The models were fine-tuned for only 10 epochs, as it was
noted that improvements in performance plateaued before or around
this stage. Finally, each model was evaluated using PLR-, non-PLR-,
and SmPC-formatted testing data sets, each containing 10,000
sentences per end point that were new to or unseen by the model.

On the other hand, for the RF and SVM models, the data sets were
tokenized and processed using the NLTK package15 for Python. In
more detail, the “word_tokenizer” function was used to tokenize the
sentences and “WordNetLemmatizer” was used to lemmatize each
word. The sentences were then vectorized using the scikit-learn25

Table 1. Summary of Datasets

Data set Origin No. Documents No. Sentences

1. PLR US − DailyMed 29,709 14,072,802
2. non-PLR US − DailyMed 15,917 3,380,819
US Total 45,626 17,453,802
3. SmPC UK − EMC 9580 2,180,388
Overall Total 55,206 19,634,190
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“TfidfVectorizer” tool. As before, the training data sets were split into
80% for training and 20% for validation. For the RF and SVM models,
their respective scikit-learn25 model was trained using a PLR-
formatted data set. Finally, each model was evaluated with PLR-,
non-PLR-, and SmPC-formatted testing data sets, using the
“accuracy_score” function from scikit-learn.25

Model Explainability Analysis. After obtaining results from the
aforementioned models, Shapley additive explanations (SHAPs)26

were calculated to determine which words had the largest influence
for the various drug labeling sections found within the three drug
labeling document formats. Mean Shapley values provide the average
relative impact of a particular word on models’ predictions for the
section end point of a given sentence. Furthermore, SHAPs can be
plotted to visualize the parts of a sentence that lead to a certain
prediction and those that do not.

■ RESULTS
Model Development Flow. Figure 2A depicts the overall

workflow of this study, with Figure 2B expanding the modeling
procedure for the BERT-based models and Figure 2C
expanding the modeling procedure for the RF and SVM
models. The labeling data were collected from US and UK
drug labeling resources, and each sentence was categorized
based on its derived labeling sections. After data collection and
processing, two classification models were developed. One was
a binary model developed to separate texts of “Indications and
Usage” and “Warnings and Precautions.” The other was a
multiclass model consisting of four end points: “Indications
and Usage”, “Warnings and Precautions”, “Adverse Reactions”,
and “Other/Unknown”. Both classification models were
developed based on PLR-formatted labeling texts and then
tested on PLR, non-PLR, and SmPC labeling texts. The texts
were first transformed into context features by tokenization
and encoding representation approaches. Next, six modeling
algorithms, RF, SVM, BERT-base, ALBERT, DistilBERT, and
RoBERTa, were applied for model development. For more
detailed information, please see the Materials and Methods
section.

Model Testing Results. In the training of both the binary
and multiclass models, the evaluation accuracy was saturated
after 10 epochs; therefore, we ended training at that point to
avoid overtraining. The results reported within this section are
the average achieved accuracy of ten testing samples (each
containing 10,000 randomly selected records per end point),
with the standard deviation of these results provided in
parentheses. Table 3 shows the results obtained from the
BERT binary classification model. As expected, the results
obtained for the PLR testing data set are highest since the
model was fine-tuned with PLR-formatted documents.
However, note that the accuracies and precisions for the
non-PLR and SmPC data sets were very similar, demonstrating
that the model works well for all types of external testing data
sets. Furthermore, with a training validation accuracy of 0.9635
and average testing accuracies of 0.9486, 0.8756, and 0.8827
for the PLR, non-PLR, and SmPC testing data sets,
respectively, this model excelled at differentiating sentences
in these two categories.

Table 4 shows the results obtained from the BERT
multiclass classification model. Again, note that accuracies
and precisions for the non-PLR and SmPC data sets were very
similar. Moreover, with a training validation accuracy of 0.8798
and testing accuracies of 0.8194, 0.7302, and 0.6846 for the
PLR, non-PLR, and SmPC testing data sets, respectively, this
model efficiently differentiated sentences from these fourT
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Figure 2. Study workflow. (A) Overall workflow. (B) Model procedure for BERT-based models. (C) Model procedure for RF and SVM models.

Table 3. Binary Classification Model Results, in Predictive Accuracy

Overall Indications and Usage Warnings and Precautions

Val. PLR 0.9635
Testing with Avg (stdev) PLR 0.9486 (0.0010) 0.9313 (0.0013) 0.9659 (0.0016)

non-PLR 0.8756 (0.0019) 0.8564 (0.0013) 0.8947 (0.0029)
SmPC 0.8827 (0.0018) 0.8809 (0.0013) 0.8846 (0.0031)
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categories. However, it should be noted that the addition of
the two new categories significantly decreased the model’s
prediction precision for the “Warnings and Precautions”
section. This may be due to the inherent similarities between
this section and the “Adverse Reactions” section, or perhaps,
the variability of the “Other/Unknown” section led to the
model’s incorrect predictions.

Comparing Different Modeling Algorithms. Many
different BERT models can be used for the text classification
task; therefore, the performance of a collection of models for
the binary and multiclass classification tasks was compared
with one set of training and testing samples. As shown in Table
5, BERT-based models outperformed and had lower error rates
than did the baseline models, (i.e., for the PLR testing binary
classification task, the RF and SVM models had error rates of
7−8%, while BERT had an error rate of 5%, or a ∼50%
decrease in errors.) This, along with the “black box” nature of
the RF and SVM models, showed the advantages of using
BERT with SHAPs to interpret model predictions.
For the most part, each BERT-based model performed at the

same level; however, different models had slight edges in some
areas. For instance, the RoBERTa model, which has a slightly
higher training validation accuracy, performed the binary
classification task particularly well on the SmPC data set. Thus,
this model may be preferable to others if time is not a
consideration, since it has a longer training phase.
Furthermore, it is noteworthy that the ALBERT and
DistilBERT models, while significantly smaller and faster
than the BERT model, have minimal losses in accuracy. This
finding showed that these models might be preferable to other
BERT-based models, when there are potential time constraints.
Altogether, this analysis provided more insight into the various
strengths and weaknesses of the selected BERT-based models,
which might be useful in future studies.
Figure 3 compares the training and evaluation loss for the

four BERT-based models over the ten epochs of which they
were trained. Figure 3A compares the training loss of the
models, while Figure 3B compares the evaluation loss. Based
on these graphs, it is revealed that each model follows a very
similar pattern, with training loss gradually decreasing over
time and evaluation loss gradually increasing over time. Fine-
tuning was cut off after ten epochs to prevent the evaluation
loss from getting too high.

Keywords Most Influential to Predictions. To
determine the words with the largest influence in various
drug labeling sections, SHAPs were calculated for each end
point in the three drug labeling document formats, using the
fine-tuned BERT model. For each format, 1000 records per
end point were used for these calculations. Figure 4 shows the
words with the greatest influence in PLR-formatted docu-
ments. The recorded mean Shapley values provided the
average relative impact of a particular word on the model’s
prediction for the section end point of a given sentence. Values
with a positive correlation are colored red, while those with a
negative relationship are displayed in blue. The top five
positive and negative values are shown. See the Supporting

Table 4. Multiclass Classification Model results in predictive accuracy

Overall Indications and Usage Warnings and Precautions Adverse Reactions Other/Unknown

Val. PLR 0.8798
Testing with Avg (stdev) PLR 0.8194 (0.0019) 0.9040 (0.0017) 0.9044 (0.0023) 0.8166 (0.0038) 0.6525 (0.0039)

non-PLR 0.7302 (0.0019) 0.8061 (0.0021) 0.5982 (0.0045) 0.7812 (0.0038) 0.7351 (0.0018)
SmPC 0.6846 (0.0012) 0.8538 (0.0015) 0.6554 (0.0036) 0.6513 (0.0045) 0.5781 (0.0038)

Table 5. Model Comparison, in Predictive Accuracy

Validation Testing

PLR PLR non-PLR SmPC

Binary Multiclass Binary Multiclass Binary Multiclass Binary Multiclass

RF 0.94 0.81 0.92 0.81 0.88 0.73 0.85 0.66
SVM 0.95 0.85 0.93 0.81 0.88 0.74 0.85 0.66
BERT 0.96 0.88 0.95 0.84 0.89 0.74 0.89 0.67
ALBERT 0.96 0.87 0.95 0.84 0.89 0.72 0.87 0.66
DistilBERT 0.96 0.88 0.94 0.83 0.88 0.74 0.89 0.66
RoBERTa 0.97 0.88 0.95 0.83 0.89 0.74 0.90 0.66

Figure 3. Loss plots for the BERT-based models. (A) Training loss
over 10 epochs. (B) Evaluation loss over 10 epochs.
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Information document for the model explainability analysis of
non-PLR and SmPC-formatted documents.
Based on the results, the words “Indicated” and “Prevention”

are among the most influential in the “Indications and Usage”
section (Figure 4A), while the words “Affected”, “Stop”, and
“Consider” are key to the “Warnings and Precautions” section
(Figure 4B). Furthermore, the “Adverse Reactions” section
(Figure 4C) was largely influenced by the words “Tolerate”,
“Alleviate”, and “Occasionally”. For the most part, the words
that dominated these three sections made sense; their usages
largely coincided with the information covered in each
particular section. However, the tokens selected for the
“Other/Unknown” category (Figure 4D) seem random, likely
due to this category’s coverage of a broad variety of drug
labeling sections. Altogether, this analysis provided more
insight into the token words that were most important for
discerning among the PLR-formatted sections.

How the Model Weighted Sentences for Prediction.
To demonstrate the impacts of certain tokens, a collection of
sentences was plotted using the SHAP library and the fine-
tuned BERT model. Figure 5 shows the text plots for four
sentences retrieved from PLR-formatted documents (one for
each of the four categorizations). The tokens highlighted in
blue are negatively correlated with the sentence’s section end
point, while those highlighted in red are positively correlated.
The SHAPs illustrated within these diagrams show which
tokens within the individual sentences had the largest influence
and led to their classifications. For example, in Figure 5A,
which includes a sentence from the “Indications and Usage”
section, the tokens “Indicated” and “Treatment [of]” played
the biggest roles in this sentence’s categorization. Furthermore,
in Figure 5B, which includes a sentence from the “Warnings
and Precautions” section, the tokens “Consider” (positive

impact) and “Adversely” (negative impact) largely led to this
sentence’s classification. Overall, this analysis helped reveal the
key factors that led to the language models’ classification of
sentences into organized drug labeling sections.

■ DISCUSSION
Using Paragraphs or Sentences as Inputs. We further

examined how different input levels would affect the results.
To accomplish this, the experiments were conducted again, but
with paragraphs rather than sentences as inputs. Table 6
compares the results obtained for the BERT binary
classification model. For this task, the paragraph-input model
outperforms the sentence-input model in each metric: its
training validation accuracy, overall testing accuracies, and
individual end point prediction precisions were all superior.
Since paragraphs inherently provided the model with more
context or information than did sentences, the model could
make more accurate predictions.

Overall, these findings showed that, in comparison to
sentence-input models, paragraph-input models produced
better results for core drug labeling sections, suggesting that
this may be a promising path to explore in future studies.
Nonetheless, there are several disadvantages regarding the use
of paragraphs over sentences. For instance, training and testing
of the paragraph-input models took much longer than for the
sentence-input models, which could pose problems for
reviewers faced with time constraints. Additionally, and
perhaps most importantly, the categorization of individual
sentences might be more useful for researchers and reviewers,
so sentence-level predictions might be more convenient for
future projects. Overall, even though the paragraph-input
models produced slightly better results, the sentence-input

Figure 4. PLR format Shapley additive explanations: (A) Indications and Usage; (B) Warnings and Precautions; (C) Adverse Reactions; and (D)
Other/Unknown. Values with a positive correlation are shown in red, while those with a negative relationship are displayed in blue.
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models were preferred for the task at hand due to their more
balanced and accessible predictions.

Limitations and Future Directions. For the current
study, we used only a limited number of section end points to
train and test the models. Specifically, the multiclassification
model only analyzed three drug labeling sections: “Indications
and Usage,” “Warnings and Precautions,” and “Adverse
Reactions,” with all the remaining section end points grouped
together to form an “Other/Unknown” category. Many of
these grouped section end points also provided essential or
valuable information for researchers or reviewers. Thus, future
research in this area should focus on developing models with
different end point configurations, which could potentially lead
to unique or novel findings. Furthermore, future studies could
involve utilizing more data during the fine-tuning of the model,
as performance has been observed to increase with more data
points. We noted an increase in performance from using

Figure 5. PLR format Shapley text plots: (A) Indications and Usage; (B) Warnings and Precautions; (C) Adverse Reactions; and (D) Other/
Unknown. The tokens highlighted in blue are negatively correlated with the sentence’s section end point, while those highlighted in red are
positively correlated.

Table 6. Sentence vs Paragraph-Input Binary Classification
Models, in Predictive Accuracy

Overall
Indications
and Usage

Warnings and
Precautions

Sentence
Input

Val. PLR 0.96
Testing PLR 0.95 0.94 0.96

non-
PLR

0.89 0.91 0.88

Paragraph
Input

Val. PLR 0.98
Testing PLR 0.97 0.96 0.98

non-
PLR

0.92 0.92 0.92
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10,000�from an original 1000�records per end point.
Nonetheless, the resulting models provide a foundation for
future research related to organizing unformatted regulatory
documents into structured data sets for efficient regulatory use.
This case study aimed to evaluate the ability of transformer-

based language models to categorize free-texts into appropriate
drug labeling sections. As such, an encoder-style language
model (i.e., BERT) was selected due to the understanding that
this architecture outperforms others for tasks such as sentiment
analysis and text classification. However, decoder-style
language models, such as those of the GPT series, would
potentially be useful for applying a text format or structure to
drug labeling texts. Thus, these models should be explored in
future studies. Nonetheless, this case study provides evidence
that deep learning neural networks are capable of connecting
and grouping texts from different formats of drug labeling
documents into standardized categories.

Implications for Regulatory Science. Overall, this study
uniquely contributes to the field of regulatory science with
several broad applications. First, with the knowledge gained
and the developed language model, novel techniques for
automatically structuring regulatory submissions could emerge,
streamlining the submission process for regulatory documents.
Next, this research could lead to more understandable, safety-
oriented prescription drug labeling resulting from well-
structured documents (i.e., PLR vs non-PLR formats). In the
future, the language model developed in this study could
potentially be applied in the processing of other unformatted,
(i.e., scanned or photographed) documents and their contents,
adding to the regulatory knowledge base.

■ CONCLUSION
In this study, to make unstructured text information more
accessible to regulatory reviewers and researchers, we
developed a language model that could classify texts or
sentences into defined or standardized drug labeling sections.
By employing BERT-based models, automatically classifying
free text into appropriate drug labeling sections is possible, to a
notable extent. Thus, this project paves a pathway for future
regulatory science endeavors.
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