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Abstract

Introduction: The G1 and G2 variants in the APOL1 gene convey high risk for the progression 

of chronic kidney disease (CKD) in African Americans. The G3 variant in APOL1 is more 

common in patients of European Ancestry (EA); outcomes associated with this variant have not 

been explored previously in EA patients receiving dialysis.

Methods: DNA was collected from approximately half of the patients enrolled in the Evaluation 

of Cinacalcet HCl Therapy to Lower Cardiovascular Events (EVOLVE) trial and genotyped 

for the G3 variants. We utilized an additive genetic model to test associations of G3 with the 

EVOLVE adjudicated endpoints of all-cause mortality, cardiovascular mortality, sudden cardiac 

death (SCD), and heart failure (HF). EA and African Ancestry (AfAn) samples were analyzed 
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separately. Validation was done in the Vanderbilt BioVU using ICD codes for cardiovascular 

events that parallel the adjudicated endpoints in EVOLVE.

Results: In EVOLVE, G3 in EA patients were associated with the adjudicated endpoints of 

cardiovascular mortality and sudden cardiac death. In a validation cohort from the Vanderbilt 

BioVU, cardiovascular events and cardiovascular mortality defined by ICD codes showed similar 

associations in EA participants who had been on dialysis for 2 to <5 years.

Discussion/Conclusions: G3 in APOL1 variant was associated with cardiovascular events 

and cardiovascular mortality in the EA patients receiving dialysis. This suggests that variations in 

the APOL1 gene that differ in populations of different ancestry may contribute to cardiovascular 

disease.
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INTRODUCTION:

Studies of abnormalities in the apolipoprotein-L1 gene (APOL1) have dramatically 

increased our understanding of the burden of end-stage kidney disease (ESKD) in persons 

of African ancestry (AfAn). Three genetic variants within the exon 7 of the gene (two 

missense single nucleotide polymorphisms [SNPs] termed G1 and a 6 base pair deletion 

termed G2) confer independent risks for progressive kidney disease[1, 2]. G1 and G2 are 

rarely seen in persons of European ancestry (EA)[1, 2]. The high prevalence of G1 and 

G2 in AfAn individuals is thought to arise from genetic selection due to the protective 

effects of the variants against African sleeping sickness caused by Trypanosoma brucei 
gambiense in Western Africa[3]. The mechanism by which the G1 and G2 variations in 

APOL1 accelerate loss of (or decline) kidney function remains elusive, as detailed in recent 

reviews[4, 5], with potential mechanisms including alteration of cytoskeletal abnormalities, 

endocytic trafficking due to impaired acidification[6], mitochondrial dysfunction[7] and ion 

transport[8] defects in the podocyte. These same pathways that damage kidney podocytes 

can also damage cardiac myocytes and lead to arrythmias and fibrosis, providing a rationale 

for studies examining the association of G1 and G2 variants and cardiovascular risk in AfAn 

patients with and without CKD, the results of which have been conflicting[2, 9]. A recent 

larger analysis failed to find an association of APOL1 with cardiovascular events in AfAn 

patients[10].

Ko et al.[3] sequenced APOL1 in samples from multiple areas of Africa and identified a 

group of 8 SNPs in the same exon of APOL1 that were in high linkage disequilibrium 

(LD), and termed G3. G3 was common in those of non-Yoruban descent, including the 

Fulani (21%), Bakola (11%), Sengwer (11%) and Iraqw (13%), populations[3]. Palmer and 

colleagues tested these G3 SNPs in AfAn patients and found no association with diabetic or 

non-diabetic ESKD compared to controls[11]. The minor allele frequencies (MAFs) of G3 

SNPs are higher in persons of European ancestry (EA) than in AfAn, but no studies to date 

had evaluated the association of G3 SNPs and cardiovascular risk in an EA population, t. 

That is the focus of the current study.
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MATERIALS and METHODS:

Primary Cohort:

The study used DNA collected from 1,919 patients randomized in the international 

multi-center trial “Evaluation of Cinacalcet HCl Therapy to Lower Cardiovascular Events 

(EVOLVE),” as previously described[12]. The study was considered ‘not subject to the 

common rule’ by the Indiana University Institutional Review Board, as the samples 

were pre-existing and de-identified, with prior consent through the EVOLVE clinical 

trial and confirmed by Amgen prior to release of specimens to Indiana University. At 

the time of collection, blood samples were collected by Covance (Princeton NJ) and de-

identified samples sent to Indiana University for DNA extraction. Using the Sequenom 

MassArray system, 1,852 DNA samples met quality assessment (determined by A260/280 

and A260/230 ratios), and the detection of SNPs > 70% (7 samples excluded). Additional 

SNPs were genotyped on the X and Y chromosomes to confirm self-reported sex and X- 

and Y-linked SNPs and 33 samples were excluded. The remaining 1,812 samples were 

evaluated Self-reported ancestry was collected as White/Caucasian (58.7%), Black/African 

(22.5%), Hispanic (12.2%) and other (3.8%). Given the small numbers in Hispanic and other 

categories we focused on individuals from the EA (n=1,083: 53.4% Europe, 21.9% Russia, 

16.4% USA, 5.2% Canada, 3.1% Latin America) and AfAn (n=411; 92.8% USA, 4.7% 

Europe, and 2.5% Canada) groups for the EVOLVE analyses.

Supplemental Figure 1 shows SNPs in the G1, G2 and G3[3]. In EA patients, all 8 G3 SNPs 

are in complete LD (r2 = 1). In AfAn patients there is complete LD with all SNPs (r2 = 1) 

except rs136177 (r2 = 0.4). Therefore, we chose to genotype rs136177 due to the differences, 

and rs136175 and rs136176 as representative of the other 7 SNPs in complete LD. All three 

SNPs passed Hardy-Weinberg equilibrium (HWE) tests (among EA all p>0.50 and among 

AfAn all p>0.32).

An independent review panel adjudicated major cardiovascular end-points as defined by the 

EVOLVE trial[12]. The index date was study enrollment and participants were followed 

for up to 64 months. We evaluated the associations of SNPs with the following endpoints: 

all-cause mortality, cardiovascular mortality, sudden cardiac death (SCD), and heart failure 

(HF). We used a global test combining zero-slope tests on the scaled Schoenfeld residuals 

plotted against time to examine the proportional hazards assumption for each covariate in the 

model. For the all-cause mortality endpoint, we performed a standard Cox proportional 

hazards regression analysis. For the cardiovascular and sudden death and for the non-

fatal heart failure endpoint, we applied the Fine-Gray modification of the Cox model to 

account for competing (non-cardiovascular and all-cause mortality, respectively) risks. We 

constructed Kaplan-Meier survival plots for each genotype, and calculated sub-distribution 

hazards. We stratified all models by site and presence of diabetes and sites. Covariates 

included age, sex, vintage (number of years since starting dialysis), history of smoking 

(current or past), and treatment assignment (placebo/cinacalcet)[12].

We utilized an additive genetic model, which assumed a similar increase (or decrease) in 

the hazard ratio for each copy of the effect allele. We analyzed EA and AfAn samples 

separately to account for the known differences in minor allele frequencies (Table 1) and 
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cardiovascular risks [14, 15]. To compare results across EA and AfAn subsets, we assigned 

the minor alleles of the EA group as the reference alleles in both EA and AfAn samples. For 

multiple testing correction, we used the Bonferroni method for the number of independent 

outcomes and SNPs that are not in complete LD. There were four outcomes total and in EA, 

all the SNPs were in complete LD, thus only one independent variant was tested. In AfAn, 

rs136175 and rs136176 were in complete LD so a total of two independent variants were 

tested. In total, we adjusted for 12 tests which led to a post correction p-value significance 

threshold of 0.004. We performed all analyses using SAS 9.4 (SAS Institution Inc, Cary, 

NC) and R (version 3.4.3) with survival, cmprsk, and survminer packages.

Validation Cohort:

Additional cohorts of patients receiving hemodialysis with adjudicated endpoints were not 

available. Therefore, we chose to validate with the BioVU dataset at Vanderbilt University, 

as previous studies had examined patients receiving hemodialysis and cardiovascular events 

looking at Apol1 G1/G2 alleles in AfAn patients [10]. BioVU as a resource, including its 

ethical, privacy and other protection, has been previously described[16, 17]. In brief, BioVU 

accrues DNA samples during routine clinical care from Vanderbilt University Medical 

Center (VUMC) patients who have not opted out of participation, using blood that would 

otherwise be discarded after clinical testing. The samples are de-identified and considered 

“non-human subjects” research. Samples and genetic data within BioVU can be linked via 

anonymous research unique identifiers to the Synthetic Derivative, a de-identified version 

of VUMC’s electronic health record (EHR), comprising records from approximately 3.2 

million patients with detailed longitudinal clinical data dating back to the 1990s. The 

Synthetic Derivative database is research-enabled and includes diagnostic and procedure 

billing codes (“PheCodes”); basic demographics; text from clinical care notes; laboratory 

values; inpatient and outpatient medication data; and other diagnostic reports[18]. The 

index date was defined as 60 days after the initiation of either peritoneal or maintenance 

hemodialysis. Given differences in index date in the two cohorts, we stratified the BioVU 

data by vintage: <2, 2 to <5 years on dialysis, and >=5 years on dialysis such that the 

percentages of subjects in each vintage cohort was similar to that in the EVOLVE DNA 

dataset. Cardiovascular events were defined by ICD9/10 codes that were similar to events 

defined in the EVOLVE cohort (Supplemental Table 1). Cardiovascular mortality was 

defined as death within 30 days of a cardiovascular event diagnosis. Statistical analyses 

were identical to those applied to the participants in EVOLVE except no stratification for 

site (not applicable) and no adjustment for smoking (not available).

RESULTS:

Table 1 shows minor allele frequencies (MAFs), minor alleles, and population frequencies 

of each tested SNP. Baseline demographics and laboratory values for patients undergoing 

dialysis who were genotyped in both EVOLVE[12] and BioVU were similar. Of note, the 

percent of patients in each category of dialysis vintage in the BioVU cohort (34%, 32%, 

and 34% for < 2 years, 2 to 5years, and ≥ 5 years) was similar to that in EVOLVE (28, 

33, 39%). In the EVOLVE EA subset, rs136175 in G3 showed significant associations with 

cardiovascular mortality (SHR=1.44, p-value=0.0006, risk allele=G) and sudden cardiac 
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death (SHR=1.69, p-value=0.0009, risk allele=G) (Table 2, Figure 1). We then conducted 

a sensitivity analysis to determine a potential finding related to population stratification. 

In EVOLVE, the EA population is primarily from North America (23%), Western Europe 

(53%), and Russia (21%), where the minor allele frequency of rs126175 is 17, 20, and 21% 

respectively. We performed additional analyses using the same model within these three 

groups for sudden cardiac death and observed similar directionality of hazard ratios in the 

North American population of 2.1 (25% event rate), European population of 1.4 (7% event 

rate) and Russian population 1.3 (6% event rate), supporting that our findings are not likely 

due to population substructure. There were no statistically significant associations between 

any SNP, all-cause mortality and heart failure in the EVOLVE EA subset (Supplemental 

Table 2). Table 3 shows the association of G3 alleles with cardiovascular events and 

cardiovascular mortality in the BioVU EA population. The rs136175 G3 allele showed 

significant associations with cardiovascular mortality, but only in patients with dialysis 

vintage of 2 to <5 years. A similar trend was observed for all cardiovascular events.

In the AfAn patients, there were no statistically significant associations between the 

G3 SNPs in the APOL1 gene and any end point in the EVOLVE or BioVU cohort 

(Supplemental Tables 2 and 4).

DISCUSSION/CONCLUSION:

To our knowledge, this report represents the first observed association between G3 in the 

APOL1 gene and cardiovascular mortality and sudden cardiac death, in individuals from 

the EVOLVE cohort undergoing dialysis and of European Ancestry. Sudden cardiac death, 

adjudicated in the EVOLVE cohort, accounted for 25% of all cardiovascular deaths, whereas 

acute myocardial infarction only accounted for 4%[19]. The contribution of sudden cardiac 

death to cardiovascular mortality among patients receiving maintenance hemodialysis may 

explain why sudden cardiac death and cardiovascular death, but not all-cause mortality, 

were associated with G3. To date, studies evaluating cardiovascular outcomes and APOL1 
variants have only examined the G1 and G2 variants, and these have yielded mixed results. 

The Jackson Heart study[20], Systolic Blood Pressure Intervention Trial (SPRINT)[21], 

and Cardiovascular Health Study (CHS[22], and the Reasons for Geographic and Racial 

Differences in Stroke (REGARDS) study[23] all showed increased risk of composite 

cardiovascular events or incident myocardial infarction with the G1 or G2 versus low 

risk haplotypes in African-Americans. In contrast, the African American Study of Kidney 

Disease and Hypertension (AASK)[24], and Multi-Ethnic Study of Atherosclerosis Risk in 

Communities Study (MESA)[24] found no difference in incident CVD. A meta-analysis 

using individual patient data from multiple studies found that the APOL1 G1/G2 variants in 

21,305 Black Americans were not associated with cardiovascular or all-cause mortality[25]. 

None of those studies evaluated G3 variants, but with such a low frequency of the G3 allele, 

our sample size is inadequate to test this variant.

In the current study, we found that G3 variants were associated with cardiovascular death 

and sudden cardiac death in EA patients in the EVOLVE cohort. In the BioVU cohort, 

a similar association was seen for cardiovascular death assessed by ICD codes, but only 

in those patients on dialysis for 2 to 5 years. The two cohorts differ in the ascertainment 
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of events-adjudicated in EVOLVE by an independent panel consisting of cardiologists and 

nephrologists, and in BioVU, defined as death within 30 days after a CV event. Thus, it is 

not surprising that some differences were observed. The cohorts also differ in the definition 

of index date- start of the study for the EVOLVE cohort, and the start of dialysis + 60 days 

for the BioVU cohort. The potential impact of dialysis vintage is not surprising, as there 

are multiple reasons for mortality in patients with end-stage kidney disease who are starting 

dialysis, including many related to insufficient vascular access (the majority of patients in 

the US start dialysis with a tunneled hemodialysis catheter) or complications of protein 

energy malnutrition, particularly among those patients who were marginal candidates for 

dialysis. Long-term survivors on dialysis are also different in that they have survived 

the cardiac insults of maintenance dialysis and in EVOLVE the cohort of long dialysis 

patients were also those with secondary hyperparathyroidism and thus a selective group. 

Further, in both cohorts those most susceptible for cardiovascular disease associated with G3 

variants may had already experienced a major cardiovascular event or death (e.g., selection 

effects). It is also possible that rather than defining a genetic association that we are instead 

identifying a population. However, this seems unlikely given the analyses stratified by study 

site, the diverse origin of patients in the EA cohort, consistent direction of HR in our 

sensitivity analyses, and similar allele frequency throughout European Ancestry assessed in 

1000 genome data. The reported (and graphed) association is a summarized estimate across 

all strata.

The potential mechanism(s) by which the G3 variants may lead to sudden cardiac death are 

unknown. The G1 and G2 variants alter potassium, chloride and calcium channel function/

activity, cell lysis, and cytoskeleton function (Reviewed in[8, 5]; therefore, G3 variants 

may have a similar effect resulting in depolarization abnormalities or cell death that may 

lead to arrhythmia sudden cardiac death. In addition, APOL1G1/G2 gene expression can 

be induced by interferon gamma, and induced by some, but not all viruses. Thus, CKD 

progression may requires a ‘two hit’ model and inflammation is thought to be the second 

hit[5]. It is also therefore plausible that inflammation may also play a role in the G3 

association with CV mortality. All three variants, (G1, G2, G3) occur in the region encoding 

the serum resistance associated (SRA)-interacting-domain, modifying the resistance to the 

common (and chronic) West African form of sleeping sickness caused by Trypanosoma 
brucei gambiense. It remains unknown if G3 protects against the less common forms of 

sleeping sickness seen in Eastern and Southern Africa[3] or other infectious diseases. Thus, 

although the variants are all from the SRA domain, differences in function remain possible.

In summary, we highlight a novel association between G3 APOL1 variants and 

cardiovascular mortality and sudden cardiac death in patients of European Ancestry 

receiving maintenance hemodialysis, results validated but limited to patients with moderate 

(but not short or long) dialysis vintage in the BioVU cohort. The major limitation is that the 

samples size is underpowered in both cohorts, and thus, these findings, however provocative, 

need to be confirmed. Another limitation is the use of diagnosis codes in the BioVU dataset 

to define events. Unfortunately, large clinical trials in ESKD with adjudicated end points are 

very few in number, and even fewer collect DNA. If validated, these findings suggest that 

variations in the APOL1 gene may contribute to cardiovascular disease, as well as to kidney 

disease, depending on ancestry.
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Figure 1: Probability of endpoint events by rs531675 genotype of the APOL1 gene in the EA 
sample:
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Unadjusted Kaplan–Meier Curve of cardiovascular-specific survival (1A) or sudden cardiac-

specific survival (1B). Each genotype group is represented by a different colored line as 

shown in the legend in each panel, which denotes whether there is one or two adenine (A) or 

guanine (C) alleles. The color-shaded area represents the 95% confidence interval.
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Table 1:
Summary of APOL1 SNPs and Minor Allele Frequency (MAF):

SNP shows rsID of each genotype variant. Function is molecular function of each SNP. EA indicates European 

Ancestry samples from EVOLVE. AfAn indicates African Ancestry samples from EVOLVE. Eur indicates 

European ancestry samples from the 1000 Genomes Project. Afr indicates African ancestry samples from the 

1000 Genomes Project. HWE P-value indicates Hardy-Weinberg Equilibrium test p-value for each genotyped 

variant in EVOLVE samples.

EVOLVE COHORT 1000 GENOMES PROJECT EVOLVE COHORT

SNP Function
EA

Minor Allele (Effect 
Allele)

AfAn
Minor
Allele

EA
MAF

AfAn
MAF

Eur
MAF

Afr
MAF

EA
HWE

P-value

AfAn
HWE

P-value

rs136175 Missense G G 0.19 0.04 0.22 0.02 0.50 0.41

rs136176 Missense G G 0.20 0.03 0.22 0.02 0.56 0.32

rs136177 Missense G G 0.20 0.05 0.22 0.05 0.63 < 1.0

SNP = single nucleotide polymorphism
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Table 2:

Association of APOL1 G3 SNPs and outcomes in European Ancestry in the EVOLVE cohort

Cardiovascular Mortality SHR [95%CI] P value Event Censored Competing

rs136175 1.44 [1.17–1.77] 0.0006 221 668 178

rs136176 1.44 [1.17–1.77] 0.0006 221 668 178

rs136177 1.42 [1.15–1.75] 0.0009 221 668 178

Sudden Cardiac Death

rs136175 1.69 [1.24–2.31] 0.0009 89 668 310

rs136176 1.69 [1.24–2.30] 0.001 89 668 310

rs136177 1.65 [1.21–2.24] 0.0015 89 668 310

A total of 1,067 participants were included in these analyses. SHR [95%CI] shows Subdistribution Hazard Ratio and Lower and Upper 95% 
Confidence Interval values of the SHR. Event shows the number of participants having the defined event (Cardiovascular mortality or Sudden 
Cardiac Death). Censored shows the number of participants who were censored for the outcome. Competing shows the number of participants who 
had a competing event for the outcome. SHR = subdistribution hazard ratio. See supplemental Figure 1 for Chromosome and physical position.
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Table 3:

Association of APOL1 G3 SNPs and outcomes in European Ancestry in the BioVU cohort by dialysis vintage

Effect 
allele

CV events / 
total N

SHR per copy of 
effect allele
[95% CI]

p CV death/ 
total N

SHR per copy of 
effect allele
[95% CI]

p

EA overall

rs136175 G 454/1080 1.14 (0.96,1.36) 0.1342 98/1080 1.32 (0.92,1.90) 0.1289

rs136176 G 454/1080 1.14 (0.96,1.36) 0.1342 98/1080 1.32 (0.92,1.90) 0.129

rs136177 G 454/1080 1.14 (0.96,1.36) 0.1342 98/1080 1.32 (0.92,1.90) 0.1289

EA <2 years 
dialysis vintage

rs136175 G 187/399 1.28 (0.96,1.71) 0.0976 49/389 1.55 (0.90,2.68) 0.1169

rs136176 G 187/399 1.28 (0.96,1.71) 0.0978 49/389 1.55 (0.90,2.68) 0.1171

rs136177 G 187/399 1.28 (0.96,1.71) 0.0976 49/389 1.55 (0.90,2.68) 0.1169

EA 2–5 years 
dialysis vintage

rs136175 G 122/303 1.62 (1.17,2.25) 0.0036 18/303 2.44 (1.11,5.34) 0.0258

rs136176 G 122/303 1.62 (1.17,2.25) 0.0036 18/303 2.44 (1.11,5.34) 0.0258

rs136177 G 122/303 1.62 (1.17,2.25) 0.0036 18/303 2.44 (1.11,5.34) 0.0258

EA >5 years 
dialysis vintage

rs136175 G 145/378 1.13 (0.83,1.54) 0.4381 31/378 1.05 (0.54,2.06) 0.8778

rs136176 G 145/378 1.13 (0.83,1.54) 0.4381 31/378 1.05 (0.54,2.06) 0.8778

rs136177 G 145/378 1.13 (0.83,1.54) 0.438 31/378 1.05 (0.54,2.06) 0.8776

EA = European American, CV = cardiovascular, SHR = standardized hazard ratio
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