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Abstract

The human plasma proteome is underexplored, despite its potential value for monitoring health 

and disease. Herein, using a recently developed aptamer-based platform, we profiled 7,288 

proteins in 528 plasma samples from 91 normal pregnancies (Gene Expression Omnibus identifier 

GSE206454). The coefficient of variation was <20% for 93% of analytes (median 7%), and cross-

platform correlation for selected key angiogenic and anti-angiogenic proteins was significant. 

Gestational age was associated with changes in 953 proteins, including highly modulated placenta- 

and decidua-specific proteins, and they were enriched in biological processes including regulation 

of growth, angiogenesis, immunity, and inflammation. The abundance of proteins corresponding 

to RNAs specific to populations of cells previously described by single-cell RNA-Seq analysis 

of the placenta was highly modulated throughout gestation. Furthermore, machine learning-based 

prediction of gestational age and of time from sampling to a term delivery compared favorably 

with transcriptomic models (mean absolute error of 2 weeks). These results suggested that the 

plasma proteome may provide a non-invasive readout of placental cellular dynamics and serve as 

blueprint for investigating obstetrical disease.
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INTRODUCTION

Prediction, prevention, and treatment of obstetrical diseases such as preterm labor, 

preeclampsia, small for gestational age (SGA), and fetal death are currently sub-optimal 

due to the syndromic nature and multiple etiologies of these conditions. Therefore, a 

personalized medicine approach is required to avoid dependence on non-specific clinical 

symptoms and signs. The success of such an approach depends on the accuracy, practicality, 

and low cost of generating patient-specific molecular readouts from non-invasive samples, 

such as the maternal blood.

High-throughput molecular studies of the maternal blood were proposed based on 

the analysis of whole-blood (cellular) RNA1–5 or cell-free RNA6–9, plasma or serum 

proteome10–12, and metabolome13–14, among other techniques. Often, in such studies, 

gestational age at venipuncture was used as a physiologic endpoint to assess the reliability 

of the omics platforms and to gauge their suitability prior to attempting the prediction 

of pathology such as preterm birth and preeclampsia5, 7–8, 10, 15–17. While the optimal 

blood omics platform to use in pregnancy is still a subject of research and may depend on 

the condition of interest, our earlier work suggests that plasma proteomics may have an 

advantage over cellular RNA for predicting spontaneous preterm birth5.
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Blood proteins were shown to be comprehensive indicators of human health as they are 

purposefully secreted as effectors of biological processes or they leak into circulation upon 

cell damage or death 18–19. In pregnancy, in particular, proteins can also enter into the 

circulation from gestational tissues and therefore may reflect maternal adaptations to the 

developing fetus. For instance, human chorionic gonadotrophin (hCG) in human blood 

has allowed the early detection of pregnancy20–30, while maternal alpha fetoprotein31–34 

is being used for biochemical screening of congenital anomalies35–42. Proteins with high 

modulation in the maternal circulation during normal pregnancy, including pro-angiogenic 

placental growth factor (PlGF) and anti-angiogenic vascular endothelial growth factor 

receptor (VEGFR)-1, also known as soluble fms-like tyrosine kinase-1 (sFlt-1), were 

shown to be dysregulated in preeclampsia43–54, fetal death55–56, SGA57, and maternal floor 

infarction52, 58–59. Increasing sensitivity and specificity of prediction of such pregnancy 

complications would however require identification of additional biomarkers.

To enable highly multiplexed profiling of the human proteome, an aptamer-based platform 

was developed60–61 and utilized in obstetrics by our group and others for proteomic profiling 

of the maternal plasma5, 10–12, 16 and amniotic fluid62, among many other proteomic studies 

in pregnancy63–64. The recently expanded version of the SomaScan® platform v4.1, which 

allows simultaneous profiling of 7,288 proteins, i.e. over one third of the human proteome65, 

has not been applied in obstetrics. Therefore, we sought to 1) evaluate this high-throughput 

proteomic platform in pregnancy and define the expected protein values for gestational 

age and maternal characteristics, and 2) to determine the accuracy of the proteomic 

profiles for prediction of gestational age and time from venipuncture to spontaneous term 

delivery. We believe that such contribution has the potential to enable the development and 

implementation of predictive models in obstetrics.

MATERIALS AND METHODS

Study Design

Based on a prospective longitudinal biomarker study 54, 66, we conducted a retrospective 

analysis of 528 plasma samples collected from 91 women who had a normal pregnancy. 

Only singleton pregnancies without major medical or surgical complications, who delivered 

an appropriate-for-gestational-age infant, with a birthweight between the 10th and 90th 

percentiles, without major congenital anomalies were included in the study. Patients were 

enrolled at the Center for Advanced Obstetrical Care and Research of the Perinatology 

Research Branch, NICHD, the Detroit Medical Center, and Wayne State University. For each 

of the 91 women, 3 to 7 plasma samples were obtained from the first trimester up to two 

days before the spontaneous onset of term labor [median number of samples=6, interquartile 

range (IQR)=5–6]. Blood samples were collected in tubes containing EDTA and plasma was 

separated by centrifugation (1300 × g, 10 min). Plasma samples were immediately stored 

at −80 °C until proteomic analysis. Maternal plasma protein abundance was determined by 

using the SomaScan® platform v4.1 and its reagents.

All patients provided written informed consent, and the use of biological specimens and 

clinical and ultrasound data for research purposes was approved by the Institutional Review 

Boards of Wayne State University and NICHD.
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Proteomics Techniques

Maternal plasma protein abundance was determined by using the SomaScan® platform v4.1, 

which is based on SOMAmer® (Slow Off-rate Modified Aptamer) reagents. This platform 

allowed multiplexed quantification of 7,288 analytes corresponding to 6,596 unique human 

protein targets in maternal plasma samples60–61, 67. Of these, 88.7% of proteins had one 

single assay, 10.4% had two, and less than 1% of proteins had 3 to 9 assays present on the 

platform. The experiments were run in batches of up to 85 samples per plate.

The plasma samples were diluted and then incubated with the respective SOMAmer® mixes 

pre-immobilized onto streptavidin-coated beads. The beads were washed to remove all non-

specifically bound proteins and other matrix constituents. Proteins that remained specifically 

bound to their cognate SOMAmer® reagents were tagged by using an NHS-biotin reagent. 

After the labeling reaction, the beads were exposed to an anionic competitor solution that 

prevents non-specific interactions from reforming after dissociating.

Using this approach, pure cognate-SOMAmer® complexes and unbound (free) SOMAmer® 

reagents are released from the streptavidin beads using ultraviolet light that cleaves the 

photo-cleavable linker. The photo-cleavage eluate, which contains excess anionic competitor 

and all SOMAmer® reagents (some bound to a biotin-labeled protein and some free), was 

separated from the beads and then incubated with a second streptavidin-coated bead that 

binds the biotin-labeled proteins and the biotin-labeled protein-SOMAmer® complexes. The 

free SOMAmer® reagents were then removed during subsequent washing steps. In the final 

elution step, protein-bound SOMAmer reagents were released from their cognate proteins, 

using denaturing conditions. These SOMAmer® reagents were then hybridized to custom 

DNA microarrays. The Cyanine-3 signal from the SOMAmer® reagent was detected and 

measured on microarrays60–61, 67. Proteomics profiling was performed by SomaLogic, Inc. 

(Boulder, CO). In addition to the SomaScan® platform data generated herein, data for PlGF, 

sFlt-1 and soluble endoglin (sEng) were previously determined by immunoassays (R&D 

Systems, Minneapolis, MN, USA).48 The inter- and intra-assay coefficients of variation of 

the assays were 1.4% and 3.9% for sFlt-1, 2.3% and 4.6% for sEng, and 6.02% and 4.8% 

for PlGF, respectively. The sensitivity of assays were 16.97 pg/ml for sFlt-1, 0.08 ng/ml for 

sEng, and 9.52 pg/ml for PlGF. Sample collection methods, biospecimen processing, and 

validation of the assays used were previously reported in greater detail 54, 68.

Statistical Analysis

Data reproducibility: The proteomic data preprocessing, including an adaptive 

normalization by maximum likelihood (ANML) step and a calibration step, were performed 

by SomaLogic, Inc. The goal of these steps was to make data comparable across samples 

by calculating plate-specific and analyte-specific scale factors. Based on such scale factors, 

a quality control flag was assigned to each sample and each analyte67. Using preprocessed 

data for samples and analytes that passed quality controls, the Spearman’s correlation 

coefficient and coefficient of variation for each protein were determined based on 14 

samples collected from 2009–2010 and profiled in duplicates in different batches. These 

samples spanned the full range of gestational ages considered (10.4–39.4 weeks), capturing 

gestational age-related variability in the proteome, and hence provided an opportunity to 
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observe correlations between duplicate values. The coefficient of variation from duplicates 

was determined by a method that accounted for the measurement error being potentially 

dependent on the mean protein abundance69. Proteomic data and sample annotation 

is available from the Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE206454).

Determining sources of variability in the meta-proteome: The proteome data for 

all 519 samples and 6,277 analytes that passed quality checks were analyzed using principal 

components (PC) analysis to reduce the dimensionality of the proteins to a few PCs (meta-

proteins) using the pca function in the PCAtools R package. Next, the eigencorplot function 

from the same package was used to determine Pearson’s correlation coefficients between 

each PC and maternal characteristics and gestational age. A p-value <0.05 was considered a 

significant result.

Differential abundance analysis: Protein abundance expressed as relative fluorescence 

units (RFU) was log (base 2) transformed to improve normality. Linear mixed-effect models 

with quadratic splines (one knot) were used to model protein abundance as a function of 

gestational age. Briefly, such a model assumes that log2 protein data throughout one-half of 

the gestational age span can be adequately modeled using a quadratic function of gestational 

age. Maternal age, parity, body mass index (BMI), and smoking status were considered 

as covariates and retained if they improved the model fit for a given protein. Covariate 

selection was based on the significance (p<0.05) of likelihood ratio tests implemented in 

the glmerselect function available in the StatisticalModels package under the R statistical 

language and environment (www.r-project.org). The models included patient identifiers 

as random effects to account for the repeated and likely correlated measurements from 

the same patient. Protein abundance was considered to have changed significantly with 

gestational age if the fold change was >1.25 and false discovery rate (FDR)70 adjusted 

p-value (q-value) was <0.1. Fold change was defined as the ratio of highest to lowest mean 

protein abundance across the 9 to 40 weeks gestational age span. Linear mixed-effects 

models were fit using the lme4 package71.

Clustering proteins by average profile: The expected protein abundances determined 

by linear mixed-effects models across the 9 to 40 weeks of gestational-age span were used 

to perform hierarchical clustering of protein trajectories. A correlation distance measure was 

used in the clustering so that proteins with a similar trend vs. gestation but possibly different 

magnitude of changes were clustered together. Clustering was performed with the WGCNA 
package72.

Gene ontology enrichment analysis: Proteins were mapped to Entrez gene database73 

identifiers based on SomaLogic, Inc. protein annotation, and then to gene ontology74. 

Biological processes over-represented among a given list of proteins (e.g. those differentially 

expressed with gestational age) were identified by using Fisher’s exact tests. Gene ontology 

terms with three or more hits and having an adjusted enrichment q-value <0.1 were 

considered significantly enriched. Enrichment analysis was performed with the GOStats 
package75 in Bioconductor76. The reference list used in all enrichment analyses was the 
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list of genes corresponding to the proteins profiled in the study, which is in line with best 

practices in the field77–78. This ensures that the enrichment we attributed to differential 

abundance with advancing gestation is not confounded by any biases in the design of the 

SomaScan platform relative to the universe of all known human proteins.

Quantification of single cell RNA-seq signatures of the placenta: To quantify the 

expression of previously defined signatures of cell sub-types identified by single cell RNA 

studies of the placenta79, we have first selected the RNAs specific (most highly abundant 

20 RNAs) to a given cell type that had a corresponding protein in our dataset. Then, the 

log2 protein abundance was transformed into a Z-scores based on the mean and standard 

deviation observed in samples at 8–16 weeks for each protein. Average Z-scores for each 

signature were used as a summary and further tested for association with gestational age 

at venipuncture using the same types of linear mixed-effects models described above for 

analysis of data of individual proteins.

Prediction of gestational age and time from sample to delivery: Predictive 

models for gestational age at venipuncture were based on all samples profiled, while 

prediction of time from venipuncture to delivery was limited to samples from patients who 

had a spontaneous term delivery. Prediction models were fit and evaluated using a leave-one-

out cross-validation procedure. With this approach, a random forest model80 was fit using 

data from all but one patient including all corresponding longitudinal samples, and it was 

then applied to the data of the patient left out during model training. Lasso regression81, 

a procedure designed for fitting a continuous response variable (e.g. gestational age) using 

more predictors (i.e. proteins) than available samples, was utilized for multi-variate protein 

selection, and data for the selected proteins were used as input in random forest models. 

Prediction performance metrics were the Pearson correlation coefficient between actual and 

predicted values. The root mean squared error, i.e., the standard deviation of prediction 

errors (error=actual - predicted), and mean absolute error were also determined to enable 

direct comparison with previous reports. Lasso regression and random forest models fitting 

were implemented in glmnet and randomforest packages, respectively under the R statistical 

language and environment.

RESULTS AND DISCUSSION

Proteomic signals in the maternal blood are known to be correlated with both physiologic 

and pathologic endpoints in pregnancy. Large studies of maternal blood proteins were 

based on targeted profiling of specific angiogenic (PlGF) and anti-angiogenic factors 

(sFlt-1 and sEng)52, 61, 82, or targeted profiling of pro-inflammatory proteins, cytokines, 

and chemokines83–85. Given the sub-optimal performance of current biomarkers for early 

prediction of obstetrical complications, high-throughput discovery platforms have been 

proposed to identify novel candidate biomarkers. Using earlier versions of the SomaScan® 

platform, measuring up to 1,310 proteins (v2 and v3), physiologic changes with gestational 

age12, as well as pathologic perturbations in preeclampsia10–11, 16, placenta accreta 

spectrum86, and spontaneous preterm birth5, have been reported, hence spurring the interest 

in this omics platform. In the current study, we utilized the SomaScan® platform v4.1 to 
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generate data for 7,288 proteomic assays in blood samples collected longitudinally from 

pregnant women throughout gestation.

Characteristics of the Study Population

The study population included 91 pregnant women, 32% (29/91) of these were nulliparous, 

the median maternal age was 23 years (IQR: 20–26), and the median BMI was 25.8 kg/m2 

(IQR: 22.5–30.5). All patients delivered at term gestation [median gestational age of 39.6 

(IQR: 38.8–40.7) weeks] appropriate-for-gestational-age87 neonates with a median birth 

weight of 3,400 (IQR: 3,137.5–3,702.5) grams (see Supplementary Table 1). The generation 

of data in a majority (92%) African-American population is important given the higher rate 

of pregnancy complications in this group of women. However, a more diverse cohort would 

have been ideal.

Proteomic Data Reproducibility

Of the 528 samples profiled, data for 519 (98.3%) of the samples passed the quality control 

checks, while of the 7,288 human protein assays, 6,277 (86%) passed the calibration filter 

and were included in the analyses. Based on data collected from 14 duplicate samples, 

the median of the Spearman’s correlation coefficients of protein abundance was 0.77 

(IQR 0.64%-0.87%), and of the coefficients of variation was 7% (IQR 4.5%-11.4%). Of 

importance, the coefficients of variation were below 20% for 93% of the assays. The median 

coefficient of variation found herein was somewhat higher than the 5% previously reported 

for a lower level of multiplexing of 4,000 proteins88. This can be explained in part by the 

higher multiplexing, the longer storage duration of the blood samples prior to profiling, 

and perhaps the lower biological variability in the current study compared to that in the 

study of Tin et al. 88 which included both male and females of various ages. Longer storage 

time is expected to negatively affect the reproducibility, while higher biological variability 

is essential to put in perspective the magnitude of technical noise in the data relative to 

biological variability.

Moreover, the proteomic data from the SomaLogic SomaScan® Platform v4.1 was well 

correlated with enzyme-linked immunosorbent assay (ELISA)-based measurements for key 

biomarkers in pregnancy, including PlGF (ρ=0.87) and sFlt-1 (ρ=0.77), but only modestly 

for sEng (ρ=0.38) (p<0.001 for all Figure 1).

The high correlation of individual patient data between SomaScan and ELISA-derived 

data for PlGF and sFlt-1, currently used in screening to prevent preeclampsia89–90, further 

supports the utility of this platform for research in obstetrics. The lower correlation between 

ELISA-based concentrations and SomaScan for sEng may be reflective of differences 

in epitopes being recognized between technologies and possible modifications such as 

misfolding, protein-protein interactions, and impact of genetic variants in protein structure. 

ELISA-based sEng was shown to add predictive value relative to PlGF and sFlt-1 

when distinguishing between women with chronic hypertension from those who develop 

superimposed preeclampsia54, and therefore, further studies on the value of SomaScan-

derived sEng measurements in obstetrics is warranted.
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Global Sources of Variation in the Maternal Plasma Proteome

Next, we aimed to assess the primary sources of variability in the plasma proteome 

by deriving PCs and correlating such meta-proteins with gestational age at venipuncture 

and maternal characteristics. We found a substantial modulation of proteomics data with 

advancing gestational age and, to a lesser extent, with maternal characteristics (Figure 2). 

Six of the top 10 PCs (ranked by % of variance explained), which explained 38% of 

the variance in the data (Figure 2A), were significantly correlated with gestational age at 

venipuncture (p<0.05 for all) (Figure 2B). As an example, the Pearson correlation of the 

PC4 and gestational age was ρ=0.66, and PC6 was ρ=0.36 (Figure 2 B, C, D). PCs derived 

from proteomics data were also correlated with maternal BMI (7/10 PCs), parity (5/10 PCs), 

and maternal age (2/10 PCs) (p<0.05 for all), although the magnitude of such correlations 

was lower than that observed for gestational age at venipuncture (e.g., Pearson ρ=−0.24 for 

PC3; ρ=−0.22 for PC4 for correlation with BMI) (Figure 2, B, E, F).

Protein Level Changes with Gestational Age

Subsequently, we analyzed the data from individual proteomic assays in relation to 

gestational age and maternal characteristics by fitting multivariate linear-mixed effects 

models. Of the 6,277 human protein targets that passed quality control filters, 953 (15.2%) 

changed in abundance as a function of gestational age while accounting for maternal 

characteristics (fold change >1.25 and q-value <0.1) (Figure 3a, Supplementary File 1 and 

Supplementary File 2).

The sizable fraction of the maternal plasma proteins modulated in abundance as a function 

of gestational age in normal pregnancy can be understood as protein abundance reflects 

both fetal development and maternal adaptations throughout gestation. This result is in line 

with the previously reported estimate (10% of proteins modulated during gestation), when 

considering that the later estimate was obtained using more conservative cut-offs (q<0.1, 

fold-change >1.5)12. The fraction of blood proteins modulated with advancing gestation 

that we report herein is about one order of magnitude higher than that in whole blood 

RNA (2.3%) determined in a similar population based on comparable sample size, modeling 

methods, and the same significance cut-offs91. This suggests that the plasma proteome could 

be a more abundant source of disease biomarkers relative to the cellular transcriptome, given 

the known association between modulation with advancing gestation in normal pregnancy 

and dysregulation in obstetrical disease, such as preeclampsia (odds ratio = 4.3)11.

The log2 fold changes in protein abundance with gestational age were highly correlated 

with estimates derived from an independent set of patients profiled by using a lower 

throughput version (v3) of the SomaScan® platform12. This finding was based on all 

proteins with significant change with gestational age in the current study that were also 

measured in Romero et al. 201712 (N=255 proteins, ρ=0.89, p<0.01, see Figure 3B). Not 

only specific proteins were confirmed herein to be highly modulated with gestational age 

(>5-fold change), such as PlGF, Siglec-6, glypican-3, and Prolactin, but also the magnitude 

of changes were highly correlated between studies, hence providing an in-silico validation 

of the current results, despite a small fraction [9.4% (24/255)] of proteins with opposite 

direction of change between studies. However, the current study has identified almost 9-fold 
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as many proteins changing with gestational age than in the previous report12. Notably, 

several proteins assayed by the newly developed SomaScan® v4.1 platform, but not by the 

previous platform version, were highly modulated with gestational age and were placenta- 

and decidua-specific. These included: ABP1 (amiloride-sensitive amine oxidase, copper-

containing), DLK1 (Protein delta homolog 1), EMBP (bone marrow proteoglycan), IGSF3 

(immunoglobulin superfamily member 3), and SVEP1 (sushi, von Willebrand factor type A, 

EGF, and pentraxin domain-containing protein) (fold change >5 for all, see Supplementary 

File 1).

SVEP1, a protein highly expressed in the human placenta92, has been characterized 

as an extracellular matrix protein important for cell adhesion92 and plays a role 

in lymphangiogenesis93–94, septic shock95–96 and endotoxinemia97, atherosclerosis, and 

coronary artery disease98–100. ABP1, also called diamine oxidase (DAO), is regulated by 

estrogens and is mainly localized in the decidua101–102. Maternal plasma ABP1 levels 

rise exponentially during the first 20 weeks of gestation and are potentially indicative of 

fetoplacental integrity103–104. IGSF3, also known as EWI-3, is widely expressed in the 

placenta, kidney, and lung. Although placental gene expression of IGSF3 has been described 

in a rat model of placental insufficiency105, data in pregnant human subjects are lacking. 

Pregnancy-associated plasma protein A (PAPP-A) and the proform of eosinophil major 

basic protein (EMBP) are produced by the placenta.. EMBP has been implicated in placenta-

mediated obstetrical syndromes such as preeclampsia106, SGA107, and preterm birth108. 

DLK1, also known as fetal antigen 1 and pre-adipocyte factor 1, is a transmembrane protein 

encoded by the DLK1 gene expressed in the placenta, yolk sac, fetal liver, adrenal cortex, 

and pancreas and in the beta cells of the islets of Langerhans in the adult pancreas109. In 

the placenta, DLK1 is specifically expressed by the stromal cells of the villi that are in close 

contact with the vasculature109–110 and has been identified as a potential biomarker of fetal 

growth restriction111–112.

Distinct Types of Longitudinal Trajectories and Functional Profiling

Given the complex patterns of protein abundance modulation during normal pregnancy (see 

examples in Supplementary File 2), we sought to identify clusters of proteins based on 

the similarity of their longitudinal trajectories. Figure 4 depicts the trajectories of the top 

50 most highly modulated proteins in each of the three protein clusters identified in this 

analysis.

Cluster 1 includes 249 proteins with a trajectory characterized by a steady increase 

in abundance throughout gestation. Member proteins were specifically associated with 

regulation of growth, angiogenesis, immune (e.g., T-helper 1 type immune response) 

and inflammatory processes (e.g., regulation of macrophage cytokine production) (Figure 

5, Supplementary File 3). Cluster 2 includes 151 proteins with trajectories that had 

an early decrease or remained unchanged early in pregnancy followed by an increase 

later in pregnancy. Cluster 2 proteins were involved in the regulation of blood vessel 

remodeling, response to steroid hormone, and metabolic and catabolic processes (Figure 5, 

Supplementary File 3). Cluster 3 includes 522 proteins that demonstrate an overall decrease 

in abundance throughout gestation and were associated with various processes ranging from 
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immune and defense response to hemostasis. The complexity of immune and inflammatory 

processes regulation is highlighted by the involvement of proteins with both increasing 

(Cluster 1 and 2) and decreasing (Cluster 3) trajectories (Figure 5).

Placental Single-Cell RNA Signatures are Modulated with Advancing Gestation

We have next evaluated whether the meta-proteome corresponding to RNAs specific to 

previously described placental-derived cell types changes with advancing gestation and 

hence can provide a non-invasive molecular readout of their activity in the placenta. Figure 

6 shows that the activity of placental cell types undergoes a complex modulation as captured 

by the corresponding plasma protein abundance. Among the top ten single-cell signatures 

most strongly associated with gestational age, the signatures of B cells, cytotrophoblasts, 

dendritic macrophages, extravillous trophoblast, and stromal cells were increased, while the 

signatures of hematopoietic stem cell and monocytes were decreased (q<0.1). The decidual 

cell signature displayed a complex pattern of modulation culminating to an increase at 

term gestation (Figure 6). Tracking placental single cell signatures throughout gestation was 

previously shown using amniotic fluid cell free RNA113 and maternal blood cell free6 and 

cellular RNA114. Here we show that maternal plasma proteome also captures placenta cell 

population activity during gestation.

Prediction of Gestational Age at Venipuncture and of Time-from-Sample-to-Delivery

Given the strong modulation of maternal plasma proteins during normal pregnancy, we 

sought to determine whether gestational age could be ascertained by using machine 

learning methods based solely on proteomic profiles of pregnant women. Indeed, random 

forest models, trained using proteins selected by lasso regression and evaluated via cross-

validation, significantly predicted the gestational ages at venipuncture in patients not 

included during protein selection and model training (test sets). The Pearson correlation 

between actual and predicted gestational ages was 0.92 (p<0.001), the root mean squared 

error (RMSE) of predictions was 3.1 weeks, and the mean absolute error (MAE) was 

1.99 weeks (Figure 7A). Of note, the samples with the largest (top 10%) gestational age 

prediction errors, among those shown in Figure 7A, did not tend to cluster by patient, nor by 

specific maternal characteristics, suggesting lack of systematic biases.

We next used the proteomics data to predict the time from venipuncture to delivery using 

the data form 334 samples collected from the subset of 61/91 women included in the study 

who had a spontaneous term delivery, hence excluding the cases for whom the pregnancy 

was truncated by a selective cesarean section. The accuracy of the random forest model 

for this analysis was similar to that of the model for prediction of gestational age (Pearson 

correlation 0.92, p<0.001; RMSE=3.0 weeks; MAE=2.15 weeks, Figure 7B). This suggests 

that eventual biases in the gold standard of gestational age, defined by last menstrual period 

(LMP) and ultrasound, were minimal. The fraction of term deliveries predicted within one 

week of the actual delivery was 26%, 33%, and 43% based on samples collected in the first, 

second, and third trimesters, respectively, while LMP and ultrasound-based accuracy was 

57%, almost identical to the 55.1% reported in the literature115.
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Finally, when 42 of the best protein predictors of time from venipuncture to a term delivery 

identified herein, that were also profiled in Romero et al. 201712, were used to predict time 

from sample to delivery in the Romero et al. 2017 dataset, the cross-validated prediction 

was still high (Pearson correlation 0.95, RMSE=2.99 weeks; MAE=2.35 weeks), suggesting 

external validity of the protein signature predicting time from sample to delivery in the 

absence of obstetrical disease. The correlation between the plasma proteome and the time 

from venipuncture to delivery assessed via multi-variate models (Pearson correlation of 

predicted vs. actual, ρ=0.91) was stronger compared to estimates obtained using an unbiased 

analysis of whole blood transcriptome via microarrays (ρ=0.83)5. This is in line with 

previous evidence of higher accuracy for the plasma proteome compared to whole blood 

transcriptome for prediction of subsequent spontaneous preterm birth based on analyses 

of the same blood samples5. SomaScan-based prediction of time from sampling to term 

delivery, however, was similar to estimates reported based on more than 100 placenta-, 

immune-, and fetal liver-specific cell-free RNAs profiled by real-time polymerase chain 

reaction in maternal circulation (ρ=0.89)7. The stronger prediction reported in the studies 

that used cell-free RNA compared to those using cellular transcriptomics can be explained 

by the fact that cell-free transcripts are more likely to be derived from the placenta, 

fetus, and maternal reproductive tissues116, and also by the targeting of analysis based on 

biological plausibility. Indeed, when only proteins found herein to be predictive of time from 

sampling to delivery were used to narrow the pool of candidate predictor proteins in the 

Romero et al. 2017 dataset12, the accuracy was slightly better (Pearson correlation 0.95) 

compared to the estimate (Pearson correlation 0.92) obtained using an unbiased analysis. 

Other approaches to narrow the search of biomarkers based on omics profiles leverage single 

cell-derived signatures of the placenta6, 79, 113–114, 117–118.

The Effect of Maternal Characteristics on Protein Abundance

Among all the maternal characteristics and obstetrical history covariates considered, the 

maternal BMI had the strongest effect on the plasma protein abundance. Indeed, of the 

6,277 human protein targets that passed quality control filters, 211 (3.4%) were significantly 

associated with BMI. These included fatty acid-binding protein (FABP), leptin, insulin-like 

growth factor-binding protein 1 (IGFBP-1), PlGF, and matrix metalloproteinase (MMP)-7 

(q<0.1, Supplementary File 4). The top two proteins in this analysis, FABP3 and LEP 

(Supplementary File 4), were also among the top three most important predictors the 

percentage body fat out of 4000 proteins profiled with the SomaScan® platform in an 

independent study of 6,000 individuals18. Leptin, an appetite and metabolism regulator18, 

was described also as a marker of placental function119, and was implicated in several 

pathologies in pregnancy such as gestational age diabetes120 and preterm delivery121. 

FABP3, expressed in adipocytes, is strongly linked to metabolic and inflammatory 

pathways18. Biological processes associated with BMI-modulated proteins included eating 

behavior, response to nutrient levels, regulation of growth, and inflammatory-related 

processes. In multivariate models, nulliparity was associated with an increase in Trefoil 

factor 3 (TFF3) and Serine/threonine-protein kinase (DCAK1) and with a decrease in 

Mesoderm development candidate 1 (MESD1). Moreover, maternal age was associated with 

a decrease in Collagen alpha-2(XI) chain (COL11A2) and with an increase in Spectrin 

alpha chain, non-erythrocytic 1 (SPTA2). These results suggest that among maternal 
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characteristics, maternal BMI, in particular, needs to be accounted for in analyses involving 

pathology to avoid confounding of effects.

Proteomic Standards to Enable the Discovery of Disease-Related Proteomic Perturbations

Last, given the current and potential use of maternal plasma protein dysregulation in 

predicting obstetrical complications, we sought to generate proteomic standards that would 

allow the comparison of data across studies and enable the discovery of new disease-

related protein perturbations. To this end, we fitted the protein relative fluorescence data 

(log2 thereof) as a function of gestational age and maternal characteristics so that the 

expected levels could be determined and used to derive multiple of the mean values. The 

approach to convert raw protein concentration data into multiples of the mean or median 

for gestational age and maternal characteristics and obstetrical history is currently being 

used in obstetrics as a way to overcome assay- and population-specific biases122–125. For 

instance, for preeclampsia screening, the a priori risk of disease can be derived from 

maternal characteristics and obstetrical history (prior risk factors). This risk estimate, is 

then combined with biomarker-based risk scores that need to be independent of prior risk 

factors so that the two probabilities can be combined into a posterior risk of developing the 

disease54, 82, 126.

The proteomics standards proposed herein were implemented and made available as an 

R software package called SomaPreg, which is available from the author’s website at 

http://bioinformaticsprb.med.wayne.edu/software/ and also as Supplementary File 5. The 

functionality of the software package is illustrated in Figure 8 and Supplementary File 

6. Blood sample annotation data, paired with normalized proteomic data (RFU) are used 

as inputs (Figure 8A). The expected proteomic abundance is determined from prediction 

models stored in the software package. Such models also allow exploring the effect 

of maternal characteristics (Figure 8B) and calculating multiple of the mean values for 

gestational age and maternal characteristics (Figure 8C). This functionality encapsulated in 

the SomaPreg package is expected to facilitate the discovery of proteomic disease signatures 

and the implementation of risk prediction models by removing physiologic variability from 

proteomic signals.

Previous work suggested that the normalization of RFUs via internal control samples present 

on the SomaScan® platform already allows for a significant prediction of gestational age 

at venipuncture across batches and cohorts16. However, prediction of preeclampsia across 

cohorts was not feasible, likely due to the heterogeneity of the disease and much weaker 

within-cohort proteomic dysregulation with preeclampsia than that with gestational age. 

Improving cross-cohort prediction of disease based on biomarkers requires transforming the 

data into multiple of the mean (MoM) values to account not only for gestational age but also 

maternal characteristics that affect such measurements in control pregnancies. Risk models 

in pregnancy based on MoM-transformed biophysical and biochemical data were previously 

described54, 82, 90, 127.
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CONCLUSIONS

Herein, we have presented the most comprehensive characterization of the maternal 

plasma proteome in normal pregnancy. The proteome undergoes dramatic modulation with 

advancing gestation and is substantially affected by maternal body mass index. The models 

we have proposed and implemented in freely available software may enable the discovery 

of disease-related perturbations and the implementation of disease-prediction models in 

obstetrics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS

ANML adaptive normalization by maximum likelihood

APB1 amiloride-binding protein 1

BMI body mass index

DAO diamine oxidase

DLK1 delta-like homolog 1

ELISA enzyme-linked immunosorbent assay

EMBP bone marrow proteoglycan

FABP fatty acid-binding protein

FDR false discovery rate

hCG human chorionic gonadotrophin

IGSF3 immunoglobulin superfamily member 3

IQR interquartile range

LMP last menstrual period
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MAE mean absolute error

MMP matrix metalloproteinase

MoM multiple of the mean

PAPP-A pregnancy-associated plasma protein A

PC principal component

PlGF placental growth factor

RFU relative fluorescence unit

RMSE root mean squared error

sFlt-1 soluble fms-like tyrosine kinase-1

sEng soluble endoglin

SGA small for gestational age

SOMAmer® slow off-rate modified aptamer

SVEP1 sushi, von Willebrand factor type A, EGF, and pentraxin domain-

containing protein 1

VEGFR vascular endothelial growth factor receptor
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Figure 1: Agreement between ELISA and SomaScan® measurements for key angiogenic and 
anti-angiogenic proteins.
Protein abundance for 515 samples are shown, with one dot for each sample. The SomaScan 

relative fluorescence units in (log, base 2) (y-axis) is shown vs. ELISA based concentrations 

(log, base 2) (x-axis) for sFlt-1 (A), PlGF (B) and sEng (C). ρ is the Spearman’s correlation 

coefficient. Correlation test p<0.001 for all three proteins.
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Figure 2: Principal component analysis of 6,277 proteins and correlation with gestational age 
and maternal characteristics.
Protein abundance in relative fluorescence units (log, base 2) was analyzed using principal 

components (PC) analysis. The resulting principal components can be understood as meta-

proteins. A) The % of variance explained by each principal component is shown as a 

scree plot. (B) The top 10 principal components were correlated with maternal age, parity, 

gestational age (GA) and body mass index (BMI). The heatmap shows Pearson correlation 

coefficients between PC and covariates (significance levels: *<0.05, **<0.01, ***<0.001). 

The correlation between PC4 (C) and PC6 (D) with gestational age is also shown, with each 

dot representing one sample. Similar correlations are shown for PC3 (E) and PC4 (F) in 

relation with BMI.
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Figure 3: Proteomic changes with advancing gestation in normal pregnancy.
The volcano plot (A) shows the significance (y-axis) vs. magnitude of change (x-axis) for 

each protein. Protein with significant modulation (adjusted p-value, q <0.1 and fold change 

>1.25, N=953 proteins) are shown in red. The names of a select set of most significant 

proteins are also displayed. The correlation between fold changes (log, base 2) from 10 

weeks to 32 weeks of gestation and similar results based on Romero et al. 2017 study 

is shown for 255 proteins deemed significant in this study and profiled in Romero et al. 

2017 using SomaScan® platform v3. The gene symbols of the top increased and decreased 

proteins with concordant direction of change between studies are listed in the figure. The 

same is true for top three proteins with the most discordant fold change between studies.
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Figure 4: Maternal plasma proteomic trajectories throughout gestation.
The figure shows three clusters of proteins with steady increase (A), slow increase or 

decrease early in pregnancy followed by an increase later in pregnancy (B), and overall 

decreasing trend (C). The 50 proteins most representative of each cluster are shown, with 

names displayed representing corresponding gene symbols. See Supplementary File 2 for a 

depiction of the raw data used to derive the protein trajectories for selected proteins.
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Figure 5: Biological processes associated with maternal plasma protein modulation with 
gestational age.
The Venn diagram shows the overlap in biological processes significantly associated 

with differentially modulated proteins for each cluster illustrated in Figure 4. See also 

Supplementary File 3 for the full list of biological processes associated with gestational age 

modulation. The list of the top 10 biological processes (ranked by enrichment p-value) for 

each Venn diagram category is shown in a table.
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Figure 6: Maternal plasma proteomic trajectories of single-cell signatures throughout gestation.
For each placental single-cell signature the average Z-score of member proteins is 

shown as a function of gestational age. The gene symbols corresponding to each 

signature are: Synciotrophoblasts (KISS1, CSH1, TFPI2, CGA, GH2, PSG3, PSG2, PSG1, 

HOPX, CRH, GDF15, S100P, PSG11), B cells (CD79A, CD74, RPS5), Extravillous 
trophoblast (AOC1, PRG2, IGF2, NOTUM, FSTL3, FLT1, EBI3, PAPPA2, HPGD, HLA-

G, PAPPA, ITM2B, KRT19, SERPINE2, MFAP5, HEXB, QSOX1, TPM1, TNFSF10), 

Stromal 1 (TIMP1, DLK1, COL3A1, COL1A1, TGFBI, IL1RL1, COL6A2, IGFBP3, 

DCN, COMP, SERPINE2, COL6A1), Stromal 2 (CXCL14, EGFL6, PTGDS, APOD, 

TCF21, DLK1, IGFBP3, COL3A1, PLA2G2A, COL1A1, C7, GPC3, LUM, CTHRC1, 

SERPINF1, RARRES2), hematopoietic stem cell (SPARCL1, ENPP2, EDN1, IGFBP7, 

CRIP2, A2M, SOCS3, ID1), Monocytes (S100A8, LYZ, S100A9, IL1B, S100A12, CXCL2, 
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BCL2A1, CCL3, CCL20, CXCL3, G0S2, PLAUR, FCN1, SOD2, C15orf48, EREG, 

IL1RN), Decidual (IGFBP1, LUM, DKK1, IGFBP2, DCN, RBP1, IGFBP4, PRL, IGFBP5, 

HSD11B1, IGFBP6, CD248, TIMP3, CFD), Dendritic/Macrophage 1 (APOE, APOC1, 

CCL18, CD74, SPP1, C1QC, FTL, RNASE1, CXCL3, CTSZ), Cytotrophoblasts (PAGE4, 

CGA, TINAGL1, SPINT1, SPINT2, LDHB).
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Figure 7: Prediction of gestational age and of time from sample to delivery using proteomic data.
Prediction of gestational age (A) and of time from sample to a spontaneous term delivery 

(B) is shown. Each dot corresponds to a sample. Random forest predictions are obtained 

via cross-validation, in which, data from all samples of a given patient are left out when 

selecting predictor proteins and training the model. ρ: correlation coefficient.
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Figure 8: Functionality implemented in the SomaPreg package.
Sample annotation data paired with proteomic data (RFU) (5 proteins of 7288 are shown) 

are used as input (A) to determine the expected proteomic abundance (B) and to calculate 

multiple of the mean values (MoM) for gestational age and maternal characteristics (C).
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