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Abstract

Recent self-supervised advances in medical computer vision exploit the global and local 

anatomical self-similarity for pretraining prior to downstream tasks such as segmentation. 

However, current methods assume i.i.d. image acquisition, which is invalid in clinical study 

designs where follow-up longitudinal scans track subject-specific temporal changes. Further, 

existing self-supervised methods for medically-relevant image-to-image architectures exploit only 

spatial or temporal self-similarity and do so via a loss applied only at a single image-scale, 

with naive multi-scale spatiotemporal extensions collapsing to degenerate solutions. To these 

ends, this paper makes two contributions: (1) It presents a local and multi-scale spatiotemporal 

representation learning method for image-to-image architectures trained on longitudinal images. It 

exploits the spatiotemporal self-similarity of learned multi-scale intra-subject image features for 

pretraining and develops several feature-wise regularizations that avoid degenerate representations; 

(2) During finetuning, it proposes a surprisingly simple self-supervised segmentation consistency 

regularization to exploit intra-subject correlation. Benchmarked across various segmentation tasks, 

the proposed framework outperforms both well-tuned randomly-initialized baselines and current 

self-supervised techniques designed for both i.i.d. and longitudinal datasets. These improvements 

are demonstrated across both longitudinal neurodegenerative adult MRI and developing infant 

brain MRI and yield both higher performance and longitudinal consistency.

1. Introduction

Tracking subject-specific anatomical trends over time is crucial to both clinical diagnostics 

and large-scale biomedical science. Such longitudinal imaging is especially relevant to 
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analyzing neurological patterns of growth and degeneration via brain imaging in pediatric 

and elderly populations, respectively. As tracking individual structural changes requires 

precise and longitudinally-consistent segmentation methods with scarce annotated training 

volumes, we identify two major bottlenecks in existing self-supervised biomedical image 

analysis methods which we use to motivate our work.

Learning with few annotations.

While modern imaging studies may scan hundreds to thousands of individuals, manually 

outlining volumetric structures of interest across multiple individuals for supervised 

segmentation training is prohibitively expensive. Therefore, current work focuses on 

leveraging large sets of unlabeled images to pretrain image-to-image architectures (e.g., 

the U-Net [48]), which can then be efficiently finetuned in the one or few-shot setting. These 

self-supervised methods may handcraft pre-text training objectives [10,19,45,65] or may 

attempt to pretrain the base network to be equivariant to transformationsin order to preserve 

semantic meaning as in contrastive learning in medical [9, 63] and natural image vision [2, 

25, 38, 60, 67, 68]. However, these methods typically leverage label supervision in sampling 

for their losses and impose a self-supervised loss only at a single feature scale (typically the 

encoder bottleneck or network output). Naive application of local unsupervised multi-scale 

contrastive losses [16, 44] lead to degenerate representations (Fig. 1, row A) when applied to 

both the encoder and decoder of image-to-image architectures.

Violating i.i.d. assumptions.

Further, most existing self-supervised frameworks assume i.i.d. data. Unfortunately, this 

assumption does not transfer to longitudinal studies where intra-subject temporal images are 

highly correlated. Emerging longitudinal representation learning methods focus on imposing 

temporal-consistency into the encoder bottleneck [15, 43, 66], such that the encoder learns 

representations that are aware of the order of acquisition [15] and the overall trajectory 

[43]. These methods address image-level tasks such as disease classification or progression 

and age prediction. However, their extension to pixel-level applications with image-to-image 

architectures remains unclear.

Methods.

Motivated by the above limitations, in this work, we claim that the spatiotemporal 

dependency of imaging data should be explicitly incorporated in self-supervised 

frameworks. We do so by exploiting the spatial and temporal self-similarity of local 

multiscale deep features in both encoder and decoder and further learn diverse intermediate 

representations by developing regularizations for self-supervised similarity objectives. 

Lastly, when finetuning with limited annotated data, we encourage predictions on unlabeled 

subject-wise images to be spatiotemporally consistent.

Contributions.

This work makes the following contributions: (1) It presents a longitudinally-consistent 

spatiotemporal representation learning framework to learn from image time-series; (2) To 

impose multi-scale local self-supervision while avoiding degenerate solutions, it develops 
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regularization terms on the variance, covariance, orthogonality of local features within 

the decoder; (3) To further self-supervise the fine-tuning stage, the proposed method 

encourages segmentations from adjacent timepoints on unlabeled data to be consistent; (4) 

Across three large-scale longitudinal one, few, and full-shot segmentation tasks on both 

elderly and pediatric populations, the developed framework yields improved segmentation 

performance and higher longitudinal segmentation consistency. Our code is available at 

https://github.com/mengweiren/longitudinal-representation-learning.

2. Related work

Self-supervision.

Self-supervised learning (SSL) methods aim to learn hierarchical representations from 

unannotated data, which can then be transferred to tasks operating in low-annotation 

regimes. Early work focused on pretext tasks where a handcrafted loss is used to pretrain 

networks via orientation prediction [19], context restoration [10, 45], channel prediction 

[65], among others. Given their heuristic nature and suboptimal generalization, recent work 

instead focuses on data-driven SSL losses.

Contrastive learning.

Constrastive learning [11, 22, 23, 24, 49, 55] (CL) typically transforms an input image and 

asks the embeddings of the input image and its transformation (the positive pair) to be 

close to one another and far apart from embeddings of other images (negatives) via a noise 

contrastive estimation [21, 42] (NCE) loss. While performant on image-level recognition 

tasks [12, 32], CL requires non-trivial modification to extend to pixel-level segmentation 

tasks, as described below.

Negative-free representation learning.

In several applications, true negative samples may be difficult to construct [26]. For 

example, when learning on intra-domain internal image patches [16, 44], non-local spatial 

positions may be semantically similar, but NCE objectives push their embeddings apart, 

leading to false negative pairs introducing label noise in the training objective. This draw-

back may be mitigated via data-driven SSL methods which only use positive samples and 

avoid low-diversity (or collapsed [30]) embeddings solutions via predictor networks and 

custom backpro-pogation [13,20] and careful regularization [6, 62]. However, as above, 

these methods operate on global image embeddings and require modification for pixel-level 

tasks.

Spatial self-supervision.

Towards downstream segmentation, recent work [2, 25, 35, 38, 60, 67, 68] encourages 

local single-scale features either within an image or across images to cluster semantically 

by constructing positive pairs using ground-truth labels. To incorporate local and multi-
scale spatial considerations into unpaired image translation and registration [16,44] 

imposed contrastive losses on randomly-sampled layer-wise encoder features by considering 

corresponding spatial indices as positives and all other locations as negatives. Our work 

builds on this by instead only considering temporal positives (described below) in the 
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layerwise losses alongside custom regularization which avoids low-diversity decoder 

embeddings observed with naive application in Fig. 1.

Temporal self-supervision.

SSL methods developed for video achieve high performance by exploiting temporally 

consistent transformation [5] and temporal pretext task [14, 29, 59]. However, longitudinal 

biomedical image time-series have sparser sampling (typically 2–5 timepoints/subject) and 

have greater spatial extents (volumes instead of images), which leads to distinct modeling 

considerations.

Emerging biomedical methods [15, 43, 66] enforce smooth trajectories for subject-wise 

images in the encoder latent space and deploy their methods on image-level downstream 

tasks such as disease classification and age regression. However, these methods focus 

on learning a global embedding, without a clear extension to pixel-level tasks such as 

segmentation.

Biomedical image segmentation.

Major challenges specific to biomedical segmentation include: (1) large 3D volumes; (2) 

limited sample sizes and annotations; and (3) non-i.i.d. longitudinal acquisitions tracking 

temporal anatomical changes. To these ends, conventional approaches use a combination of 

intensity-based probabilistic models and registration-driven atlas-based models [1, 27, 39, 

58]. In particular, longitudinal image analysis typically makes use of one or few longitudinal 

atlases [28, 33, 47, 51, 52], which motivates the one and few-shot segmentation settings 

benchmarked in this paper, respectively.

More recently, deep segmentation networks achieve strong performance [8, 7, 40, 41, 

48] given enough training volumes. In the low-annotation setting, weakly supervised 

methods develop custom loss functions [31,37], but may have drawbracks analogous 

to the handcrafted SSL losses described above. Fortunately, recent data-driven self and 

semi-supervised methods are well-suited to pixel-level prediction. For example, to pretrain 

an encoder for segmentation, [9, 63] develop application-specific positive and negative 

sampling strategies for contrastive training, where 2D slices from similar locations in 

registered 3D volumes across subjects constitute positive pairs. While these methods have 

been successful in their applications, they are inherently slice-based methods and are 

outperformed by well-tuned randomly-initialized 3D baselines on our datasets (Tab. 1). 

Further, these self-supervised biomedical segmentation methods do not explicitly account 

for non i.i.d acquisitions. Lastly, to our knowledge, existing longitudinal deep learning work 

developed for biomedical segmentation is currently very specific to its target application [18, 

36, 56] (for example, in tasks such as MS lesion change detection [56]) or require supervised 

pre-training on annotated cross-sectional datasets [61], whereas we develop a generic self-

supervised spatiotemporal representation learning framework for non-i.i.d. longitudinal data 

which can be applied to any downstream task in principle.
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3. Methodology

Fig. 2 illustrates the proposed framework. The base U-Net architecture is pretrained end-to-

end in a self-supervised manner with intra-subject spatiotemporal losses. On convergence, 

the pretrained network parameters serve as an initialization for training downstream local 

spatiotemporal pixel-level tasks (e.g., registration or segmentation). This work will focus 

on downstream segmentation in the one, few, and full-shot regimes. The main similarity 

loss is applied on multiscale local patches from different timepoints of the same subject, 

which attracts features in corresponding locations in separate timepoints together. The high-

dimensional U-Net features corresponding to the boxes at the same locations in Fig. 2a 

should maintain high similarity despite varying appearance. The feature regularizers (Fig. 

2b,c,d) avoid degenerate U-Net decoder embeddings in the patch similarity training and the 

output regularizer (Fig. 2e) encourages finetuning consistency on unannotated data.

Setup.

The unlabeled dataset is a collection of N subjects, where each subject has at least two 

longitudinal image acquisitions available during pretraining. During every iteration, a pair of 

images Xj
i, Xj + 1

i  are randomly sampled from subject i ∈ 1, 2, …, N  at distinct timepoints 

j and j + 1, where j ∈ 1, 2, …, T i − 1 . T i indicates the number of registered images from 

subject i, and X ∈ ℛW × H × D × C is a 3D volume of spatial dimension W × H × D and C
channels. These channels are typically multi-modality acquisitions (e.g., T1w and T2w MRI 

from the same subject).

Spatiotemporal patchwise similarity loss.

We aim to associate the local embeddings of Xj
i and Xj + 1

i  such that the representations 

are longitudinally-aware. To this end, a weight-sharing 3D U-Net G takes both images 

as input and produce a set of multi-scale CNN features v L, where each element 

vlij = Gl xj
i ∈ ℛW l × Hl × Dl × Cl indicates the output of the lth layer of interest. M feature 

vectors are then randomly sampled from the 3D spatial indices of the feature map, where 

each feature vector vlij
m  represents a local patch of the input image. These patch-wise 

activations from multiple layers of G form hierarchical representations of local regions of the 

input image.

To maximize the similarity of corresponding local features (e.g., blue boxes in Fig. 

2a) without negative samples, we use a projector MLP f and a predictor head p
and extend [13] to patchwise operation such that matching spatial indices have high 

agreement. The patchwise similarity loss between two representations is defined as 

follows: ℒ vlij
m , vlik

m = 1
2D p1, z2 + 1

2D p2, z1 , where D p, z = − p
p 2

⋅ z
z 2

, z1, z2 = f vlij
m , f vlik

m

and p1, p2 = p z1 , p z2 . The total loss is an average of all sampled patches, across multilayer 

features:

ℒsim = 1
L ∑

l ∈ 1, 2, …L

1
M ∑

m ∈ 1, 2, …M
ℒ vlij

m , vlik
m . (1)
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Architectural challenges in multi-scale representation learning.

ℒsim applied to the hidden layers of a U-Net is found to maximize patchwise similarity 

of the encoder features (as expected) but lead to low-diversity and semantically-incoherent 

representations in the decoder layers as observed from the similarity maps in Fig. 1B 

and empirical observations in App. E. We speculate that this is partially attributable to 

U-Net skip connections, which lead to a degenerate solution where the encoder learns 

representations which are good enough to minimize the decoder losses and the decoder 

layers do not have to learn useful representations which transfer. To this end, we develop 

several regularization strategies such that the decoder layers obtain diverse and semantically-

coherent embeddings.

Orthogonality.

During model prototyping, we empirically observe that low-diversity embeddings first 

originate in the U-Net bottleneck (Fig. 1B cols 4,5 and App. Fig. 14 rows 2,3) which 

are then upsampled hierarchically through the decoder. We therefore encourage decoupled 

bottleneck features between the encoder and decoder. Revisiting the U-Net skip-connection, 

the encoder features from the l-th layer ve ∈ ℛW l × Hl × Dl × Cl are concatenated with the 

upsampled decoder features vd ∈ ℛW l × Hl × Dl × Cd, followed by a convolution to attain the 

same feature dimension as ve. This yields vd = Conv Concat ve, vd ∈ ℛW l × Hl × Dl × Cl and 

by regularizing for orthogonality between ve and vd in the projector embedding space, we 

implicitly encourage vd to learn better representations instead of converging to degenerate 

solutions. The orthogonality loss is defined as

ℒO ze, zd = 1
M ∑

m ∈ 1, …M

ze
m

ze
m

2
⋅ zd

m

vd
m

2
, (2)

where ze
m and zd

m are projected representations via f at sampling location m, from the matched 

encoder/decoder layers, respectively.

Variance and covariance.

We further encourage spatial variation and channel-wise decorrelation of local decoder 

features to avoid degenerate representations. We extend the variance and covariance terms 

of [6] towards patchwise multi-layer operation and apply them to the decoder layers. A 

standard deviation loss encourages spatial feature variation above a threshold of η = 1 and is 

defined as

ℒS z = 1
k ∑

l ∈ L − k, …L
max 0, η − S zl , (3)

where S zl = Var zl + ϵ is the standard deviation of M randomly-sampled projected 

features from the l-th layer and ϵ = 10−4 is added for numerical stability. A covariance 

regularization decorrelates channelwise activations in the decoder to prevent low-diversity 

embeddings by minimizing
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ℒC z = 1
k ∑

l ∈ L − k, …L

1
n ∑

u ≠ v
C z u, v,

2
(4)

where C z = 1
n − 1 ∑i

n zi − z zi − z T  is the covariance matrix of n-D representation z and 

u, v  indicates its off-diagonal indices.

Reconstruction.

To further pretrain the decoder, we investigate reconstruction losses commonly used in 

unsupervised learning. However, as high-resolution information is passed through skip 

connections, a reconstruction loss for a U-Net is near-trivially minimized and does not 

address degenerate solutions. Therefore, inspired by denoising autoencoders [57], we 

encourage network equivariance and invariance to geometric Ag  and intensity-based 

transformations Ai , respectively, of the input image x, by modifying the reconstruction 

objective to a denoising loss as,

ℒrec = G Ai Ag x − Ag x 2
2 . (5)

Finetuning with longitudinal consistency regularization.

In longitudinal segmentation, if the finetuning data do not cover the overall age range, the 

network may perform well on the finetuned timepoints, but may perform poorly on unseen 

ages even when pretrained on unannotated data across all ages. We therefore develop a 

self-supervised longitudinal consistency regularization term applied at the network output 

during finetuning to increase the intra-subject agreement. Given registered and unannotated 

image volumes, we formulate a segmentation prediction consistency loss as,

ℒcs = 1 − Dice G xj
i , G xj + 1

i , (6)

which is minimized alongside the supervised segmentation term below during finetuning.

Total objective.

During pretraining, our overall objective function is a weighted sum of the patch similarity 

loss, reconstruction loss, and three regularizations, and is defined as,

ℒPT = λℒsim + αℒrec + μℒS z + γℒC z + βℒO z . (7)

During finetuning, we use a combined dice and cross entropy loss on supervised training 

pairs as,

ℒsup = 1 − Dice G x , y + CE G x , y , (8)

where y is the groundtruth segmentation label. Lastly, we additionally use the segmentation 

consistency loss ℒcs for non i.i.d inputs, which forms our final finetuning loss 

ℒFT = ℒsup + ℒcs.
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4. Experiments

Data and segmentation tasks.

We conduct experiments on two de-identified longitudinal neuroimaging datasets, and 

specifically design three tasks to benchmark different extents of biomedical domain gaps 

between the finetuning and testing data. The main body of this work focuses on one-shot 

segmentation using one annotated subject (a common medical image analysis setting). 

Benchmarks on few-shot and fully-supervised segmentation tasks are provided in Appendix 

A. For both datasets, we perform a train/validation/test split on a subject-wise basis 

with 70%, 10% and 20% of the participants. The validation set is used for model and 

hyperparameter selection and results are reported on a held-out test set. ANTs [3, 4] is 

used to perform inter-subject affine alignment for all experiments, followed by intra-subject 

deformable registration to obtain accurate spatiotemporal correspondence for ℒsim and ℒcs

calculation. All images are skull-stripped, bias-field corrected, and intensity-normalized. 

Further data preprocessing and splitting details are described in Appendix C.

OASIS3—OASIS3 [34] is a publicly-available dataset consisting of 1639 brain MRI scans 

of 992 longitudinally imaged subjects. Each subject has 1–5 temporal acquisitions over a ~ 

5-year long observation window, resulting in an aging cohort over the span 42 to 95 years 

which includes cognitively normal and mildly impaired individuals alongside subjects with 

Alzheimer’s Disease. On OASIS3, we tackle whole-brain segmentation using the FreeSurfer 

label convention [17]. Cross-sectional FreeSurfer anatomical segmentation was done as part 

of the data release. Observing strong temporal inconsistency (see App. C.2), we further 

perform longitudinal FreeSurfer [47] to improve the temporal consistency of the reference 

segmentation. We exclude labels that have less than 100 voxels in all subjects, which results 

in 33 labels for segmentation training and evaluation. Finetuning for one-shot segmentation 

is performed on a single FreeSurfer-annotated subject with four timepoints.

IBIS—IBIS is an infant brain imaging study, which longitudinally acquires 1272 structural 

T1w/T2w MRI from 552 infants across both controls and infants at a high-risk for Autism 

Spectrum Disorder (ASD) over a span of 3 to 36 months of age. We tackle two distinct 

tasks: subcortical segmentation (IBIS-subcort) and white/gray matter tissue segmentation 

(IBIS-wmgm). For IBIS-subcort, a multi-atlas method [54] cross-sectionally segments sub-

cortical grey matter (relevant to ASD [49]) into 13 structures of interest, which are then 

followed by manual corrections. For one-shot benchmarking, finetuning is performed only 

on a single longitudinally-labeled subject, similar to OASIS3 above. Further, we use the 

IBIS-wmgm setting to simulate a real-world use-case detailed in App. D.2. Briefly, brain 

MRI segmentation into grey/white matter is straightforward at 24–36 months of age due to 

the presence of anatomical edges in the images. However, ~6-month-old grey/white matter 

brain segmentation remains elusive without manually labeled datasets for supervision due 

to white matter myelination leading to isointense appearance at that age [53] (e.g., Fig. 2a 

and App. D.2). We therefore investigate finetuning all benchmarked methods on a single 36 

month old image which can be reliably segmented with [46] and then evaluate segmentation 

deployment with a strong domain shift on 6 month old isointense images and labels (whose 

ground truth labels are generated by a fully supervised external model [64]).
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Baselines and Evaluation Strategies.

We analyze segmentation performance and longitudinal consistency against well-tuned 

randomly initialized 2D/3D U-Nets (RandInitUnet.2D/3D) and various high-performing 

self-supervised pretraining methods. These include the pretext-task based Context 

Restoration [10], longitudinal representation learning based LNE [43], along with the 

contrastive learning based GLCL [9] and PCL [63] methods which operate on image slices. 

We also repurpose PatchNCE [44] for segmentation to evaluate its generic representation 

learning capabilities. All methods are pretrained and finetuned with both geometric and 

intensity-based augmentation, and share the same network architecture.

We quantify network performance via commonly used scores such as the Dice coefficient, 

IoU, and the 95-th percentile of the Hausdorff distance. More importantly, we also 

quantify the longitudinal agreement between intra-subject non-linearly registered temporal 

segmentations via scores such as the spatiotemporal consistency of segmentation [36] 

STCS = 2 S1 ∩ S2
S1 + S2

 where S1 and S2 are temporal segmentation predictions from non-

linearly registered input images; and the absolute symmetrized percent change [47] 

ASPC = 100 V 2 − V 1
0.5 V 1 + V 2

, where V 1 and V 2 are the volume of a structure calculated from S1 and 

S2. We also report STCS and ASPC on the groundtruth segmentations as a reference.

Implementation details.

We train a 3D U-Net [48] as the base image-to-image architecture with four levels of up/

down sampling and repeated Conv-BN-ReLU blocks (all architectural details are provided 

in App. B). The projector head consists of a 3-layer MLP with 2048 nodes per layer. 

Following [13], we apply batch normalization after each MLP, followed by ReLU activation, 

and l2 normalization of the final activation. The predictor is a 3-layer bottlenecked MLP 

with widths of 2048–256-2048. We apply geometric (left-right flip, random affine warps) 

and intensity augmentations including random blur, noise, gamma contrast enhancement. 

Additional MRI-specific augmentations with random bias field and motion artifacts are 

also applied and are followed by 1283 random spatial cropping. We use a batch size of 

3 crops and an initial learning rate of 2 × 10 −4 for both pretraining and finetuning. All 

networks are trained with the Adam optimizer (β1 = 0.9 during pretraining and β1 = 0.5
during finetuning and β2 = 0.999 in both settings) on a single Nvidia RTX8000 GPU (45GB 

vRAM). The networks are pretrained for a maximum of 30,000 steps and the best model 

based on validation performance is used for fine-tuning for another 35,000 steps, alongside 

linear learning rate decay. All experiments are run on a fixed random seed due to limited 

computational budgets. Based on the ablation analysis in Tab. 2, we empirically choose 

λ = 1, α = 10, γ = 1e − 3, β = 100 for all datasets, and use μ = 10−2 for OASIS3, μ = 10−3

for IBIS. Further details on the configurations, implementation of our method and other 

baselines are provided in Appendix B.

Segmentation and longitudinal consistency results.

Fig. 3 qualitatively demonstrates improved generalization using our method on unseen 

longitudinal data (row 1–3), especially on data displaying rapid intra-subject temporal 
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developments (IBIS-wmgm,subcort). These improvements are consistent with the 

quantitative results presented in Fig. 4/Tab. 1 which indicate both improved segmentation 

performance and longitudinal consistency. In the strong domain shift setting of IBIS-wmgm, 

we see a near ten-point increase in median dice over most baselines. With moderate 

shifts in IBIS-subcort, we see appreciable increases in performance and consistency. We 

note that brain segmentation on adult brain MRI data from OASIS3 is a comparatively 

easier task as adult neuroimages do not significantly change appearance between imaging 

sessions. Therefore, several baselines are able to match (but not exceed) the segmentation 

performance of our method on OASIS3. However, all baselines are outperformed by ours 

on all datasets in terms of longitudinal-consistency which is essential to non-i.i.d. statistical 

analysis. In particular, both our pretraining (Ours w/o ℒcs) and finetuning (Ours w/ ℒcs) 

methods show STCS and ASPC improvements over all of the compared settings. Fig. 3 

(bottom row) shows an example of temporal predictions on two unseen timepoints from 

IBIS-wmgm. The predictions from Context Restoration [10] match only the input image 

intensity and lack anatomical and longitudinal consistency, LNE [43] introduces false 

positive predictions in temporal lobe (within the orange circle), and the proposed method 

yields a more spatiotemporally and anatomically consistent segmentation. Beyond one-shot 

segmentation, we also observe gains in the few-shot and fully-supervised segmentation 

settings in Appendix A and Suppl. Tabs. 3 and 4, respectively.

Qualitative self-supervised spatiotemporal similarity.

In Fig. 1, we qualitatively examine the learned visual representations of the proposed 

method via intra-subject temporal self-similarity (C) and compare it to two of its variants 

which either use contrastive learning with unsupervised negatives (A) or negative-free 

representation learning (B). We calculate the per-layer multiscale feature self-similarity 

between the query and each key from the intra-subject feature maps at a different age 

(blue box). In row A, we see that assuming that all spatial indices not in correspondence 

constitute negative pairs leads to highly-positionally dependent representations in the 

decoder which carry low semantic meaning (e.g., in the adult data, the similarity to localize 

to the ventricles in the coronal view). By discarding all negatives in row B, we observe 

semantically-incoherent and low-diversity embeddings and artifacts in the decoder layers on 

both datasets. Finally, with careful regularization in row C, our methods discards all negative 

pairs and attains semantically and positionally relevant representations.

Ablations.

As the proposed method consists of several moving parts, an ablation analysis is conducted 

over different model configurations, hyperparameters, and loss functions, reported in Tab. 2 

consisting of average dice coefficients. The combination of all proposed components yields 

optimal results. Further ablations and baseline tuning results are reported in Appendix A.

Row A—Row A starts with a base setting where only four encoder layers from the U-Net 

are selected for ℒsim computation and a small MLP width of 256 is used for the projection 

and prediction heads. Here, IBIS-subcort and OASIS3 results are competitive with randomly 

initialized U-Net, as expected given the lack of auxiliary losses, data augmentation, and 

regularizations. However, the IBIS-wmgm experiment already shows a 2% improvement 

Ren et al. Page 10

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2023 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



over random initialization, indicating benefits of using patchwise similarity losses for better 

out-of-distribution generalization even with suboptimal setups.

Row B: With larger projector and predictor networks, we observe improvements on two out 

of three datasets, which is consistent with trends observed on natural images [12, 13].

Rows C–F: On adding decoder layers to ℒsim and introducing ℒrec alongside data 

augmentation (without any regularization), we typically observe inconsistent dataset-specific 

trends which arise from unregularized representations (e.g., Fig. 1B). We speculate that 

a poorly trained decoder (due to a lack of regularization) may be equivalent to random 

initialization in the context of pretraining for segmentation tasks. However, a combination of 

these components (Row F) leads to an appreciable increase in performance.

Rows G-K: When orthogonal regularization and/or covariance/variance regularization 

is used, we observe the best performance when they are applied together alongside 

augmentation and ℒRec. In rows J and K, we observe that different hyperparameters are 

optimal for OASIS 3 and IBIS (which already outperform all baseline methods in Tab. 1), 

which is intuitive as these are drastically different cohorts.

Row L: Finally, the overall proposed model is achieved when Lcs is added to the finetuning 

objective, which yields strong improvements for IBIS- wmgm,subcort  and maintains 

OASIS3 performance.

5. Discussion

Limitations and future work.

The presented work opens up many follow-up questions which will be tackled in future 

work: (1) Our proposed losses enable better training and performance, but require the tuning 

of several regularization weights and layer selections which may reveal dataset specific 

patterns (e.g., rows J, K in Tab. 2). The weights and layers selected here were chosen based 

on limited exploratory experiments on the validation sets due to computational budgets and 

future work will exhaustively search the hyperparameter space for optimal performance. 

(2) Our pretraining assumes accurate non-linear intra-subject registration, which may be 

non-trivial in edge cases like modalities with strong distortion and artifacts (e.g., eddy 

corruption in diffusion MRI). However, when studying pre and post-operative imaging (e.g., 

surgical excision of lesions), large topological changes break the assumptions of our model 

and will require the development of lesion-masked positive patch sampling methods. (3) We 

use a two-stage pre-training and finetuning approach and it is plausible that the proposed 

method can be reduced to a single-stage combined framework. (4) While this paper focused 

on downstream segmentation finetuning, the pretraining framework is generic to any pixel-

level task (e.g., registration) and its extension to such tasks will be explored. (5) While 

the proposed methods yield strong longitudinal segmentation consistency improvements 

across all datasets, we note that absolute segmentation performance gains in an elderly 

cohort (OASIS3) are modest in comparison to the rapidly developing infant dataset (IBIS) 

where higher gains are achieved. Future work will further investigate these performance 
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differences between populations of differing temporal trends. (6) We extended the negative-

free framework of [13] to patchwise operations for its relative simplicity and it is plausible 

that other negative-free similarity terms [6, 20, 62] may further improve results. (7) In our 

data preparation for pretraining, subject-wise image time-series were registered to a single 

time-point instead of a subject-specific template, which is known to increase statistical bias 

[47].

Limited scope.

The proposed method generically applies to medical image time-series and we do not 

anticipate negative impacts beyond those that currently exist for segmentation methods. 

However, while our tasks have impacts on understanding real-world disease mechanisms, we 

cannot claim any further insight into differences between subpopulations, as such analysis 

requires close collaboration with clinicians, neuroscientists, and biostatisticians, which is 

beyond the scope of this work.

Conclusions.

This paper addressed several open questions regarding the self-supervised pretraining 

and finetuning of image-to-image architectures on longitudinal volumes using objective 

functions which exploit both intra-subject spatial and temporal self-similarity. It developed 

a local negative sample-free framework that trains multiple multi-scale hidden layers 

of image-to-image architectures that then enabled improved downstream segmentation 

performance, all while achieving semanticallymeaningful representations via careful 

regularization of the decoder activations. During finetuning, it similarly developed a 

simple consistency-regularization objective which encourages longitudinal agreement 

between predictions on unlabeled data. When applied to large-scale neurodeveloping 

and neurodegerative longitudinal images, the proposed framework yielded improved 

segmentation performance and temporal consistency, both of which are crucial to statistical 

analyses of mechanisms of interest such as Alzheimer’s Disease (OASIS3) and Autism 

Spectrum Disorder (IBIS).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
On pretraining an image-to-image network with per-layer spatiotemporal self-supervision, 

we visualize the intra-subject multi-scale feature similarity between a query channel-

wise feature and all spatial positions within the key feature at a different age. A: 
Contrastive pretraining with unsupervised negatives [44] yields only positionally-dependent 

representations. B: Pretraining w/o negatives [11] by using corresponding intra-subject patch 

locations as positives leads to semanticallyimplausible representations with low-diversity 

(e.g., see yellow box) and artifacts (see arrows) in deeper layers. C: Our method attains 

both positionally and anatomically-relevant representations via proper regularization (e.g., 

see green box). Additional structures are visualized in Suppl. Figure 5.
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Figure 2: Overview of proposed self-supervision.
Given nonlinearly-registered temporal images of a subject, (a) we assume that 

corresponding spatial locations in various network layers should have similar 

representations. As U-Net skip connections can cause degenerate decoder embeddings (see 

App E), we (b) encourage the decoder bottleneck to be orthogonal to encoder bottleneck 

and regularize the concatenated decoder features to have (c) high spatial variance and be 

(d) uncorrelated channe-lwise. During fine-tuning, we (e) encourage temporal intra-subject 

network output consistency.

Ren et al. Page 19

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2023 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: One-shot segmentation.
Top 3 rows: Once pretrained on all unlabeled data, all benchmarked methods are finetuned 

on either a single annotated image (IBIS-wmgm) or a single annotated subject (IBIS-subcort 

and OASIS3). When deployed on other subjects at different ages, our method yields 

improved segmentation performance. Bottom row: When finetuned only on a single 36 

month-old image, our method generalizes to unseen timepoints by leveraging temporal 

consistency.
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Figure 4: 
One-shot segmentation benchmarking quantifying performance with the Dice coefficient 

(top) and the spatiotemporal consistency of segmentation (bottom), visualizing the means 

and standard deviations alongside median values overlaid on the top of each subfigure 

(higher is better). Few-shot and fully-supervised results are provided in Suppl. Tabs. 3 and 

4, respectively.
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Table 1:

One-shot segmentation benchmarking of performance (median IoU & HD95) and longitudinal consistency 

(ASPC). Further scores alongside means and std. dev. are provided in Supplemental Table 7. Few-shot and 

fully-supervised results are provided in Suppl. Tabs. 3 and 4, respectively.

Method
IBIS-subcort IBIS-wmgm OASIS3

IoU ↑ HD95 ↓ ASPC↓ IoU↑ HD95↓ ASPC↓ IoU ↑ HD95 ↓ ASPC↓

GT - - 7.819 - - - - - 3.947

RandInitUnet.2D 0.707 4.485 7.127 0.510 3.274 11.506 0.687 2.545 10.189

RandInitUnet.3D 0.720 2.892 4.644 0.560 3.788 5.515 0.715 2.206 2.789

Context Restore [10] 0.711 4.403 7.831 0.444 8.273 29.235 0.717 3.323 5.577

LNE [43] 0.736 3.033 5.866 0.563 3.201 5.352 0.726 1.988 8.836

GLCL [9] 0.718 3.203 5.514 0.550 4.112 8.472 0.695 2.264 4.622

PCL [63] 0.713 3.270 5.610 0.562 4.974 10.648 0.707 2.327 4.850

PatchNCE [44] 0.743 1.266 5.780 0.607 4.344 3.782 0.738 2.275 3.114

Ours w/o ℒcs 0.754 1.145 5.483 0.614 3.291 2.462 0.739 1.940 2.729

Ours w/ ℒcs 0.757 1.178 4.475 0.676 3.237 4.155 0.737 2.094 2.754
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Table 2:

Ablation analysis of our method over loss layers, projection+prediction layer widths (#MLP), loss functions 

ℒRec, ℒcs , use of augmentation, and hyperparameters β, μ, γ .

Exp Loss Layers #MLP ℒRec Aug. β μ γ ℒcs IBIS-subcort IBIS-wmgm OASIS3

A Enc 256 0.829(0.068) 0.733(0.062) 0.783(0.16)

B Enc 2048 0.849(0.060) 0.732(0.073) 0.809(0.13)

C Enc 2048 ✓ 0.859(0.058) 0.713(0.079) 0.811(0.13)

D EncDec 2048 ✓ 0.860(0.058) 0.718(0.066) 0.810(0.13)

E EncDec 2048 ✓ 0.858(0.060) 0.724(0.077) 0.809(0.13)

F EncDec 2048 ✓ ✓ 0.856(0.060) 0.739(0.067) 0.812(0.13)

G EncDec 2048 ✓ 100 0.857(0.062) 0.728(0.074) 0.809(0.13)

H EncDec 2048 ✓ 10−3 10−3 0.845(0.063) 0.739(0.074) 0.804(0.13)

I EncDec 2048 ✓ 100 10−3 10−3 0.859(0.056) 0.735(0.061) 0.811(0.13)

J EncDec 2048 ✓ ✓ 100 10−3 10−3 0.863(0.057) 0.758(0.062) 0.808(0.14)

K EncDec 2048 ✓ ✓ 100 10−2 10−3 0.853(0.055) 0.745(0.058) 0.813(0.13)

L EncDec 2048 ✓ ✓ 100 * 10−3 ✓ 0.870(0.052) 0.806(0.030) 0.810(0.13)

Mean dice is used for quantification on all datasets.

*μ = 10−3 on IBIS- {wmgm, subcort} and μ = 10−2 on OASIS3.
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