Skip to main content
. Author manuscript; available in PMC: 2023 Aug 23.
Published in final edited form as: Adv Neural Inf Process Syst. 2022 Dec;35:13541–13556.

Table 2:

Ablation analysis of our method over loss layers, projection+prediction layer widths (#MLP), loss functions (Rec,cs), use of augmentation, and hyperparameters (β,μ,γ).

Exp Loss Layers #MLP Rec Aug. β μ γ cs IBIS-subcort IBIS-wmgm OASIS3
A Enc 256 0.829(0.068) 0.733(0.062) 0.783(0.16)
B Enc 2048 0.849(0.060) 0.732(0.073) 0.809(0.13)
C Enc 2048 0.859(0.058) 0.713(0.079) 0.811(0.13)
D EncDec 2048 0.860(0.058) 0.718(0.066) 0.810(0.13)
E EncDec 2048 0.858(0.060) 0.724(0.077) 0.809(0.13)
F EncDec 2048 0.856(0.060) 0.739(0.067) 0.812(0.13)
G EncDec 2048 100 0.857(0.062) 0.728(0.074) 0.809(0.13)
H EncDec 2048 10−3 10−3 0.845(0.063) 0.739(0.074) 0.804(0.13)
I EncDec 2048 100 10−3 10−3 0.859(0.056) 0.735(0.061) 0.811(0.13)
J EncDec 2048 100 10−3 10−3 0.863(0.057) 0.758(0.062) 0.808(0.14)
K EncDec 2048 100 10−2 10−3 0.853(0.055) 0.745(0.058) 0.813(0.13)
L EncDec 2048 100 * 10−3 0.870(0.052) 0.806(0.030) 0.810(0.13)

Mean dice is used for quantification on all datasets.

*

μ=103 on IBIS- {wmgm, subcort} and μ=102 on OASIS3.