
Bidirectional prediction of facial and bony shapes for 
orthognathic surgical planning

Lei Maa, Chunfeng Liana, Daeseung Kimb, Deqiang Xiaoa, Dongming Weia, Qin Liua, 
Tianshu Kuangb, Maryam Ghanbaria, Guoshi Lia, Jaime Gatenob,c, Steve G.F. Shend, Li 
Wanga, Dinggang Shena, James J. Xiab,c,*, Pew-Thian Yapa,**

aDepartment of Radiology and Biomedical Research Imaging Center (BRIC), University of North 
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

bDepartment of Oral and Maxillofacial Surgery, Houston Methodist Hospital, Houston, TX 77030, 
USA

cDepartment of Surgery (Oral and Maxillofacial Surgery), Weill Medical College, Cornell 
University, NY 10065, USA

dShanghai Ninth Hospital, Shanghai Jiaotong University College of Medicine, Shanghai 200025, 
China

Abstract

This paper proposes a deep learning framework to encode subject-specific transformations 

between facial and bony shapes for orthognathic surgical planning. Our framework involves 

a bidirectional point-to-point convolutional network (P2P-Conv) to predict the transformations 

between facial and bony shapes. P2P-Conv is an extension of the state-of-the-art P2P-Net and 

leverages dynamic point-wise convolution (i.e., PointConv) to capture local-to-global spatial 

information. Data augmentation is carried out in the training of P2P-Conv with multiple point 

subsets from the facial and bony shapes. During inference, network outputs generated for multiple 

point subsets are combined into a dense transformation. Finally, non-rigid registration using the 

coherent point drift (CPD) algorithm is applied to generate surface meshes based on the predicted 

point sets. Experimental results on real-subject data demonstrate that our method substantially 

improves the prediction of facial and bony shapes over state-of-the-art methods.
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1. Introduction

Orthognathic surgery corrects craniomaxillofacial (CMF) deformities (Xia et al., 2015), 

primarily to improve facial appearances and secondarily to improve functions such as 

chewing, swallowing, and breathing (Shafi et al., 2013; Shahim et al., 2013). Due to 

the complexity of face and jaw anatomies, orthognathic surgery relies on precise surgical 

planning with the help of computer-aided surgical simulation (CASS) techniques (Xia et 

al., 2009, 2011; Yuan et al., 2017; Sonneveld et al., 2019). The techniques typically involve 

(1) reconstructing a 3D patient bony model from computed tomography (CT) or cone beam 

computed tomography (CBCT) scans; (2) simulating an osteotomy by virtually cutting the 

bony model into several bony segments; (3) moving the bony segments to desired positions 

to normalize jaw deformities (Wang et al., 2015). Surgeons can accurately and efficiently 

plan the bony movements using CASS (Wang et al., 2015; Xiao et al., 2021c,a). However, 

they cannot practically predict postoperative facial appearance from the normalized bony 

model during the surgical planning process, and just hope for the best that a postoperative 

face will “automatically” become normal following the surgery (Kim et al., 2019; Ma et al., 

2021). However, this is often not true in practice because the relationship between bony and 

facial soft tissue movements is based on complex and non-trivial physical interactions (Bell 

and Ferraro, 1993). Therefore, there is an unmet need in predicting facial appearances given 

a normalized bony model to provide surgeons with visual updates needed for continuous 

optimization in surgical planning.

Current methods for the prediction of facial appearances mostly rely on biomechanical 

simulation methods, e.g., finite-element models (FEMs), mass–spring models (MSMs), and 

mass-tensor models (MTMs) (Nadjmi et al., 2014; Knoops et al., 2018; Kim et al., 2019). 

Biomechanical simulation requires labor-intensive and time-consuming data processing, 

preventing it from being applied in daily clinical scenarios. In recent years, face-bone 

transformation, which reconstructs a facial shape from a bony shape and vice versa, has been 

applied to multiple fields, such as forensic medicine (Paysan et al., 2009), CMF surgical 

planning (Xiao et al., 2019), archaeology (Duan et al., 2015), and animation (Nguyen et 

al., 2020). For example, in planning for the surgery of a patient with facial trauma, a 

patient-specific reference bony shape model is estimated from a facial surface reconstructed 

from the patient’s pre-traumatic portrait photos (Xiao et al., 2019). However, most methods 

for face-bone transformation are based on the unrealistic assumption that similar facial 

shapes have similar underlying bony shapes and vice versa, ignoring subject-specificity, thus 

resulting in limited performance.

Deep learning has been recently applied to surface parcellation (Gopinath et al., 2019; 

Zhao et al., 2019), dental surface labeling (Zanjani et al., 2019; Lian et al., 2020), and 

CMF shape prediction (Xiao et al., 2021a,b; Ma et al., 2022). State-of-the-art methods such 

as P2P-Net (Yin et al., 2018) perform end-to-end geometric learning on point clouds, the 

most straightforward and efficient representation of 3D models. High-level correspondences 

between different views (e.g., meso-skeletons and surfaces) can be captured for shape 

transformation.
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Here, we propose a point-cloud deep neural network to learn subject-specific 
transformations between normal facial and bony shapes. Our method consists of three 

main steps. In the first step, we extract multiple point subsets from a high-resolution 3D 

model (i.e., facial surface or bony surface mesh) for efficient end-to-end network training. 

In the second step, we employ a bidirectional P2P-Conv to predict the transformations 

between the bony point clouds and the respective facial point clouds. Our P2P-Conv consists 

of two sub-networks: one to predict face-to-bone (F2B) transformation and the other to 

predict bone-to-face (B2F) transformation. P2P-Conv extends the state-of-the-art P2P-Net 

(Yin et al., 2018) by applying dynamic point-wise convolution (i.e., PointConv Wu et al., 

2019) to comprehensively capture local-to-global spatial information of CMF shapes. In 

the third step, P2P-Conv predictions for multiple point subsets are combined to obtain a 

high-resolution point cloud output. A 3D surface mesh is finally reconstructed by non-rigid 

registration. Our method outperforms state-of-the-art methods in predicting facial and bony 

shapes on a dataset of 45 real subjects.

The contribution of our paper is three-fold:

1. We propose a deep learning framework to predict subject-specific 

transformations between facial and bony shapes. The core of the framework 

is a bidirectional P2P-Conv, comprehensively capturing the complex geometrical 

correspondences between bony and facial shapes.

2. We propose a strategy to augment the training set for P2P-Conv by extracting 

multiple pairs of non-overlapping facial and bony point subsets from each 

subject using a two-step point sampling strategy.

3. Our method improves the prediction accuracy of facial and bony shapes by 

25.7% and 21.0%, respectively, compared with the sparse representation (SR) 

method described in Xiao et al. (2019).

The rest of the paper is organized as follows. Related work, including face-skull modeling 

and deep learning on 3D point clouds, is briefly reviewed in Section 2. The proposed 

framework is described in detail in Section 3. Experimental results are presented in Section 

4. Finally, the paper is concluded in Section 5.

2. Related work

2.1. Face-skull modeling

Existing face-skull modeling methods are mainly proposed for forensic facial reconstruction 

from skull structure. For example, Paysan et al. (2009) proposed statistical shape models 

(SSMs) for faces and bones, optimized via ridge regression. Duan et al. (2014) constructed 

two tensor models for face and bony subspaces. Mapping from the bone subspace to the 

facial subspace is performed using partial least squares regression (PLSR). Other relevant 

methods can be found in Duan et al. (2015), De Buhan and Nardoni (2016), Shui et al. 

(2017) and Madsen et al. (2018). In a more recent work (Xiao et al., 2019), SR is employed 

to reconstruct reference bony models from pre-traumatic portrait photos. Specifically, two 

dictionaries are constructed for facial and bony models extracted from a set of normal 

subjects. Sparse coefficients are learned from a facial model reconstructed from the pre-
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traumatic portrait photos and are applied to the bony dictionary to generate in a bony model. 

However, these methods are based on the assumption that subjects with similar facial shapes 

have similar underlying bony shapes, unrealistically ignoring subject-specific relationships 

between facial and bony shapes.

2.2. Deep learning on 3D point clouds

2.2.1. Learning from point sets—There is a recent emergence of deep learning 

methods for point sets (Qi et al., 2017a; Li et al., 2018; Guo et al., 2019). A pioneering 

method, called PointNet, learns spatial features from unordered point sets (Qi et al., 2017a). 

PointNet++ (Qi et al., 2017b) extends PointNet by learning spatial features hierarchically. 

PointCNN (Li et al., 2018) utilizes χ-transformation for point permutation and employs 

χ-Conv, which is invariant to point ordering, to learn point shape information. SpiderCNN 

(Xu et al., 2018) extends convolutional operations from regular grids to irregular point sets 

by using parametrized convolutional filters. PointConv (Wu et al., 2019) defines density 

re-weighted convolution on point sets as a Monte Carlo estimate of a continuous 3D 

convolution.

2.2.2. Cross-domain shape transformation—Leveraging PointNet++ (Qi et al., 

2017b), P2P-Net (Yin et al., 2018) learns geometric transformations between point-based 

shape representations from two domains. P2P-Net is a bidirectional point displacement 

network that transforms a source point set into a prediction of the target point set and 

vice versa. P2P-Net is a weakly-supervised network trained using paired point sets without 

strict P2P correspondence. However, PointNet++ does not explicitly consider the spatial 

distribution of points for point feature aggregation, and may fail to capture some helpful 

shape information. More recently, LOGAN (Yin et al., 2019) was proposed to perform 

cross-domain transformation based on a generative adversarial network (GAN) (Goodfellow 

et al., 2014) using shape information encoded in a shared latent space. LOGAN is an 

unsupervised network designed for learning transformation from unpaired shapes. Although 

easier to train due to its unsupervised nature, LOGAN does not perform P2P-Net on 

supervised tasks (Yin et al., 2019).

3. Materials and methods

3.1. Data and pre-processing

We randomly selected 45 CT head scans of normal subjects from our digital archive for 

method development and evaluation. Subjects with jaw deformities, previous jaw/facial 

cosmetic surgeries, or CMF trauma were excluded. These CT scans were deidentified and 

obtained from a digital library collection at the Department of Oral and CMF Surgery at 

Shanghai Ninth People Hospital, Shanghai Jiao Tong University School of Medicine (Yan 

et al., 2010). The images were acquired using a 64-slice GE scanner following a standard 

clinical protocol: 512 × 512 matrix, 25 cm field of view, and 1.25 mm slice thickness (Yan et 

al., 2010; Wang et al., 2015).

Facial and bony models were first automatically segmented from the CT scans using a 

deep-learning-based segmentation method proposed in Liu et al. (2021), followed by manual 
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correction by an experienced oral surgeon. To align the segmented models to the same 

space for efficient training, we first rigidly registered each segmented bony model to a bony 

template. Then, the corresponding facial model was transformed using the transformation 

matrix obtained from the rigid registration. The bony template was predetermined as the 

bony model with landmarks closest to the average bony landmarks of the subjects in the 

dataset. The aligned facial and bony models were cropped to retain only the CMF region, 

which is pertinent to orthognathic surgery.

3.2. Overview of the proposed framework

The proposed bidirectional face-bone shape transformation framework consists of three 

main parts (Fig. 1). First, using a proposed two-step point sampling strategy, multiple non-

overlapping point subsets are uniformly sub-sampled to represent the high-resolution bony 

or facial shape. Then, these bony (or facial) point subsets are fed to our P2P-Conv separately 

to predict the corresponding facial (or bony) point subsets. Our P2P-Conv consists of two 

sub-networks: F2B and B2F. Finally, the predicted point subsets in either the facial or 

bony domain are merged to generate a dense point set. A high-resolution surface mesh is 

generated by non-rigidly registering predetermined templates to the dense point set using the 

CPD algorithm (Myronenko and Song, 2010).

3.3. Point sampling

Due to GPU memory limitations, we introduce a two-step point sampling strategy to sub-

sample multiple non-overlapping point subsets from high-resolution facial and bony shapes. 

Specifically, given a high-resolution shape mesh S, N1 non-overlapping M-point subsets 

(P S
1 , P S

2 , …, P S
N1) are first sub-sampled randomly from the mesh vertices. Then, Poisson-disk 

sampling (Yuksel, 2015) is employed to further uniformly sub-sample m points from each 

point subset in {P S
i }i = 1

N1
, resulting in N1 m-point subsets P S

i
i = 1

N1 . Poisson-disk sampling 

produces tightly-packed points, but are no closer to each other than a specified minimum 

distance. Compared to random sampling, Poisson-disk sampling provides a more uniform 

point distribution over the sampling domain.

3.4. P2P-Conv

We develop a bidirectional P2P-Conv to capture the nonlinear transformation (i.e., point 

displacement) between the facial and bony shapes. P2P-Conv is an extension of a state-

of-the-art shape transformation network called P2P-Net (Yin et al., 2018). P2P-Net is 

a bidirectional shape transformation network-based on PointNet++. The training of the 

P2P-Net is weakly supervised by point sets of paired source and target shapes without 

relying on strict P2P correspondence. However, P2P-Net is inaccurate for complex shapes 

like the facial and bony shapes mainly because PointNet++ (Qi et al., 2017b) uses 

max-pooling to aggregate and propagate geometric features and is hence not effective 

in capturing localized spatial information. To improve accuracy, we employ PointConv 

(Wu et al., 2019) for dynamic point-wise convolution. PointConv is an extension of the 

Monte Carlo approximation of the 3D continuous convolution operator (Hermosilla et al., 

2018). PointConv learns multi-layer perceptrons on local point coordinates to approximate 

continuous weight and density functions in convolutional filters. Compared with PointNet+
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+, PointConv can capture more localized spatial information. Therefore, by leveraging 

PointConv, P2P-Conv can more comprehensively capture local-to-global spatial information 

to facilitate shape transformation.

3.4.1. Architecture—The architecture of P2P-Conv is shown in Fig. 2. Given a pair of 

CMF facial shape F and bony shape B, P2P-Conv learns the bidirectional transformation 

between point subsets from F and B, i.e., PF and PB.

As shown in Fig. 2(a), P2P-Conv adopts a bidirectional architecture, similar to P2P-Net, 

and consists of two point-displacement sub-networks catering to transformations in opposite 

directions, i.e., F2B and B2F. The two point-displacement sub-networks share a common 

architecture as shown in Fig. 2(b). The F2B sub-network generates a set of displacement 

vectors IF that are applied to PF to predict the corresponding bony point set P̂B,

P̂B = PF + IF . (1)

B2F predicts the facial point set P̂F,

P̂F = PB + IB . (2)

Each sub-network in P2P-Conv learns a multi-scale feature embedding for each point 

using an encoder, consisting of sampling, grouping, and dynamic convolution layers (i.e., 

PointConv), as shown in Fig. 2(b). The sampling layer samples a subset of points from the 

given input point set using iterative farthest point sampling (Qi et al., 2017b). The grouping 

layer organizes the sampled point set from the sampling layer into point subsets using a 

ball query approach, which finds all points that are within a radius to the query point (Qi 

et al., 2017b). To abstract their point features, the PointConv layer performs convolutional 

operators on the grouped point subsets. The decoder consists of interpolation and PointConv 

layers. The interpolation layer propagates point features by interpolating feature values using 

inverse distance weighted average based on k nearest neighbors (Qi et al., 2017b). Then, 

the interpolated features are concatenated with features from the encoder with the same 

resolution using skip links. Finally, PointConv is applied to the concatenated features. Point-

wise outputs from the decoder are processed by a MLP to generate point-wise displacements 

(i.e., IB or IF).

3.4.2. Loss functions—P2P-Conv is trained so that the predictions P̂B and P̂F are as 

close as possible to their targets PB and PF. In this work, we use the loss function of P2P-Net 

(Yin et al., 2018) to train P2P-Conv. Specifically, a geometric loss Lg is used to measure the 

geometric differences between the predicted and target point sets. The loss consists of two 

terms: shape loss and point-density loss. The shape loss Ls computes the sum of distance 

errors between the predicted point set P̂ and the target point set P:
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Ls(P, P) = 1
n1

∑
x ∈ P

min
y ∈ P

d(x, y) + 1
n1

∑
y ∈ P

min
x ∈ P

d(x, y), (3)

where d x, y  denotes the Euclidean distance between points x and y . n1 represents the 

number of points in the predicted point set. Note that the shape loss is calculated without 

relying on P2P correspondence between the predicted point set P̂ and the target point set P. 

The point-density loss Ld measures the density similarity between P̂ and P (Yin et al., 2018):

Ld(P, P) = 1
kn1

∑
x ∈ P

∑
i = 1

k
|d x, Oi[P, x] − d(x, Oi[P, x])|, (4)

where Oi P, x  denotes the ith point of the k nearest points to x from point set P. Therefore, 

the geometric loss Lg is defined as

Lg(P̂, P) = Ls(P̂, P) + μLd(P̂, P), (5)

where μ is a tuning parameter controlling the contribution of the density loss.

Complementary to the geometric loss, a cross-regularization loss Lc is adopted to encourage 

the consistency between the displacement vectors IF and IB:

Lc(PF, PB) = 1
n1

∑
x ∈ PF

min
y ∈ PB

d( x, x + IF(x) , y, y + IB(y) )

+ 1
n1

∑
y ∈ PB

min
x ∈ PF

d( x, x + IF(x) , y, y + IB(y) ) .
(6)

The total loss function of P2P-Conv is

L PF, PB = Lg(P̂F, PF) + Lg(P̂B, PB) + λLc(PF, PB), (7)

where λ controls the contribution of the cross-regularization loss.

3.4.3. Data augmentation—We augment the training set to improve prediction 

accuracy and avoid overfitting. First, given a subject in the training set, N2 non-

overlapping facial point subsets PF
i , i = 1, 2, …, N2, and N2 non-overlapping bony point 

subsets PB
j , j = 1,2, …, N2, are sampled respectively from the facial and bony model of the 

subject using the two-step point sampling strategy described in Section 3.3. Each point 

subset contains 4096 points. Each sub-sampled facial point set can be paired with N2

different bony point sets, generating a total of N2 × N2 pairs of facial-bony point sets for 

training. These facial-bony point sets generated in data augmentation are paired since the 

facial and bony point sets are sub-sampled from the same subject. N2 is set to 10 in our 

implementation.
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3.5. Surface mesh reconstruction

According to Fig. 1, N1 facial point subsets PF
i , i = 1, 2, …, N1, sub-sampled from a high-

resolution facial mesh surface are fed individually to the F2B sub-network, outputting 

predicted bony point subsets P̂B
i , i = 1, 2, …, N1. The output point subsets are merged into a 

dense bony point set P̂B
d
. The dense facial point set P̂F

d
 is obtained in the same manner. N1

is set to five in our implementation. Mesh surfaces are then reconstructed for the predicted 

point sets with the help of multiple templates. One template is the facial/bony model 

averaged across all subjects. Three additional representatives facial/bony models are added 

as templates. We non-rigidly register the four bony templates to each predicted bony point 

set and select the registered template with the least error as the surface mesh of the predicted 

bony point set. The facial surface mesh is generated in the same manner.

3.6. Implementation details and parameter optimization

Due to GPU memory limitations, deep learning networks can only handle point sets of 

moderate size. For example, PointCov (Wu et al., 2019) can take no more than 5000 points. 

Therefore, we set the number of points in each point subset to m = 4096. We separately feed 

N1 point subsets to P2P-Conv to generate a dense point set prediction with N1 × 4096 points. 

The value of N1 mainly affects the accuracy of the final reconstructed mesh surfaces and the 

mesh surface reconstruction time. We evaluated and measured the shape prediction error and 

surface reconstruction time for different N1’s. Specifically, we randomly selected 36 subjects 

as the training set and one random subject from the training set for validation. We used the 

remaining nine subjects for testing. We used the square root of Chamfer Distances (CD) 

(Fan et al., 2017) to measure the shape error of the predicted facial surfaces:

SCD = 1
2

1
n1

∑
x ∈ Pgt

min
y ∈ P

d(x, y)2 + 1
n1

∑
y ∈ P

min
x ∈ Pgt

d(x, y)2 , (8)

where P̂ and Pgt represent a predicted point set and the ground truth, respectively. The results 

(Fig. 3) indicate that as N1 increases, the shape error decreases but the time cost for mesh 

surface reconstruction increases. To balance between shape error and reconstruction time, 

we set N1 to 5 and M to 20,480 (5 × 4096). Sampling with 20,480 points using Poisson-disk 

sampling roughly covered the shape uniformly.

The number of points n1, n2, n3, n4, n5  associated with each layer in the point displacement 

sub-network was set to {4096,1024,256,64,32} following PointConv (Wu et al., 2019). The 

dimensions of the output point-feature vectors in the feature-encoding and feature-decoding 

modules were set to {64,128,256,512,512,256,128,128} following Qi et al. (2017b) and Wu 

et al. (2019). The MLP in P2P-Conv was designed with 128, 64, 3 channels following the 

point displacement networks proposed in Liu et al. (2019) and Ma et al. (2021). Using the 

Adam optimizer, P2P-Conv was trained by minimizing the loss function (7). The batch size 

was set to three due to GPU memory limitation. The training and validation logs of P2P-

Conv, shown in Fig. 4 for one cross-validation, indicate that the model starts overfitting from 

100 epochs. In our implementation, we trained our model with 200 epochs. The learning 

rate was set to 1e–3 and decayed to 1e–4 at discrete intervals during training following Yin 
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et al. (2018). The value of k in (4), μ in (5) and λ in (7) were empirically set to 16, 0.3 

and 0.1, respectively. The aforementioned implementation parameters are summarized in 

Table 1. The models were trained on a machine with 32GB memory and an 11GB GeForce 

GTX 1080 Ti. It took roughly 25 mins to train one epoch using 3600 pairs of facial-bony 

point sets. The software libraries used in this implementation include Visualization Toolkit, 

Open3D and Tensorflow.

4. Experiments

4.1. Competing methods

Our framework was first compared with two state-of-the-art methods, i.e., a principal 

component analysis (PCA)-based face-bone shape transformation framework (Shui et al., 

2017) and a SR-based framework (Xiao et al., 2019). To verify the effectiveness of 

PointConv (Wu et al., 2019), we also compared our framework with PointNet++ and 

SpiderCNN. We used the same training and testing sets as the proposed method. The data 

was augmented to avoid overfitting. These methods are summarized as follows:

1. SR: The SR-based framework was implemented according to Xiao et al. (2019). 

Specifically, facial and bony dictionaries were constructed using the training 

subjects’ facial and bony point sets. Strict P2P correspondence was needed for 

point sets in the same domain. A facial template with 36 213 points and a bony 

template with 30 812 points were non-rigidly registered to the training subjects’ 

sampled facial and bony point sets using CPD, respectively. The warped facial 

and bony templates were used to construct the facial and bony dictionaries. The 

sparse coefficients of facial and bony point sets were used to construct the bony 

and facial shapes, respectively.

2. PCA: The PCA-based face-bone shape transformation framework was 

implemented according to the techniques in Shui et al. (2017). Specifically, 

SSMs of the skull and face were first constructed by PCA using the sub-sampled 

facial and bony point sets in SR. Then linear regression was employed to 

determine the relationship between facial and bony models. Given a skull, PC 

scores of the skull were estimated using the bony SSMs. To predict a face from 

the skull, a group of PC coefficients was calculated using the bony PC scores and 

the linear face-bone relationship. A 3D face was estimated by applying the PC 

coefficients to the facial statistical shape model.

3. PointNet++: P2P-Net using PointNet++ (Qi et al., 2017b) shape transformation 

framework was implemented according to Yin et al. (2018).

4. SpiderCNN: Like PointConv, SpiderCNN learns point features via convolution 

on irregular point sets. Convolution in SpiderCNN, called SpiderConv, is 

based on a family of parametrized filters (Xu et al., 2018). We implemented 

SpiderCNN-based P2P-Net using an architecture similar to P2P-Conv, but with 

PointConv encoder/decoder replaced with SpiderCNN encoder/decoder.
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4.2. Experimental setup

We performed 5-fold cross-validation by randomly dividing the 45 normal subjects into 5 

groups, each of which has 9 subjects. In each iteration, one group (9 subjects) was used 

for testing. In the remaining 4 groups (36 subjects), one subject was randomly reserved 

for validation, and the other 35 subjects were used for training. The results of the 5 cross-

validations were averaged and reported.

Using our data augmentation method, we created 100 pairs of facial-bony point sets for 

each subject in the training set. For the testing set, N1 = 5 pairs of facial-bony point sets 

(m = 4096) were sub-sampled for each subject using our point sampling strategy. In the 

testing phase, the testing group’s facial and bony point sets were fed into the trained 

F2B and B2F sub-networks to predict the bony and facial point sets (20,480 points each), 

respectively. Then, the CPD registration was used to reconstruct the surface meshes.

Qualitative evaluation was done by comparing the predictions with the ground truths after 

rigid alignment. For quantitative evaluation, the shape error of the predicted point sets was 

first estimated using the square root CD. Then, landmark error (i.e., the Euclidean distances 

of 36 facial landmarks and 48 bony landmarks) and shape error were calculated for the 

generated facial and bony surface meshes. Among these landmarks, 16 facial and 31 bony 

landmarks were selected to evaluate the prediction accuracy in the jaw region more closely. 

The locations of these facial and bony landmarks are shown in Fig. 5. We performed the 

paired t-test between the shape errors achieved by our method and the competing methods.

4.3. Results

4.3.1. Qualitative evaluation—Figs. 6 and 7 show representative results of the facial 

and bony point sets predicted by P2P-Net, SpiderCNN-based P2P-Net and the proposed 

PointConv in comparison with the respective ground truths. For clarity, the results for only 

one point subset (4096 points) are shown. The results indicate that the facial and bony 

shapes predicted by P2P-Conv are in higher agreement with the ground truths than SR, PCA, 

and the other deep learning methods.

4.3.2. Quantitative evaluation—Table 2 summarizes the shape errors of the facial and 

bony point sets (4096 points) given by different methods before surface mesh generation. 

Table 3 shows the landmark-based error and shape error of the generated facial and bony 

surface meshes, which have around 30 000 and 50 000 vertices, respectively. The following 

observations can be made:

1. Deep learning methods perform better than the PCA and SR methods. Note 

that, unlike SR and PCA, no P2P correspondence is needed to train the learning-

based methods. Establishing point-wise correspondences of tens of thousands of 

points is time-consuming, limiting the practical application of the SR and PCA 

methods.

2. P2P-Conv outperforms PointNet++ and SpiderCNN-based P2P-Net, giving 

smaller landmark errors. This suggests that capturing local-to-global point 

features using PointConv leads to more accurate shape transformations.
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3. P2P-Conv yields better prediction accuracy in the jaw region, the target area of 

orthognathic surgery.

Similar conclusions can be drawn from the surface deviation results shown in Fig. 8.

4.3.3. Effectiveness of data augmentation—We compared the performance of P2P-

Net and P2P-Conv trained with and without data augmentation. Results summarized in Fig. 

9 for a representative subject show that data augmentation results in shape prediction that 

is more accurate globally and locally with smoother edges and more uniform point sets. 

Using 5-fold cross-validation, the data augmentation strategy reduces the average facial/

bony landmark errors from 4.94 mm/4.21 mm to 4.57 mm/3.96 mm for P2P-Net and from 

4.16 mm/3.74 mm to 3.88 mm/3.41 mm for P2P-Conv.

4.3.4. Effectiveness of multi-template mesh generation—We compared the 

performance of mesh generation using multiple templates and an average template only. 

Multi-template mesh generation reduces the average facial/bony landmark errors from 

3.88mm/3.41 mm to 3.61mm/3.16 mm.

4.3.5. Effectiveness of dense prediction—Dense prediction (20,480 points) captures 

local details better and reduces the average shape error of the facial mesh surfaces from 2.82 

mm to 2.73 mm compared with sparse prediction (4096 points) (Fig. 10).

5. Conclusion and discussion

This paper presents a deep learning framework to learn the subject-specific nonlinear 

transformation between CMF facial and bony shapes for computer-aided orthognathic 

surgical planning. The core of the proposed framework is a bidirectional P2P-Conv network 

called P2P-Conv, which leverages PointConv to capture local correlations of 3D point sets 

for accurate shape transformation. To generate a dense prediction for complex shapes, we 

design a two-step point sampling strategy to uniformly sub-sample multiple non-overlapping 

point subsets as inputs to P2P-Conv. We augment the training set to improve the shape 

transformation accuracy. Qualitative and quantitative experimental results demonstrate that 

our framework more accurately estimates the transformation between CMF facial and bony 

shapes than state-of-the-art sparse-representation and deep-learning methods.

P2P-Conv outperforms the original P2P-Net (Yin et al., 2018) and the SpiderCNN-based 

(Xu et al., 2018) P2P-Net. Compared with P2P-Net, P2P-Conv yields smoother, more 

accurate, and uniform point sets. PointConv performs better than SpiderCNN, although both 

are convolution networks for point sets. PointConv is a full approximation of convolution 

and can perform point-set deconvolution similar to image deconvolution to propagate 

information in the coarse layers to finer layers (Wu et al., 2019). In contrast, SpiderCNN 

cannot perform point deconvolution due to its design (Xu et al., 2018), restricting its 

performance in our shape transformation task.

We use surface mesh templates to recover facial and bony surface meshes from predicted 

point sets. However, this approach can be limited in shape recovery. Fig. 11 shows an 

example where the reconstructed facial surface differs from its ground truth. Potential causes 
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are as follows: (1) The employed non-rigid registration method might not be able to recover 

local shape information. (2) The templates could bias the generated surfaces. (3) The surface 

topology is fixed by the template. This limitation can be alleviated when applied to the 

postoperative facial appearance prediction task, where the patients’ pre-operative models are 

used to generate the final surface meshes.

Our method achieves state-of-the-art performance by estimating the transformation between 

CMF facial and bony shapes. However, the performance is partially limited by the training 

sample size. This work used only 35 subjects to train P2P-Conv, causing unsatisfactory 

results compared with the SR-based method in some cases. There were three and two 

unsatisfactory cases for predicting facial and bony shapes, respectively. In the future, we will 

evaluate our method with more training samples collected from multiple sites. We will also 

pre-train the proposed network using abnormal subjects to improve performance.

In the future, we will augment the current framework with the ability to estimate prediction 

uncertainty. This can be achieved, for example, via deep ensembles, which have been shown 

to perform better than Monte Carlo dropout in uncertainty estimation for 3D point clouds 

(Hochgeschwender et al., 2020).

Code is available at https://github.com/Marvin0724/Face_bone_transform.

Acknowledgments

This study was supported in part by the National Institutes of Health (NIH), USA through grants R01DE022676, 
R01DE027251, and R01DE021863.

References

Bell WH, Ferraro JW, 1993. Modern practice in orthognathic and reconstructive surgery. Plast. 
Reconstr. Surg. 92 (2), 362.

De Buhan M, Nardoni C, 2016. A mesh deformation based approach for digital facial reconstruction.

Duan F, Huang D, Tian Y, Lu K, Wu Z, Zhou M, 2015. 3D face reconstruction from skull by 
regression modeling in shape parameter spaces. Neurocomputing 151, 674–682.

Duan F, Yang S, Huang D, Hu Y, Wu Z, Zhou M, 2014. Craniofacial reconstruction based on 
multi-linear subspace analysis. Multimedia Tools Appl. 73 (2), 809–823.

Fan H, Su H, Guibas LJ, 2017. A point set generation network for 3d object reconstruction from a 
single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 
pp. 605–613.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y, 
2014. Generative adversarial nets. In: Advances in Neural Information Processing Systems. pp. 
2672–2680.

Gopinath K, Desrosiers C, Lombaert H, 2019. Graph convolutions on spectral embeddings for cortical 
surface parcellation. Med. Image Anal. 54, 297–305. [PubMed: 30974398] 

Guo Y, Wang H, Hu Q, Liu H, Liu L, Bennamoun M, 2019. Deep learning for 3D point clouds: A 
survey. arXiv preprint arXiv:1912.12033.

Hermosilla P, Ritschel T, Vázquez P-P, Vinacua À, Ropinski T, 2018. Monte carlo convolution for 
learning on non-uniformly sampled point clouds. ACM Trans. Graph. 37 (6), 1–12.

Hochgeschwender N, Plöger P, Kirchner F, Valdenegro-Toro M, et al. , 2020. Evaluating 
uncertainty estimation methods on 3D semantic segmentation of point clouds. arXiv preprint 
arXiv:2007.01787.

Ma et al. Page 12

Med Image Anal. Author manuscript; available in PMC 2023 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Marvin0724/Face_bone_transform


Kim D, Kuang T, Rodrigues YL, Gateno J, Shen SG, Wang X, Deng H, Yuan P, Alfi DM, Liebschner 
MA, et al., 2019. A new approach of predicting facial changes following orthognathic surgery 
using realistic lip sliding effect. In: International Conference on Medical Image Computing and 
Computer-Assisted Intervention. Springer, pp. 336–344.

Knoops PG, Borghi A, Ruggiero F, Badiali G, Bianchi A, Marchetti C, Rodriguez-Florez N, Breakey 
RW, Jeelani O, Dunaway DJ, et al. , 2018. A novel soft tissue prediction methodology for 
orthognathic surgery based on probabilistic finite element modelling. PLoS One 13 (5).

Li Y, Bu R, Sun M, Wu W, Di X, Chen B, 2018. PointCNN: Convolution on x-transformed points. In: 
Advances in Neural Information Processing Systems (NeurIPs). pp. 820–830.

Lian C, Wang L, Wu T-H, Wang F, Yap P-T, Ko C-C, Shen D, 2020. Deep multi-scale mesh feature 
learning for automated labeling of raw dental surfaces from 3D intraoral scanners. IEEE Trans. 
Med. Imaging 39 (7), 2440–2450. [PubMed: 32031933] 

Liu Q, Deng H, Lian C, Chen X, Xiao D, Ma L, Chen X, Kuang T, Gateno J, Yap P-T, et al., 
2021. Skullengine: A multi-stage CNN framework for collaborative CBCT image segmentation 
and landmark detection. In: International Workshop on Machine Learning in Medical Imaging. 
Springer, pp. 606–614.

Liu J, Xia Q, Li S, Hao A, Qin H, 2019. Quantitative and flexible 3D shape dataset augmentation via 
latent space embedding and deformation learning. Comput. Aided Geom. Design 71, 63–76.

Ma L, Kim D, Lian C, Xiao D, Kuang T, Liu Q, Lang Y, Deng HH, Gateno J, Wu Y, et al., 2021. 
Deep simulation of facial appearance changes following craniomaxillofacial bony movements in 
orthognathic surgical planning. In: International Conference on Medical Image Computing and 
Computer-Assisted Intervention. Springer, pp. 459–468.

Ma L, Xiao D, Kim D, Lian C, Kuang T, Liu Q, Deng H, Yang E, Liebschner MA, Gateno J, et 
al. , 2022. Simulation of postoperative facial appearances via geometric deep learning for efficient 
orthognathic surgical planning. IEEE Trans. Med. Imaging.

Madsen D, Lüthi M, Schneider A, Vetter T, 2018. Probabilistic joint face-skull modelling for 
facial reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition. pp. 5295–5303.

Myronenko A, Song X, 2010. Point set registration: Coherent point drift. IEEE Trans. Pattern Anal. 
Mach. Intell. 32 (12), 2262–2275. [PubMed: 20975122] 

Nadjmi N, Defrancq E, Mollemans W, Van Hemelen G, Bergé S, 2014. Quantitative validation 
of a computer-aided maxillofacial planning system, focusing on soft tissue deformations. Ann. 
Maxillofac. Surg. 4 (2), 171. [PubMed: 25593866] 

Nguyen T-N, Tran V-D, Nguyen H-Q, Dao T-T, 2020. A statistical shape modeling approach for 
predicting subject-specific human skull from head surface. Med. Biol. Eng. Comput. 58 (10), 
2355–2373. [PubMed: 32710378] 

Paysan P, Lüthi M, Albrecht T, Lerch A, Amberg B, Santini F, Vetter T, 2009. Face reconstruction 
from skull shapes and physical attributes. In: Joint Pattern Recognition Symposium. Springer, pp. 
232–241.

Qi CR, Su H, Mo K, Guibas LJ, 2017a. PointNet: Deep learning on point sets for 3D classification 
and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR). pp. 652–660.

Qi CR, Yi L, Su H, Guibas LJ, 2017b. Pointnet++: Deep hierarchical feature learning on point sets in a 
metric space. In: Advances in Neural IInformation Processing Systems (NeurIPS). pp. 5099–5108.

Shafi M, Ayoub A, Ju X, Khambay B, 2013. The accuracy of three-dimensional prediction planning 
for the surgical correction of facial deformities using maxilim. Int. J. Oral Maxillofac. Surg. 42 (7), 
801–806. [PubMed: 23465803] 

Shahim K, Jürgens P, Cattin PC, Nolte L-P, Reyes M, 2013. Prediction of craniomaxillofacial surgical 
planning using an inverse soft tissue modelling approach. In: International Conference on Medical 
Image Computing and Computer-Assisted Intervention. Springer, pp. 18–25.

Shui W, Zhou M, Maddock S, He T, Wang X, Deng Q, 2017. A PCA-based method for determining 
craniofacial relationship and sexual dimorphism of facial shapes. Comput. Biol. Med. 90, 33–49. 
[PubMed: 28918063] 

Ma et al. Page 13

Med Image Anal. Author manuscript; available in PMC 2023 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sonneveld KA, Mai PT, Hardigan PC, Portnof JE, 2019. Theoretical basis for virtual skull orientation 
according to three-dimensional Frankfort horizontal plane for computer-aided surgical simulation. 
J. Craniofac. Surg. 30 (6), 1902–1905. [PubMed: 31449216] 

Wang L, Ren Y, Gao Y, Tang Z, Chen K-C, Li J, Shen SG, Yan J, Lee PK, Chow B, et al. , 
2015. Estimating patient-specific and anatomically correct reference model for craniomaxillofacial 
deformity via sparse representation. Med. Phys. 42 (10), 5809–5816. [PubMed: 26429255] 

Wu W, Qi Z, Fuxin L, 2019. Pointconv: Deep convolutional networks on 3d point clouds. In: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 9621–
9630.

Xia JJ, Gateno J, Teichgraeber JF, 2009. New clinical protocol to evaluate craniomaxillofacial 
deformity and plan surgical correction. J. Oral Maxillofac. Surg. 67 (10), 2093–2106. [PubMed: 
19761903] 

Xia J, Gateno J, Teichgraeber J, Yuan P, Chen K-C, Li J, Zhang X, Tang Z, Alfi D, 2015. Algorithm for 
planning a double-jaw orthognathic surgery using a computer-aided surgical simulation (CASS) 
protocol. Part 1: planning sequence. Int. J. Oral Maxillofac. Surg. 44 (12), 1431–1440. [PubMed: 
26573562] 

Xia JJ, Shevchenko L, Gateno J, Teichgraeber JF, Taylor TD, Lasky RE, English JD, Kau CH, 
McGrory KR, 2011. Outcome study of computer-aided surgical simulation in the treatment 
of patients with craniomaxillofacial deformities. J. Oral Maxillofac. Surg. 69 (7), 2014–2024. 
[PubMed: 21684451] 

Xiao D, Deng HH, Kuang T, Ma L, Liu Q, Chen X, Lian C, Lang Y, Kim D, Gateno J, et al., 2021b. 
A self-supervised deep framework for reference bony shape estimation in orthognathic surgical 
planning. In: International Conference on Medical Image Computing and Computer-Assisted 
Intervention. Springer, pp. 469–477.

Xiao D, Deng H, Lian C, Kuang T, Liu Q, Ma L, Lang Y, Chen X, Kim D, Gateno J, et al. , 2021a. 
Unsupervised learning of reference bony shapes for orthognathic surgical planning with a surface 
deformation network. Med. Phys. 48 (12), 7735–7746. [PubMed: 34309844] 

Xiao D, Lian C, Deng H, Kuang T, Liu Q, Ma L, Kim D, Lang Y, Chen X, Gateno J, et al. , 2021c. 
Estimating reference bony shape models for orthognathic surgical planning using 3D point-cloud 
deep learning. IEEE J. Biomed. Health Inf. 25 (8), 2958–2966.

Xiao D, Wang L, Deng H, Thung K-H, Zhu J, Yuan P, Rodrigues YL, Perez L, Crecelius CE, Gateno 
J, et al., 2019. Estimating reference bony shape model for personalized surgical reconstruction 
of posttraumatic facial defects. In: International Conference on Medical Image Computing and 
Computer-Assisted Intervention. Springer, pp. 327–335.

Xu Y, Fan T, Xu M, Zeng L, Qiao Y, 2018. Spidercnn: Deep learning on point sets with parameterized 
convolutional filters. In: Proceedings of the European Conference on Computer Vision (ECCV). 
pp. 87–102.

Yan J, Shen G, Fang B, Shi H, Wu Y, Shao Z, Xia B, Yu D, 2010. Three-dimensional CT measurement 
for the craniomaxillofacial structure of normal occlusion adults in Jiangsu, Zhejiang and Shanghai 
Area. China J. Oral Maxillofac. Surg. 8 (1), 2–9.

Yin K, Chen Z, Huang H, Cohen-Or D, Zhang H, 2019. LOGAN: unpaired shape transform in latent 
overcomplete space. ACM Trans. Graph. 38 (6), 1–13.

Yin K, Huang H, Cohen-Or D, Zhang H, 2018. P2p-net: Bidirectional point displacement net for shape 
transform. ACM Trans. Graph. 37 (4), 1–13.

Yuan P, Mai H, Li J, Ho DC-Y, Lai Y, Liu S, Kim D, Xiong Z, Alfi DM, Teichgraeber JF, et al. , 
2017. Design, development and clinical validation of computer-aided surgical simulation system 
for streamlined orthognathic surgical planning. Int. J. Comput. Assist. Radiol. Surg. 12 (12), 2129–
2143. [PubMed: 28432489] 

Yuksel C, 2015. Sample elimination for generating Poisson disk sample sets. In: Computer Graphics 
Forum, Vol. 34. Wiley Online Library, pp. 25–32.

Zanjani FG, Moin DA, Claessen F, Cherici T, Parinussa S, Pourtaherian A, Zinger S, et al., 2019. 
Mask-MCNet: Instance segmentation in 3D point cloud of intra-oral scans. In: International 
Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 128–
136.

Ma et al. Page 14

Med Image Anal. Author manuscript; available in PMC 2023 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zhao F, Xia S, Wu Z, Duan D, Wang L, Lin W, Gilmore JH, Shen D, Li G, 2019. Spherical 
U-net on cortical surfaces: methods and applications. In: International Conference on Information 
Processing in Medical Imaging. Springer, pp. 855–866.

Ma et al. Page 15

Med Image Anal. Author manuscript; available in PMC 2023 August 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
P2P-Conv for subject-specific nonlinear transformations between facial and bony shapes. 

P2P-Conv outputs generated from multiple point subsets are merged to generate dense 

surface meshes via non-rigid registration with a template.
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Fig. 2. 
(a) The architecture of the bidirectional P2P-Conv displacement network for transformation 

between facial and bony shapes. Encoder and decoder blocks form the point feature 

abstraction and propagation modules based on the PointConv network (Wu et al., 2019). 

IF and IB denote the point displacement vectors associated with the facial and bony shapes, 

respectively. (b) PointConv-based point-displacement sub-network.
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Fig. 3. 
Shape error and reconstruction time as a function of the number of point subsets in point 

sampling.
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Fig. 4. 
The training and validation logs of P2P-Conv.
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Fig. 5. 
(a) Facial and (b) bony landmarks. Landmarks on the jaw are yellow.
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Fig. 6. 
Predicted facial point sets (green) and the ground-truth point sets (red).
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Fig. 7. 
Predicted bony point sets (green) and the ground-truth point sets (red).
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Fig. 8. 
Color-coded surface deviation errors between the predicted surfaces and the ground-truth 

surfaces.
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Fig. 9. 
Facial and bony point sets predicted by P2P-Net and P2P-Conv with and without data 

augmentation.
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Fig. 10. 
An example of sparse (4096) and dense (20,480) point predictions.
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Fig. 11. 
An example of facial surface recovered using the proposed mesh generation method. (a), (b) 

and (c) are the selected facial surface mesh template, the recovered facial surface mesh, and 

the ground truth.
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