
Total daily energy expenditure has declined over the last 3 
decades due to declining basal expenditure not reduced activity 
expenditure.
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Abstract

Obesity is caused by prolonged positive energy balance1,2. Whether reduced energy expenditure 

stemming from reduced activity levels contributes, is debated3,4. Here we used the IAEA DLW 

database on energy expenditure of adults in the USA and Europe (n = 4799) to explore patterns in 

total (TEE: n=4799), basal (BEE: n = 1432) and physical activity energy expenditure (AEE: n = 

1432) over time. In both sexes total energy expenditure (TEE) adjusted for body composition and 

age declined with time, while adjusted AEE increased over time. In males adjusted BEE decreased 

significantly, but in females this didn’t reach significance. A larger dataset of basal metabolic rate 

(BMR equivalent to BEE) measurements of 9912 adults across 163 studies spanning 100 years 

replicated the decline in BEE in both sexes. Increasing obesity in the USA/Europe has probably 

not been fueled by reduced physical activity leading to lowered TEE. We identify here decline in 

adjusted BEE, as a previously unrecognized novel factor.

Obesity is a global health threat5. Although excess body fat is a result of prolonged positive 

energy balance1,2, the exact causes of this imbalance remain elusive. Two major potential 

factors have been suggested. First, food consumption (net energy consumption accounting 

for losses in feces) may have increased2. Alternatively, declines in energy expenditure, due 

to reduced work-time physical activity4, combined with increases in sedentary behavior, 

partly linked to elevated ‘screen time’ (TV, computer and phone use)6,7 may be a key driver. 

These may be linked in a vicious cycle8, where low activity leads to weight gain, which 

inhibits activity, leading to further weight gain.
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Although there is direct evidence, that physical activity levels have declined and sedentary 

time has increased4,6,7,8, these changes do not necessarily translate into alterations in total 

energy expenditure (TEE). As individuals get larger the energy cost of movement also 

increases9. Thus, the same amount of energy may be utilized even though the actual time 

spent active has declined. Moreover, increases in one type of activity/behavior may be 

replaced by decreases in another behavior of equal cost. Consequently, apparently large 

behavior changes may result in only minor alterations in expenditure. Finally, it has been 

suggested that we may compensate for changes in physical activity by adjusting expenditure 

on other physiological tasks10,11. Although low TEE is repeatable, and having low TEE 

is not a risk factor for future weight gain over short timescales12, this does not negate a 

possible impact over longer periods. In the present paper we address the idea that reduced 

physical activity leading to reduced activity energy expenditure (AEE) may have fueled the 

epidemic.

The doubly-labelled water (DLW) method is a validated isotope based methodology for 

the measurement of free-living energy demands13. A previous analysis using this method 

suggested there had been no change in TEE between 1986 and 2005, calling into question 

the reduced physical activity hypothesis14. Nevertheless, these observations were based on a 

limited sample (n = 314) from a single European city over a restricted timespan of about 20 

years. Here we expanded this analysis using data for 4799 adults living across Europe and 

the USA drawn from the IAEA DLW database15 for which we also had BEE measures in 

1429 individuals. All estimates of TEE were recalculated using a common equation16 that 

has been shown to perform best in validation studies16.

We split the data by sex, because this may affect the etiology of energy balance17,18. This 

resulted in 1672 measurements of males and 3127 measurements of females. In addition, 

for 632 of the males and 800 of the females we also had measurements of basal energy 

expenditure (BEE) from which we derived activity energy expenditure (AEE) and physical 

activity level (PAL) – for calculations see methods. The data span a period of over 30 years 

with the first measurements in late 1981 and the latest measurements made in late 2017, 

with most data obtained between 1990 and 2017. The distribution of BMI in the sample 

for both males and females is shown in Supplementary Fig S1. Overall females had higher 

BMI than males. In the pooled sample the distribution was BMI < 18.5 = 2.3%, BMI 18.5 

to 25 = 40.3%, BMI 25 to 30 = 35.1% and BMI >30 = 22.2%. Combined overweight and 

obesity was 57.3%. In both males and females body weight increased over time (Figure S1) 

reflecting the secular trend in body weight over the same interval.

We first explored the changes in the unadjusted levels of TEE, BEE and AEE over time 

(Supplementary Fig S2: Table 1). In males there was no significant relationship between 

TEE and the date of measurement (date coded as months since Jan 1982) (r2 = 0.0015, p = 

0.14 (ns): Fig S2a) the least squares regression fit gave a gradient of +1.5 kJ/month (95%CI 

= ±2.06 kJ/month). This gradient leads to an estimated change in average TEE over 30 years 

of + 0.55 MJ/day (95%CI = ±0.727 MJ/day). Contrasting the lack of significant change in 

TEE, there was a significant decline in BEE over time (Fig S2b) (r2 = 0.029, p = 0.000018). 

The gradient of decline (3.3 kJ/month, 95%CI = ±1.4 kJ/month) was equivalent to an 

average fall in BEE by 1.19 MJ (9.7%) over 30 years (95%CI = ±0.54 MJ/day). As might 
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be anticipated since TEE*0.9 = BEE + AEE, the absence of a change in TEE and declining 

BEE was reflected by an increase in AEE over time, but this did not reach significance (Fig 

S2c) (r2 = 0.003, p = 0.16). The gradient of the change in AEE (1.4 kJ/month, 95%CI = 

±1.8 kJ/month) was equivalent over 30 years to an increase by 0.50 MJ/day (95%CI = ±0.69 

MJ/day). In females, unadjusted levels of TEE, BEE and AEE did not change significantly 

over time (supplementary Fig S3, Table 1).

All the energy expenditure variables (TEE, BEE and AEE) in both sexes were dependent on 

body mass (BM) and BMI (illustrated for BMI in supplementary Fig 4). Because of these 

relationships it is necessary to adjust the raw expenditure data over time (Figs S2 and S3) 

to account for any changes in body composition over time that might generate a biased 

estimate of the change in expenditure variables. We adjusted the levels of log transformed 

TEE, BEE and AEE for body size and composition using residuals from general linear 

models with loge fat-free mass, loge fat mass and age as predictors. In this analysis the data 

were logged because the relationships between energy expenditure components and body 

composition follow power law relationships. In males, adjusted TEE significantly declined 

over the measurement period (Fig 2a: r2 = 0.0103, p < .0001). The gradient of the fitted 

regression was −32.5 kJ/month (95%CI = ±1.20 kJ/month) leading to an estimated average 

change over 30 years of −0.93 MJ/day in adjusted TEE (95%CI = ±0.465 MJ/day), a decline 

on average of 7.7%. The adjusted BEE showed a highly significant decline over time (Fig 

2b: r2 = 0.064, p < 10−9) with the gradient of 2.67 kJ/month (95%CI = ±0.82 kJ/month) 

being equivalent to an average fall in BEE of 0.96 MJ/day (14.7%) over 30 years (95%CI = 

±0.15 MJ/day). In contrast, the adjusted AEE increased over time (Fig 2c: r2 = 0.0221, p < 

.0003). The gradient of +2.8 kJ/month (95%CI = ±1.4 kJ/month) was equivalent to a rise of 

1.01 MJ/day over 30 years (95%CI = ±0.53 MJ/day).

In females as well, there was a significant decline in the adjusted TEE over time (Fig 

3a: r2 = 0.006, p < .00002). The gradient of the effect 1.42 kJ/month was equivalent to a 

reduction in TEE over 30 years of 0.51 MJ (95%CI = ±0.22 MJ/day) or 5.6%. This decline 

was paralleled by a reduction in adjusted BEE of 2.0% but this did not reach significance 

(Fig 3b: r2 = 0.0015, p > .05). The gradient of the fall in adjusted BEE was 0.3 kJ/month, 

equivalent to a reduction in adjusted BEE over 30 years of 0.11 MJ/day (95%CI = ±0.21 

MJ/day). In contrast, and again similarly to the males, adjusted AEE significantly increased 

over time (Fig 3c: r2 = 0.0063, p = 0.026). The gradient of increase in AEE of 1.16 kJ/month 

was equivalent to an increase in AEE of 0.42 MJ/day over 30 years (95% CI = ± 0.37 

MJ/day).

Because there was a small sample of measures in the early 1980s in males these 

may have exerted undue leverage in the regression models. We therefore repeated the 

analysis excluding these data. Their removal had no impact on the detected relationships 

(Supplementary Table S1). Since individual studies may also exert undue leverage we 

performed additional sensitivity analyses on the BEE effect (post 1987) where the data for 

each study was systematically removed and the regression recalculated. In males removal 

of no individual study resulted in the loss of significance (Supplementary Table S2). In 

females however, the absence of significance was due to inclusion of data from a single 

study (Supplementary Table S3). We have no reason to exclude these data, but their undue 
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influence may explain the anomalous lack of decline in female BEE when TEE is declining 

and AEE is rising (Table 1 and fig 2).

Hence, in both males and females there was a decline in the adjusted TEE by 7.7 and 5.6% 

respectively and in males in the adjusted BEE over time by 14.7% over 30 years (females 

declined by 2% which was not significant). In both sexes the confidence limits for the 

decline in adjusted TEE overlapped with the confidence limits for the decline in adjusted 

BEE, suggesting the decline in adjusted BEE could be sufficient to explain the reduction in 

adjusted TEE. In both sexes there was in contrast a significant increase over time in adjusted 

AEE. The comparable declines in adjusted TEE and BEE resulted in a significant increase 

in PAL (=TEE/BEE) in males (Males supplementary Fig S5a: r2 = 0.0215, p < .0003) but in 

females the change in PAL over time was not significant (females supplementary Fig S5b: r2 

= 0.0037, p = 0.085).

To replicate and check our observation of decreasing BEE over time we systematically 

reviewed data from the literature on mean BMR over the last 100 years, restricted to studies 

in the USA and Europe, to match the restricted regions included in the time course from 

the IAEA database (Figs 1,2 and Table 1). For the distinction between BEE and BMR see 

the methods. The main effect on Loge BMR was Loge BM (Fig 3a), with additional effects 

of sex and age (total r2 = 0.88). Including the date of measurement, sex, age and loge body 

mass as predictors in a weighted regression analysis there was a significant negative effect 

of date of measurement (R2 = 0.024, p = 0.022) on the adjusted loge BMR (Fig 3b). On 

average, BMR adjusted for BM, age and sex has declined by about 0.34 MJ/d over the last 

100 years. This decline is consistent with, but at a lower rate, than the data from the IAEA 

database reported above (Table 1).

Basal metabolism may be influenced by many factors one of which is diet. Human dietary 

changes during the epidemic have included many things such as changes in the amounts of 

fiber and fat, and the types of fat consumed. Because evaluating the impacts of long-term 

diets on human metabolism is difficult, we explored the potential impact of dietary fatty 

acids on metabolic rate using the mouse as a model. Working with mice has the advantage 

that diets can be rigorously controlled and maintained constant over protracted periods. We 

exposed adult male C57BL/6 mice to 12 diets (for details see supplementary Tables S2 and 

S3) that varied in their fatty acid composition for 4 weeks (equivalent to 3.5 years in a 

human). Mouse BMR (kJ/d) was strongly related to body weight (regression r2 = 0.512, p = 

3×10−11: Fig 4A). We included the total intake of different fatty acids (SAT: saturated fatty 

acids, MUFA: mono-unsaturated fatty acids and PUFA: poly-unsaturated fatty acids) with 

body weight into a general linear model. Only intake of saturated fatty acids was significant 

(SAT: F = 11.05, p = 0.002 (Fig 4B); MUFA: F = 1.38, p = 0.245; PUFA: F = 0.17, p = 

0.686) with higher levels of SAT linked to higher energy expenditure (Fig 4B).

Overall the data we present do not support the idea that lowered physical activity in general, 

leading to lowered energy expenditure, has contributed to the obesity epidemic during the 

last 30 years. Unadjusted AEE was higher in individuals with greater BMI (supplementary 

Fig S4). This is because, as shown previously, despite on average moving less, individuals 

with greater BMI have higher costs of movement9. Rather than adjusted AEE declining, 
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it has significantly increased overtime in both sexes. Yet TEE (adjusted for age and body 

composition) has declined significantly in both males and females over the past 3 decades. 

Because adjusted AEE has increased at the same time that TEE has declined there has 

been a corresponding reduction in adjusted BEE (which only reached significance in males). 

The observation that adjusted AEE (and PAL in males) has significantly increased over 

time is counter intuitive given the patterns established in worktime physical activity and the 

suggested progressive increase in sedentary behavior4,6–8. One possibility is that lowered 

work time physical activity may have been more than offset by increased engagement in 

leisure time physical activity. For example, sales of home gym equipment in the USA 

increased from 2.4 to 3.7 Bn US$ between 1994 and 201719. Time spent in leisure time 

PA in the USA also increased between 1965 and 1995,20 suggesting leisure time PA has 

replaced the decline in worktime PA levels20. Leisure time PA has also changed in other 

westernized populaions21. Although time spent on computers has increased, much of the 

increase in this time has largely come at the expense of time spent watching TV. Since these 

activities have roughly equivalent energy costs22 this change would not be apparent as a 

decline in overall adjusted AEE.

The reduction in adjusted BEE is less easily understood but is consistent with the recent 

observation that body temperatures have also declined over time23, over the same interval 

as the reduction of BMR in the wider data set we analysed (Fig 3b). The magnitude of 

secular change in BMR is consistent with studies measuring BMR and body temperature in 

several contexts, including calorie restriction, ovulation, and fever which show a 10–25% 

increase in BMR per 1oC increase in core temperature24,25. It was recently suggested that 

changes in both activity and basal metabolism may have contributed to the decline in body 

temperature (Tb)26, but our data suggest this is probably dominated by a BMR effect. The 

reduction in Tb has been speculated to be a consequence of a reduction in baseline immune 

function because we have greatly reduced our exposure to many pathogens. However, 

the links between immune function and metabolism are not straightforward. For example, 

artificial selection on metabolic rate leads to suppressed innate but not adaptive immune 

function27, and studies of birds point to no consistent relation between immune function and 

metabolism either within or between subjects28. Experimental removal of parasites in Cape 

ground squirrels (Xerus inauris) led to elevated rather than reduced resting metabolic rate29. 

Nevertheless, some studies in forager-horticulturalist societies in South America have noted 

elevated BMR is linked to increased levels of circulating IgG30 and cytokines31, supporting 

the view that a long term decline in BEE may be mediated by reduced immune function. 

Whether this has any relevance to changes in the USA/Europe in the past 30 years is unclear. 

It is also possible that the long-term reduction in BMR represents methodological artefacts. 

In the early years, measurements of BMR were often made using mouthpieces to collect 

respiratory gases, and recently such devices have been shown to elevate BMR by around 

6%32. A second possibility is that early measurements paid less attention to controlling 

ambient temperature to ensure individuals were at thermoneutral temperatures33.

During the past century there have been enormous changes in the diets of US and European 

populations (USDA and FAO food supply data)34. These changes have included alterations 

in the intake of carbohydrates, fiber and fats, with % protein intake remaining relatively 

constant34. While intake of carbohydrates peaked in the late 1990s the intake of fat has 
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increased almost linearly since the early part of the 1900s. Moreover, the fat composition 

has changed dramatically with large increases in soybean oil and seed oils from the 1930s 

onwards (dominated by the polyunsaturated 18:2 linoleic acid and other PUFAs) and 

reductions in animal fats (butter and lard) (dominated by saturated fatty acids palmitic (16:0) 

and stearic acid (18:0) and the mono-unsaturated oleic acid (18:1))34. The change has been 

dramatic, as animal fats comprised >90% of the fatty acid intake in 1910 but are currently 

less than 15%. Because linoleic acid is desaturated to form arachidonic acid (ARA) and 

ARA is linked to endocannabinoids it has been speculated that expanding linoleic acid in the 

diet may be linked to various metabolic issues. Effects on basal metabolic rate however are 

disputed, and if anything, PUFAs lead to elevated not reduced metabolism35,36, although 

many studies suggest no effect37,38. This variation in outcome may reflect difficulties 

in controlling human diet over protracted periods necessary to generate robust changes 

in metabolism. In mice, where we can rigorously control the diet for prolonged periods 

(equivalent to many years of human life), we have shown here no effect of PUFAs on 

metabolic rate, but a clear impact of saturated fat, with greater intake of saturated fat 

leading to higher metabolic rate (adjusted for body mass). This finding is consistent with 

earlier reports of relationships between membrane lipids and elevated metabolic rate in 

mice, particularly a positive effect of palmitic and stearic acids39,40. This suggests that 

alterations in the intake of saturated relative to unsaturated fat over the last 100 years may 

have contributed to the decline in BEE reported here, although clearly we should be cautious 

about extrapolations from males of a single inbred mouse strain and further studies in 

humans are required. Moreover, other aspects of the diet that impact metabolic rate may also 

have changed over time, for example intake of fiber which has declined in recent years41 and 

has been shown in a randomized controlled trial to affect resting metabolic rate42.

Strengths and limitations

A strength of this study is the large sample of individuals over a restricted geographical area 

(US and Europe) measured using a complex methodology. This has allowed us to detect a 

small but nevertheless biologically meaningful signal. However, it is important to be aware 

that the studies were not designed with the current analysis in mind. Hence while we have 

adjusted for differences in age and body composition there may be other factors that differed 

over time that we did not adjust for and that could explain the trends we found. Further, 

the participants recruited at different time points may not have been representative of the 

underlying populations, even though the overall distribution seems representative (Fig S1). 

The data are cross-sectional which limits the inferences that can be made regarding causality 

in the associations. Finally, while we have speculated on some potential factors that might 

have contributed to the reduction in BEE (i.e. immune function and diet), these factors were 

not quantified in most of the participants who had their TEE measured. The mouse work we 

performed showing potential links of diet to metabolism was only conducted in males of one 

strain and a single age and may not be more broadly applicable. These potential mechanisms 

therefore remain speculations until more direct data can be collected.
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Conclusion

Overall our data show that there has been a significant reduction in adjusted TEE over 

the last three decades, which can be traced to a decline in BEE rather than any reduction 

in AEE linked to declining physical activity levels. Indeed, our data show that AEE has 

significantly increased over time. Reductions in BEE extend much further back in time (TEE 

data do not extend further back than 1981 as that was the first year the DLW technique 

was applied to humans), and mouse data indicated that one of many possible explanations 

is decreases in the intake of saturated relative to unsaturated fatty acids. If the decline in 

BEE over time has not been compensated for by a parallel reduction in net energy intake 

then the energy surplus resulting would be deposited as fat. This study therefore identifies a 

novel potential contributor to the obesity epidemic, that has not been previously recognized: 

a decline in adjusted BEE linked to reduction in overall adjusted TEE. Further understanding 

the determinants of BEE and the cause of this decline over time, and if it can be reversed, are 

important future goals.
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Figure 1: 
Trends over time in a) adjusted total energy expenditure, b) adjusted basal energy 

expenditure, and c) adjusted activity energy expenditure for males. Adjustments were 

made for body composition (fat and fat-free mass or body mass, and age) – see methods 

for details. All expenditures are in MJ/d and time is expressed in months since January 

1982. Significant years are also indicated. Each data point is a different measurement of 

expenditure. The red lines are the fitted least squares regression fits. For regression details 

refer to text and Table 1.
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Figure 2: 
Trends over time in a) adjusted total energy expenditure, b) adjusted basal energy 

expenditure, and c) adjusted activity energy expenditure for females. Adjustments were 

made for body composition (fat and lean mass and age) – see methods for details. 

Significant years are also indicated. All expenditures are in MJ/d and time is expressed 

in months since January 1982. Each data point is a different individual measurement of 

expenditure. The red lines are the fitted least squares regression fits. For regression details 

refer to text and Table 1.
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Figure 3: 
A: effect of loge body mass on the loge basal metabolic rate (BMR) in a systematic review 

of 165 studies dating back to the early 1900s (first study 1919). Data for males in blue 

and for females in red. Studies with mixed male and female data not illustrated. B: Bubble 

plot showing the Residual loge Basal metabolism derived from a weighted regression of 

loge BMR against sex, age and loge (body mass) plotted against date of measurement in the 

same 165 studies. Bubbles represent the sample size of the studies. The red line is the fitted 

weighted regression.
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Figure 4: 
A: the relationship between body weight and metabolic rate in the mice fed different diets 

with variable fatty acid compositions. B: the effect of saturated fatty acid intake on residual 

metabolic rate – corrected for body weight.
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Table one:

Patterns of change in components of energy expenditure in males and females since the early 1990s. Data are 

shown unadjusted and adjusted for body composition and age. The gradient of the fitted relationships with 

time are translated to the overall change in expenditure (MJ) over 30 years with the 95% confidence intervals 

(95%CI) for this change. TEE = total energy expenditure, BEE = basal energy expenditure, AEE = activity 

energy expenditure (=0.9TEE-BEE). Significance of the relationships is also shown. p > .01 was considered 

not significant (ns).

Males

Unadjusted data

Variable Mean change over 30 y (MJ/d) 95% CI (± MJ/d) Significance

TEE +0.55 0.73 ns

BEE −1.19 0.536 p < .00002

AEE +0.50 0.695 ns

Adjusted data

TEE −0.93 0.46 p < .0001

BEE −0.96 0.15 p < 10−9

AEE +1.01 0.53 p < .0003

Females

Unadjusted data

Variable Mean change over 30 y (MJ/d) 95% CI Significance

TEE −0.16 0.360 ns

BEE −0.32 0.352 ns

AEE +0.18 0.452 ns

Adjusted data

TEE −0.51 0.26 p < .00002

BEE −0.12 0.215 ns

AEE +0.42 0.367 p = 0.026
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