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abstract

PURPOSE Given regulatory approval of immune checkpoint inhibitors in patients with mismatch repair–deficient
(MMR-D) cancers agnostic to tumor type, it has become important to characterize occurrence of MMR-D and
develop cost-effective screening approaches. Using a next-generation sequencing (NGS) panel (OncoPanel),
we developed an algorithm to identify MMR-D frequency in tumor samples and applied it in a clinical setting with
pathologist review.

METHODS To predict MMR-D, we adapted methods described previously for use in NGS panels, which assess
patterns of single base-pair insertion or deletion events occurring in homopolymer regions. Tumors assayed with
OncoPanel between July 2013 and July 2018 were included. For tumors tested after June 2017, sequencing
results were presented to pathologists in real time for clinical MMR determination, in the context of tumor
mutation burden, other mutational signatures, and clinical data.

RESULTS Of 20,301 tumors sequenced, 2.7% (553) were retrospectively classified as MMR-D by the algorithm.
Of 4,404 samples with pathologist sign-out of MMR status, the algorithm classified 147 (3.3%) as MMR-D: in
116 cases, MMR-D was confirmed by a pathologist, five cases were overruled by the pathologist, and 26 were
assessed as indeterminate. Overall, the highest frequencies of OncoPanel-inferred MMR-D were in endometrial
(21%; 152/723), colorectal (9.7%; 169/1,744), and small bowel (9.3%; 9/97) cancers. When algorithm
predictions were compared with historical MMR immunohistochemistry or polymerase chain reaction results in
a set of 325 tumors sequenced before initiation of pathologist assessment, the overall sensitivity and specificity of
the algorithm were 91.1% and 98.2%, respectively.

CONCLUSION We show that targeted, tumor-only NGS can be leveraged to determine MMR signatures across
tumor types, suggesting that broader biomarker screening approaches may have clinical value.
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INTRODUCTION

As regulatory approvals for immunotherapy agents
expand across tumor types, efforts to identify pre-
dictive biomarkers of response or resistance to treat-
ment are similarly expanding. Comprehensive analysis
of colorectal cancers has shown that tumors with
defects in mismatch repair (MMR), resulting in
microsatellite instability (MSI), have elevated lym-
phocytic infiltration.1 In addition, tumors with MSI
demonstrate upregulated expression of inhibitory
immune checkpoints, including PD-L1, on tumor-
infiltrating lymphocytes and myeloid cells. These de-
velopments and others led to clinical trials evaluating
the efficacy of immune checkpoint blockade on the
basis of MMR status. On the basis of data from 149
patients with mismatch repair deficient (MMR-D) or
MSI-high (MSI-H) tumors in five single-arm trials, the
PD-1 inhibitor pembrolizumab was approved in 2017

by the US Food and Drug Administration (FDA) for
patients with unresectable or metastatic MMR-D or
MSI-H solid tumors of any tissue type.2,3 This was the
first tumor-agnostic, biomarker-based drug approval,
with approvals for larotrectinib and entrectinib for
neurotrophic tyrosine receptor kinase fusion-positive
tumors following shortly thereafter.4,5 These break-
throughs underscore the need for broadly applicable,
cost-effective methods of identifying tumors with
MMR-D and other potential biomarkers.

Patients with colorectal and endometrial tumors un-
dergo routine clinical testing for MSI and/or MMR-D
using polymerase chain reaction (PCR) assays by
assessing loci within the Bethesda panel or related
biomarkers or by assessing gene expression in the
MMR pathway via immunohistochemistry (IHC).6

However, given the lower prevalence of MMR-D out-
side colorectal and endometrial cancers, MSI/MMR
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testing using IHC or PCR is not routinely pursued in clinical
practice in other tumor types, despite National Compre-
hensive Cancer Network testing recommendations for the
following cancers: cervical, colon, rectal, endometrial,
esophageal, gastroesophageal junction, gastric carcinoma,
gallbladder, intrahepatic cholangiocarcinoma, extrahepatic
cholangiocarcinoma, neuroendocrine, ovarian, pancreatic,
prostate, testicular, and vulvar. Broad implementation of
a targeted, tumor-only next-generation sequencing (NGS)
assay (OncoPanel) for patients at Dana-Farber Cancer
Institute (DFCI), Brigham and Women’s Hospital (BWH),
and Boston Children’s Hospital (BCH) allowed us to assess
whether bioinformatic analysis of OncoPanel7 data could
characterize the prevalence of MMR-D/MSI-H (hereafter
MMR-D) across tumors and increase the number of pa-
tients who could be considered for immunotherapy.

Methods such as mSINGS,8 MSI-Sensor9 and cell-free
DNA10 have previously been reported for detection of
MMR-D. However, given the wide implementation and
relatively low cost of tumor-only NGS, it is important to
develop approaches suited for this paradigm and un-
derstand potential differences in results. It is also critical to
better characterize the frequency of MMR-D across tumors
to inform selective use of IHC, PCR, or NGS assays in
clinical settings where NGS panels and MMR testing are
used less frequently. This study expands on previous work
to develop OncoPanel for clinical assessment of MMR-D
using IHC and PCR for validation11 and to characterize
MMR status in 645 upper GI tract cancers12 and 304
sarcomas.13 Here we describe a bioinformatics algorithm
that infers MMR status using an institution-wide NGS panel
and report the prevalence of MMR-D across . 20,000
adult and pediatric tumor specimens.

METHODS

Patient Population

Patients treated for a cancer diagnosis at DFCI, BWH, or
BCH were offered participation in the research study
PROFILE (Dana-Farber/Harvard Cancer Center Institu-
tional Review Board [IRB] protocol #11-104/17-000) as

previously described.14 Tumor samples from patients who
consented to participate in PROFILE or from patients with
cancers eligible for clinical NGS were tested using a tumor-
only targeted DNA sequencing panel (OncoPanel).14 Data
acquisition, bioinformatic analysis, chart review, and or-
thogonal MSI testing via PCR were performed under DFCI
IRB protocol #17-465.

We included patients who provided written informed
consent and underwent successful targeted OncoPanel
sequencing of a primary or metastatic tumor between
August 2013 (OncoPanel study initiation) and July 2018
to allow adequate time for patient follow-up. As of the
study cutoff date, 20,301 tumors had OncoPanel re-
sults and could be assessed for MMR-D via the bio-
informatics algorithm described below. Of these tumors,
4,488 were sequenced after the implementation on June
27, 2017 of a process for pathologist sign-out of NGS-
based, MMR-D assessment, described in more detail
below. A total of 4,404 of these 4,488 tumors met cri-
teria for MMR assessment via the OncoPanel algorithm,
which measures insertion or deletion (indel) events
within homopolymeric microsatellite loci to infer MMR
status, and were presented for final interpretation by
a molecular pathologist. Signed-out OncoPanel reports,
including MMR-D calls, were returned to physicians for
clinical use.

Patients from the aforementioned study of 304 sarcomas13

are also included in the summary data here, although with
different subclassifications. Here, we used the original
pathologists’ diagnoses as recorded at OncoPanel sign-out,
rather than more detailed subclassification of sarcomas
using chart review.

Sequencing

From August 2013 to July 2014, patient samples were
tested with OncoPanel Version 1, which covers 0.753334
Mb and the full coding regions of 275 genes, plus selected
intronic regions of 30 genes for rearrangement detec-
tion. OncoPanel Version 2 began August 2014, covering
0.826167 Mb, with full coding regions of 300 cancer genes
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plus selected intronic regions of 35 genes. OncoPanel
Version 3 activated in October 2016, covering 1.315078
Mb, 447 cancer genes, and 191 regions across 60 genes
for rearrangement detection. At the time of clinical pa-
thology assessment for MMR deficiency (on or after June
27, 2017), all samples were being sequenced using
OncoPanel Version 3.14 Variants observed in public ge-
nome databases at a frequency of . 0.1% were removed,
unless observed more than twice in the Catalogue of So-
matic Mutations in Cancer,15 in which case they were
presented for manual review. Finally, variants were tiered
and reported based on clinical significance by a molecular
pathologist using methods previously described.16 All
testing was conducted in a Clinical Laboratory Improve-
ment Amendments–certified environment.

MMR Algorithm

On the basis of methods described previously for identifying
MMR-D in colorectal cancer using OncoPanel Versions
1-2,11 an internally developed algorithm was adjusted to
predict MMR status across all tumor types. For this study,
a homopolymer was defined as a genomic region with more
than four repeat nucleotides. Tumors harboring ≥ 1.5
single base-pair indels/Mb were called MMR-D. Only
patterns of single base-pair indels in homopolymers were
considered (with a minimum threshold of 1.5/Mb), and
tumor mutational burden (TMB) was ignored.

Possible values resulting from the OncoPanel algorithm are
proficient (MMR-P), deficient (MMR-D), and cannot assess
(for tumors with, 12 variants), although a pathologist may
override algorithmic calls or mark a tumor “indeterminate.”
For the 4,488 samples where MMR results were com-
municated to the ordering physician, a pathologist man-
ually reviewed the algorithmic MMR status to assign final
status. Pathologists interpreted the algorithmic MMR de-
termination in the context of TMB, other mutational sig-
natures validated on the platform (UV [ultraviolet], tobacco,
APOBEC [apolipoprotein BmRNA editing enzyme, catalytic
polypeptide-like], temozolomide, and POLE [DNA poly-
merase epsilon catalytic subunit]), and existing clinical data
such as MMR protein expression, when available. Rec-
ognizing that the positive and negative predictive values of
the MMR algorithm are lower near the defined cutoff, and
that patterns of MMR-D are not well defined for tumors
outside of colon and endometrium, the pathologist could
elect to override the algorithmic classification. Possible
reasons for overriding the classification included homo-
polymer indel rates near the cutoff, low TMB for that tumor
type, or no MMR gene alterations in the sequencing data.
The treating clinician was also encouraged to seek con-
firmatory testing with IHC or PCR in this setting when
clinically relevant.

TMB

TMB was calculated by including all nonsynonymous
mutations in coding regions of the genome covered by

OncoPanel. The sum of such mutations was divided by the
size of the bait set to determine mutations per megabase
(mut/Mb). TMB results were compared with other tumors
sequenced with the same panel version as well as with
other tumors of the same cancer type. We reported three
TMB metrics for each tumor: mutations per megabase,
percentile of TMB across all tumors sequenced in the
current OncoPanel version, and percentile of TMB across
tumors of each cancer type.

Orthogonal Testing

Twelve of the 26 tumor samples with discrepant calls
between algorithm and pathologist, specifically those with
algorithm-predicted MMR-D, a pathologist call of indeter-
minate, and sufficient leftover DNA, underwent orthogonal,
tumor-only PCR testing. MSI PCR was performed using
a five-marker microsatellite panel and capillary electro-
phoresis as previously described.11 Results were inter-
preted by the pathologist according to revised Bethesda
guidelines.17

RESULTS

Frequencies of MMR-D

We measured MMR-D frequencies detected using the
OncoPanel algorithm in 20,301 samples across tumor
types (Tables 1 and 2) and compared them to historical
reports of MMR-D prevalence (Tables 1 and 3, Fig 1).18-39

The OncoPanel cohort comprised 13,542 primary biopsies,
4,734 metastatic recurrences, 655 local recurrences, and
1,370 tumors with unspecified biopsy site.

One of the main goals of this work was to characterize
prevalence of MMR-D outside the tumor types where it is
commonly assayed in routine clinical practice. Overall,
among 3,779 noncolorectal, nonendometrial samples for
which OncoPanel results were returned to clinicians, 43
(1.14%) tumors were detected as MSI-H/MMR-D, and
results were reported to the patients’ treating clinicians.
Without another indication for clinical MSI/MMR testing,
these 43 patients are unlikely to have been tested outside of
the OncoPanel program.

Across the 816 pediatric tumors profiled, eight were pre-
dicted as MMR-D algorithmically. Of these 816, 208 were
also assessed for MMR status by a pathologist for the
clinical OncoPanel report. One case of pediatric small
bowel cancer was reported as MMR-D algorithmically, with
concordant pathologist sign-out. One pediatric embryonal
tumor was predicted algorithmically as MMR-D but ruled
indeterminate by the pathologist. PCR-based orthogonal
validation was performed on the small bowel case to
confirm MSI-H status, and MSI was detected for three of
four microsatellite markers.

We identified two adult appendiceal tumors with predicted
MMR-D: one predicted by the algorithm in the historical
cohort and the other identified by a pathologist during
routine clinical sign-out. To the best of our knowledge,
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TABLE 1. MMR-D Prevalence Across Cancer Types Using OncoPanel Bioinformatics Algorithm

Tumor Type

17-465 All 17-465 Pathologist Assessed

Total MMR-D Frequency (%) Total MMR-D Frequency (%)

Adrenocortical carcinoma 47 0 0 9 0 0

Ampullary carcinoma 22 1 4.55 2 0 0

Anal cancer 46 0 0 6 0 0

Appendiceal cancer 80 2 2.50 19 1 5.27

Biliary cancer 198 3 1.52 42 0 0

Bladder cancer 605 15 2.48 117 3 2.57

Blastic plasmacytoid dendritic cell neoplasm 7 0 0 N/A

Breast carcinoma 1,920 17 0.89 355 0 0

Breast sarcoma 7 0 0 2 0 0

Cancer of unknown primary 682 16 2.35 213 6 2.82

Cervical cancer 103 2 1.95 19 0 0

Chondroblastoma 1 0 0 N/A

Chondrosarcoma 26 0 0 1 0 0

Chordoma 7 0 0 1 0 0

Choroid plexus tumor 6 0 0 5 0 0

Colorectal cancer 1,744 169 9.69 481 43 8.94

Embryonal tumor 154 1 0.65 37 0 0

Endometrial cancer 723 152 21.03 144 36 25

Ependymomal tumor 49 0 0 10 0 0

Esophagogastric carcinoma 757 28 3.69 198 8 4.05

Ewing sarcoma 31 0 0 6 0 0

GI neuroendocrine tumor 143 0 0 29 0 0

GI stromal tumor 195 0 0 54 0 0

Germ cell tumor 115 0 0 13 0 0

Gestational trophoblastic disease 5 0 0 N/A

Giant cell tumor 3 0 0 2 0 0

Glioma 1,475 22 1.49 288 5 1.74

Head and neck carcinoma 652 9 1.39 115 2 1.74

Hepatocellular carcinoma 77 0 0 25 0 0

Histiocytosis 25 0 0 4 0 0

Hodgkin lymphoma 9 0 0 1 0 0

Leukemia 675 5 0.75 78 0 0

Melanoma 511 2 0.39 195 0 0

Meningothelial tumor 249 0 0 51 0 0

Mesothelioma 242 2 0.83 47 1 2.13

Miscellaneous brain tumor 52 1 1.93 5 0 0

Miscellaneous neuroepithelial tumor 35 1 2.86 9 0 0

Multiple myeloma 110 1 0.91 35 0 0

Myelodysplasia 115 1 0.87 6 0 0

Myeloproliferative neoplasm 44 1 2.28 3 0 0

Nerve sheath tumor 77 1 1.29 18 0 0

Non-Hodgkin lymphoma 474 8 1.69 144 0 0

Non–small-cell lung cancer 3,008 36 1.19 604 4 0.67

(Continued on following page)
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MMR-D has not been reported previously in appendiceal
cancer. In addition, we found one thymic MMR-D tumor
among five cases (20%), indicating that thymic cancers too
can be MMR-D, corroborating a recent report.20

The Cancer Genome Atlas (TCGA) and Therapeutically
Applicable Research to Generate Effective Treatments
(TARGET) projects20 reported MSI-H status in 3.8% of
tumors, using paired tumor-normal sequencing across
cancer types and the algorithm MANTIS,40 and identified
MSI in 27 cancer types (see Discussion). This rate is
consistent with our algorithmic predictions of MMR-D in
clinically signed-out tumors (3.33%), although only 2.78%
were pathologist confirmed.

We also measured algorithm sensitivity and specificity
using a historical set of 325 tumors tested with IHC or PCR.
This yielded a sensitivity and specificity of 91% and 98%,
respectively (Appendix Table A1).

Concordance of OncoPanel MMR Algorithm With

Pathologist Assessment

Concordance was assessed between the purely algorithmic
MMR/OncoPanel calls and pathologist calls. For the 4,404

clinical cases with MMR status signed out by pathologists,
there was substantial agreement (Cohen’s κ coefficient =
0.75) between algorithmic and pathologist calls (Table 4).
To better understand discordant cases, we selected 14
tumors for orthogonal MSI validation via PCR that were
algorithmically predicted to be MMR-D and also had suf-
ficient sample material. One of the samples was confirmed
to be MMR-D: a pediatric embryonal tumor. None of the
other samples were MSI-H by PCR, supporting the addi-
tional value of manual pathologist review. One factor among
many that could play a role in discordance between al-
gorithmic prediction and pathologist assessment (Table 5)
is TMB, which was relatively high in concordant MMR-D
cases (mean TMB, 55.8 mut/Mb). Concordant MMR-P
cases had amean TMB of 7.59 mut/Mb, and indeterminate
cases yielded a mean TMB of 20.6 mut/Mb.

DISCUSSION

We found 2.72% of 20,301 tumor samples to be MMR-D
across a wide range of adult and pediatric malignancies
using a bioinformatics algorithm to process tumor-only NGS
data. In a 4,404 sample subset, we report substantial

TABLE 1. MMR-D Prevalence Across Cancer Types Using OncoPanel Bioinformatics Algorithm (Continued)

Tumor Type

17-465 All 17-465 Pathologist Assessed

Total MMR-D Frequency (%) Total MMR-D Frequency (%)

Osteosarcoma 37 0 0 10 0 0

Ovarian cancer 908 7 0.78 134 1 0.75

Pancreatic cancer 612 8 1.31 177 0 0

Penile cancer 7 0 0 N/A

Pheochromocytoma 13 0 0 1 0 0

Pineal tumor 10 0 0 1 0 0

Prostate cancer 578 7 1.22 144 3 2.09

Renal cell carcinoma 518 4 0.78 92 0 0

Retinoblastoma 4 0 0 2 0 0

Sellar tumor 191 1 0.53 23 0 0

Sex cord stromal tumor 42 0 0 5 0 0

Skin cancer, nonmelanoma 204 4 1.97 47 2 4.26

Small bowel cancer 97 9 9.28 42 2 4.77

Small-cell lung cancer 122 1 0.82 20 0 0

Soft tissue sarcoma 722 8 1.11 217 3 1.39

Thymic tumor 51 2 3.93 5 1 20

Thyroid cancer 445 3 0.68 67 1 1.49

Uterine sarcoma 155 2 1.3 18 0 0

Vaginal cancer 41 1 2.44 3 0 0

Wilms tumor 38 0 0 3 0 0

Total 20,301 553 2.72 4,404 122 2.78

NOTE. 17-465 All represents the overall OncoPanel cohort using algorithm prediction, and 17-465 Pathologist Assessed represents the subset
with pathology sign-out.

Abbreviations: MMR-D, mismatch repair deficiency; N/A, tumor type not assessed or specified.
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agreement between purely algorithmic calls and formal
pathologist classification. It should be noted that these two
measures are not independent, because the pathologists
included the algorithmic calls as a part of their assessment,
along with TMB, results of other mutational signatures, and
existing clinical data. Orthogonal laboratory validation of
tumors predicted to be MMR-D but signed out as in-
determinate demonstrated the value of manual pathologist
review as a final step in the MMR-D classification process
and suggests that inclusion of other data types could im-
prove future algorithms.

Confirming prior clinical observations, the highest fre-
quencies of predicted MMR-D were in endometrial and
colorectal cancers, but MMR-D was also observed in many
different cancer types not commonly assessed for MMR-D
in routine clinical practice, including appendiceal cancer
and nonmelanoma skin cancer.

Further manual review of predicted MMR-D tumors signed
out as indeterminate highlighted the tendency for tumors
with a pattern of indels in homopolymer regions but low
TMB to be called indeterminate. Orthogonal PCR validation
of 14 discordant cases confirmed only one as MSI-H. It
could thus be useful to incorporate TMB explicitly in future
MMR-D prediction algorithms. Our results suggest confir-
matory laboratory testing should continue to be used,
especially when borderline NGS results are obtained or
MMR-D is predicted in a tumor with low MMR-D preva-
lence. Correlation between high TMB and MSI-H has been
reported in other NGS studies, including in prostate cancer,
where 71% of 111 tumors with high TMB (≥ 20 mut/Mb)
were MSI-H,41 and in adrenocortical carcinoma (n = 92)
and cervical squamous cell and cervical adenocarcinoma
(n = 305).20 In a larger NGS panel study (n = 11,000), only
27% of tumors with high TMB (defined as ≥ 17 mut/Mb)
were MSI-H (≥ 46 altered microsatellite loci/Mb), whereas
70% of MSI-H cases had high TMB.21 As exemplified in
these studies, however, there is significant variability in the
definitions of “high TMB” and the methodologies used to
measure it.42 Recent FDA approval of pembrolizumab for
high-TMB tumors defined high TMB as ≥ 10 mut/Mb, with
a targeted gene panel as a companion diagnostic. Although
TMB and MSI are both now broadly relevant biomarkers for
immunotherapy, they reflect different aspects of tumor
biology. Thus, assessing MMR independently from TMB
allows clinicians to evaluate these data independently when
creating patient treatment plans.43

Certain cancers have considerable variability in reported
MMR-D frequencies, including hepatocellular carcinoma
(0.0%-16.2%), ampullary carcinoma (0.0%-10.4%), GI
neuroendocrine tumors (0.0%-20.7%), ovarian cancer
(0.0%-10.0%), and thyroid cancer (0%-63.3%). Potential
reasons include variation in sample sizes and detection
methods, and it also remains unknown if MMR-D differs
based on the site of disease (primary vmetastatic) or timing
(treatment-naı̈ve v treatment-exposed).

TABLE 2. Mapping of Tumor Types From Sources
Original Tumor Type Mapped Tumor Type

Colon adenocarcinoma Colorectal cancer

Rectal adenocarcinoma Colorectal cancer

Colorectal adenocarcinoma Colorectal cancer

Barret esophagus adenocarcinoma Esophagogastric
carcinoma

Esophageal carcinoma Esophagogastric
carcinoma

Gastric adenocarcinoma Esophagogastric
carcinoma

Stomach or gastric adenocarcinoma Esophagogastric
carcinoma

Esophagogastric junction carcinoma Esophagogastric
carcinoma

Small intestinal malignancies Small bowel cancer

Extrahepatic bile duct adenocarcinoma Biliary cancer

Pancreatic adenocarcinoma Pancreatic cancer

Uterine carcinosarcoma Uterine sarcoma

Kidney chromophobe Renal cell carcinoma

Kidney renal clear cell carcinoma Renal cell carcinoma

Kidney renal papillary cell carcinoma Renal cell carcinoma

Kidney cancer Renal cell carcinoma

Sarcoma Soft tissue sarcoma

Glioblastoma multiforme Glioma

Lower-grade or low-grade glioma Glioma

Merkel cell carcinoma Skin cancer,
nonmelanoma

Malignant solitary fibrous tumor of the pleura Soft tissue sarcoma

Ovarian surface epithelial carcinoma Ovarian cancer

Nonepithelial ovarian cancer Ovarian cancer

Cervical squamous cell carcinoma/endocervical
adenocarcinoma

Cervical cancer

Pediatric acute myeloid leukemia Acute myeloid leukemia

Pediatric high-risk Wilms tumor Wilms tumor

Poorly differentiated carcinoma, NOS Cancer of unknown
primary

Combined small-cell lung carcinoma Small-cell lung cancer

Lung bronchioloalveolar carcinoma Non–small-cell lung
cancer

Thyroid carcinoma Thyroid cancer

Thymic carcinoma Thymic tumor

Head and neck squamous carcinoma Head and neck
carcinoma

NUT midline carcinoma of the head and neck Head and neck
carcinoma

Prostatic adenocarcinoma Prostate cancer

Abbreviations: NOS, not otherwise specified; NUT, nuclear protein in testis.

Clinical Assessment of MMR Deficiency Using Targeted NGS

JCO Precision Oncology 1089



TA
BL
E
3.

M
M
R
-D
/M

SI
-H

P
re
va
le
nc

e
Fr
om

P
an

-C
an

ce
r
St
ud

ie
s
A
ss
es
si
ng

M
ic
ro
sa
te
lli
te

In
st
ab

ili
ty

Tu
m
or

Ty
pe

17
-4
65

Al
l

17
-4
65

Pa
th
ol
og
is
t
As
se
ss
ed

M
SK

-IM
PA

CT
M
SI

Re
vi
ew

TC
GA

/T
AR

GE
T

Va
nd

er
w
al
de

et
al

2
1

M
id
dh
a
et

al
1
8

Du
dl
ey

et
al

1
9

Bo
nn
ev
ill
e
et

al
2
0

To
ta
l

M
M
R-

D
Fr
eq
ue
nc
y

(%
)

To
ta
l

M
M
R-

D
Fr
eq
ue
nc
y

(%
)

To
ta
l

M
SI
-

H
Fr
eq
ue
nc
y

(%
)

To
ta
l

M
SI
-

H
Fr
eq

ue
nc

y
(%

)
To
ta
l

M
SI
-

H
Fr
eq
ue
nc
y

(%
)

To
ta
l

M
SI
-

H
Fr
eq
ue
nc
y

(%
)

A
dr
en

oc
or
tic
al

ca
rc
in
om

a
47

0
0

9
0

0
30

0
0

N
/A

92
4

4.
35

N
/A

A
m
pu

lla
ry

ca
rc
in
om

a
22

1
4.
55

2
0

0
28

0
0

14
4

15
10

.4
2

N
/A

N
/A

A
na

lc
an

ce
r

46
0

0
6

0
0

31
0

0
N
/A

N
/A

N
/A

A
pp

en
di
ce
al

ca
nc

er
80

2
2.
50

19
1

5.
27

N
/A

N
/A

N
/A

N
/A

B
ili
ar
y
ca

nc
er

19
8

3
1.
52

42
0

0
23

6
3

1.
28

N
/A

N
/A

29
1

3.
44

B
la
dd

er
ca

nc
er

60
5

15
2.
48

11
7

3
2.
57

35
5

11
3.
09

N
/A

41
2

2
0.
49

14
3

0
0

B
la
st
ic

pl
as
m
ac
yt
oi
d
de

nd
rit
ic

ce
ll

ne
op

la
sm

7
0

0
N
/A

N
/A

N
/A

N
/A

N
/A

B
re
as
t
ca

rc
in
om

a
1,
92

0
17

0.
89

35
5

0
0

1,
40

5
0

0
N
/A

1,
04

4
16

1.
54

1,
02

4
6

0.
59

B
re
as
t
sa
rc
om

a
7

0
0

2
0

0
15

0
0

N
/A

N
/A

N
/A

C
an

ce
r
of

un
kn

ow
n
pr
im

ar
y

68
2

16
2.
35

21
3

6
2.
82

25
0

5
2

N
/A

N
/A

N
/A

C
er
vi
ca

lc
an

ce
r

10
3

2
1.
95

19
0

0
43

0
0

34
4

28
8.
14

30
5

8
2.
63

16
8

6
3.
57

C
ho

la
ng

io
ca
rc
in
om

a
N
/A

N
/A

N
/A

N
/A

74
1

1.
36

17
7

4
2.
26

C
ho

nd
ro
bl
as
to
m
a

1
0

0
N
/A

N
/A

N
/A

N
/A

N
/A

C
ho

nd
ro
sa
rc
om

a
26

0
0

1
0

0
33

0
0

N
/A

N
/A

N
/A

C
ho

rd
om

a
7

0
0

1
0

0
20

0
0

N
/A

N
/A

N
/A

C
ho

ro
id

pl
ex
us

tu
m
or

6
0

0
5

0
0

N
/A

N
/A

N
/A

N
/A

C
ol
or
ec

ta
lc

an
ce

r
1,
74

4
16

9
9.
69

48
1

43
8.
94

99
6

83
8.
34

1,
06

6
20

8
19

.5
1

58
8

94
15

.9
9

1,
39

5
80

5.
73

Em
br
yo
na

lt
um

or
15

4
1

0.
65

37
0

0
81

0
0

N
/A

N
/A

N
/A

En
do

m
et
ria

lc
ar
ci
no

m
a

72
3

15
2

21
.0
3

14
4

36
25

26
0

42
16

.1
6

98
9

26
5

26
.7
9

54
2

17
0

31
.3
7

87
9

15
5

17
.6
3

Ep
en

dy
m
om

al
tu
m
or

49
0

0
10

0
0

17
0

0
N
/A

N
/A

N
/A

Es
op

ha
go

ga
st
ric

ca
rc
in
om

a
75

7
28

3.
69

19
8

8
4.
05

28
2

7
2.
49

76
5

6.
58

62
4

87
13

.9
4

37
3

16
4.
29

Ew
in
g
sa
rc
om

a
31

0
0

6
0

0
41

0
0

55
1

1.
82

N
/A

N
/A

G
I
ne

ur
oe

nd
oc

rin
e
tu
m
or

14
3

0
0

29
0

0
N
/A

29
5

64
21

.6
9

N
/A

N
/A

G
I
st
ro
m
al

tu
m
or

19
5

0
0

54
0

0
N
/A

N
/A

N
/A

52
0

0

G
er
m

ce
ll
tu
m
or

11
5

0
0

13
0

0
N
/A

N
/A

N
/A

N
/A

G
es
ta
tio
na

lt
ro
ph

ob
la
st
ic

di
se
as
e

5
0

0
N
/A

13
0

0
N
/A

N
/A

N
/A

G
ia
nt

ce
ll
tu
m
or

3
0

0
2

0
0

N
/A

N
/A

N
/A

N
/A

G
lio
m
a

1,
47

5
22

1.
49

28
8

5
1.
74

58
4

0
0

N
/A

90
9

3
0.
34

52
2

3
0.
57

H
ea

d
an

d
ne

ck
ca

rc
in
om

a
65

2
9

1.
39

11
5

2
1.
74

20
0

4
2

15
3

5
3.
27

51
0

4
0.
78

11
1

0
0

H
ep

at
oc
el
lu
la
r
ca
rc
in
om

a
77

0
0

25
0

0
11

4
0

0
37

6
16

.2
2

37
5

3
0.
80

73
2

2.
74

H
is
tio
cy
to
si
s

25
0

0
4

0
0

17
0

0
N
/A

N
/A

N
/A

H
od

gk
in

ly
m
ph

om
a

9
0

0
1

0
0

N
/A

N
/A

N
/A

N
/A

(C
on

tin
ue

d
on

fo
llo
w
in
g
pa

ge
)

Albayrak et al

1090 © 2020 by American Society of Clinical Oncology



TA
BL
E
3.

M
M
R
-D
/M

SI
-H

P
re
va
le
nc

e
Fr
om

P
an

-C
an

ce
r
St
ud

ie
s
A
ss
es
si
ng

M
ic
ro
sa
te
lli
te

In
st
ab

ili
ty

(C
on

tin
ue

d)

Tu
m
or

Ty
pe

17
-4
65

Al
l

17
-4
65

Pa
th
ol
og
is
t
As
se
ss
ed

M
SK

-IM
PA

CT
M
SI

Re
vi
ew

TC
GA

/T
AR

GE
T

Va
nd

er
w
al
de

et
al

2
1

M
id
dh
a
et

al
1
8

Du
dl
ey

et
al

1
9

Bo
nn
ev
ill
e
et

al
2
0

To
ta
l

M
M
R-

D
Fr
eq
ue
nc
y

(%
)

To
ta
l

M
M
R-

D
Fr
eq
ue
nc
y

(%
)

To
ta
l

M
SI
-

H
Fr
eq
ue
nc
y

(%
)

To
ta
l

M
SI
-

H
Fr
eq

ue
nc

y
(%

)
To
ta
l

M
SI
-

H
Fr
eq
ue
nc
y

(%
)

To
ta
l

M
SI
-

H
Fr
eq
ue
nc
y

(%
)

Le
uk

em
ia

67
5

5
0.
75

78
0

0
N
/A

N
/A

50
3

1
N
/A

1
0

0

M
el
an

om
a

51
1

2
0.
39

19
5

0
0

N
/A

56
6

10
.7
2

47
0

3
0.
64

34
5

0
0

M
en

in
go
th
el
ia
lt
um

or
24

9
0

0
51

0
0

N
/A

N
/A

N
/A

N
/A

M
es
ot
he

lio
m
a

24
2

2
0.
83

47
1

2.
13

12
2

1
0.
82

N
/A

83
2

2.
41

N
/A

M
is
ce
lla
ne

ou
s
br
ai
n
tu
m
or

52
1

1.
93

5
0

0
16

0
0

N
/A

N
/A

N
/A

M
is
ce
lla
ne

ou
s
ne

ur
oe
pi
th
el
ia
lt
um

or
35

1
2.
86

9
0

0
11

0
0

N
/A

N
/A

N
/A

M
ul
tip

le
m
ye
lo
m
a

11
0

1
0.
91

35
0

0
N
/A

N
/A

N
/A

10
0

0

M
ye
lo
dy
sp
la
si
a

11
5

1
0.
87

6
0

0
N
/A

N
/A

N
/A

N
/A

M
ye
lo
pr
ol
ife
ra
tiv
e
ne

op
la
sm

44
1

2.
28

3
0

0
N
/A

N
/A

N
/A

N
/A

N
as
op

ha
ry
ng

ea
lc

ar
ci
no

m
a

N
/A

N
/A

N
/A

N
/A

50
0

0
N
/A

N
er
ve

sh
ea
th

tu
m
or

77
1

1.
29

18
0

0
20

0
0

N
/A

N
/A

N
/A

N
on

-H
od

gk
in

ly
m
ph

om
a

47
4

8
1.
69

14
4

0
0

44
0

0
N
/A

81
0

N
/A

5
0

0

N
on

–
sm

al
l-c

el
ll
un

g
ca

nc
er

3,
00

8
36

1.
19

60
4

4
0.
67

1,
52

5
5

0.
33

N
/A

1,
06

5
6

0.
57

1,
86

9
12

0.
64

O
st
eo

sa
rc
om

a
37

0
0

10
0

0
50

0
0

N
/A

N
/A

N
/A

O
va
ria

n
ca

nc
er

90
8

7
0.
78

13
4

1
0.
75

23
3

0
0

1,
23

4
12

4
10

.0
5

43
7

6
1.
38

1,
57

3
18

1.
14

P
an

cr
ea

tic
ca

nc
er

61
2

8
1.
31

17
7

0
0

56
4

4
0.
71

N
/A

18
3

0
0

51
8

6
1.
16

P
ed

ia
tr
ic

hi
gh

-r
is
k
W
ilm

s
tu
m
or

N
/A

N
/A

N
/A

N
/A

41
1

2.
44

N
/A

P
ed

ia
tr
ic

ne
ur
ob

la
st
om

a
N
/A

N
/A

N
/A

N
/A

22
0

1
0.
46

N
/A

P
en

ile
ca
nc

er
7

0
0

N
/A

N
/A

N
/A

N
/A

N
/A

P
he

oc
hr
om

oc
yt
om

a
13

0
0

1
0

0
N
/A

N
/A

N
/A

N
/A

P
he

oc
hr
om

oc
yt
om

a
an

d
pa

ra
ga
ng

lio
m
a

N
/A

N
/A

N
/A

N
/A

17
9

0
0

N
/A

P
in
ea
lt
um

or
10

0
0

1
0

0
N
/A

N
/A

N
/A

N
/A

P
ro
st
at
e
ca

nc
er

57
8

7
1.
22

14
4

3
2.
09

72
2

12
1.
67

79
6

7.
59

49
8

3
0.
61

19
1

4
2.
09

R
en

al
ce

ll
ca

rc
in
om

a
51

8
4

0.
78

92
0

0
34

9
1

0.
29

15
2

3
1.
98

62
7

5
0.
80

15
5

1
0.
65

R
et
in
ob

la
st
om

a
4

0
0

2
0

0
N
/A

N
/A

N
/A

N
/A

R
et
ro
pe

rit
on

ea
lo

r
pe

rit
on

ea
l

ca
rc
in
om

a
or

sa
rc
om

a
N
/A

N
/A

N
/A

N
/A

53
0

0

Sa
liv
ar
y
ca
rc
in
om

a
N
/A

N
/A

10
7

0
0

N
/A

N
/A

N
/A

Se
lla
r
tu
m
or

19
1

1
0.
53

23
0

0
N
/A

N
/A

N
/A

N
/A

Se
x
co
rd

st
ro
m
al

tu
m
or

42
0

0
5

0
0

19
0

0
N
/A

N
/A

N
/A

Sk
in

(b
as
al

ce
ll
ca
rc
in
om

a)
N
/A

N
/A

N
/A

53
0

0
N
/A

N
/A

Sk
in

(s
eb

ac
eo
us

tu
m
or
)

N
/A

N
/A

N
/A

45
22

48
.8
9

N
/A

N
/A

(C
on

tin
ue

d
on

fo
llo
w
in
g
pa

ge
)

Clinical Assessment of MMR Deficiency Using Targeted NGS

JCO Precision Oncology 1091



TA
BL
E
3.

M
M
R
-D
/M

SI
-H

P
re
va
le
nc

e
Fr
om

P
an

-C
an

ce
r
St
ud

ie
s
A
ss
es
si
ng

M
ic
ro
sa
te
lli
te

In
st
ab

ili
ty

(C
on

tin
ue

d)

Tu
m
or

Ty
pe

17
-4
65

Al
l

17
-4
65

Pa
th
ol
og
is
t
As
se
ss
ed

M
SK

-IM
PA

CT
M
SI

Re
vi
ew

TC
GA

/T
AR

GE
T

Va
nd

er
w
al
de

et
al

2
1

M
id
dh
a
et

al
1
8

Du
dl
ey

et
al

1
9

Bo
nn
ev
ill
e
et

al
2
0

To
ta
l

M
M
R-

D
Fr
eq
ue
nc
y

(%
)

To
ta
l

M
M
R-

D
Fr
eq
ue
nc
y

(%
)

To
ta
l

M
SI
-

H
Fr
eq
ue
nc
y

(%
)

To
ta
l

M
SI
-

H
Fr
eq

ue
nc

y
(%

)
To
ta
l

M
SI
-

H
Fr
eq
ue
nc
y

(%
)

To
ta
l

M
SI
-

H
Fr
eq
ue
nc
y

(%
)

Sk
in

(s
qu

am
ou

s
ce
ll
ca
rc
in
om

a)
N
/A

N
/A

N
/A

30
0

0
N
/A

N
/A

Sk
in

ca
nc

er
,
no

nm
el
an

om
a

20
4

4
1.
97

47
2

4.
26

N
/A

N
/A

N
/A

6
0

0

Sm
al
lb

ow
el

ca
nc

er
97

9
9.
28

42
2

4.
77

32
5

15
.6
3

N
/A

N
/A

72
6

8.
33

Sm
al
l-c

el
ll
un

g
ca

nc
er

12
2

1
0.
82

20
0

0
94

1
1.
07

N
/A

N
/A

75
1

1.
33

So
ft
tis
su
e
sa
rc
om

a
72

2
8

1.
11

21
7

3
1.
39

47
4

1
0.
22

40
2

5
25

5
2

0.
79

3
0

0

Te
st
ic
ul
ar

ge
rm

ce
ll
tu
m
or

N
/A

N
/A

N
/A

N
/A

15
0

0
0

N
/A

Th
ym

ic
tu
m
or

51
2

3.
93

5
1

20
20

0
0

N
/A

12
3

1
0.
82

26
0

0

Th
yr
oi
d
ca

nc
er

44
5

3
0.
68

67
1

1.
49

23
4

1
0.
43

30
19

63
.3
4

49
6

0
0

42
1

2.
38

U
te
rin

e
sa
rc
om

a
15

5
2

1.
3

18
0

0
97

2
2.
07

N
/A

57
2

3.
51

12
8

3
2.
34

U
ve
al

m
el
an

om
a

N
/A

N
/A

N
/A

N
/A

80
0

0
50

1
2.
00

Va
gi
na

lc
an

ce
r

41
1

2.
44

3
0

0
N
/A

N
/A

N
/A

N
/A

W
ilm

s
tu
m
or

38
0

0
3

0
0

N
/A

N
/A

N
/A

N
/A

To
ta
l

20
,3
01

55
3

2.
72

4,
40

4
12

2
2.
78

9,
78

4
18

8
1.
92

4,
87

8
77

9
15

.9
7

11
,0
73

42
5

3.
84

11
,3
48

34
2

3.
01

N
O
TE

.R
es
ul
ts
fr
om

th
is
st
ud

y
(1
7-
46

5)
ar
e
sh
ow

n
in

th
e
fi
rs
tt
w
o
co

lu
m
ns
;1

7-
46

5
A
ll
re
pr
es
en

ts
th
e
ov
er
al
lO

nc
oP

an
el
co

ho
rt
us
in
g
al
go

rit
hm

pr
ed

ic
tio
n,

an
d
17

-4
65

P
at
ho

lo
gi
st
A
ss
es
se
d
re
pr
es
en

ts
th
e
su
bs
et

w
ith

pa
th
ol
og
y
si
gn

-o
ut
.C

om
pa

ra
to
rs
ar
e
M
SK

-I
M
P
A
C
T,

1
8
TC

G
A
/T
A
R
G
ET

,2
0
Va

nd
er
w
al
de

et
al
,2
1
an

d
a
re
vi
ew

of
M
SI

st
ud

ie
s
co

nd
uc

te
d
by

D
ud

le
y
et

al
,1
9
w
hi
ch

in
cl
ud

ed
th
e
fo
llo
w
in
g
ca

nc
er

ty
pe

s:
am

pu
lla
ry
,2
2
ce

rv
ic
al
,2
3
co

lo
re
ct
al
,2
4
en

do
m
et
ria

l,2
5
,2
6
es
op

ha
ge
al
,2
7
Ew

in
g
sa
rc
om

a,
2
8
ga

st
ric

ad
en

oc
ar
ci
no

m
a,

2
9
he

ad
an

d
ne

ck
sq
ua

m
ou

s
ce

ll
ca

rc
in
om

a,
3
0
he

pa
to
ce

llu
ar
,3
1
ov
ar
ia
n,

3
2
pr
os
ta
te
,3
3

re
na

l,3
4
sk
in
m
el
an

om
a,

3
5
sk
in
(s
eb

ac
eo
us

tu
m
or
s)
,3
6
,3
7
sk
in
(s
qu

am
ou

s
ce
ll
ca
rc
in
om

a)
,3
8
an

d
so
ft
tis
su
e
sa
rc
om

a.
3
9
O
th
er

ca
nc

er
ty
pe

s
re
po

rt
ed

in
Va

nd
er
w
al
de

et
al

2
1
th
at
m
ay

en
co

m
pa

ss
se
ve
ra
lc
an

ce
r

ty
pe

ca
te
go
rie

s
in
cl
ud

ed
in
th
e
ta
bl
e
ar
e:
so
ft
tis
su
e
tu
m
or
s
(1
/2
83

,0
.3
5%

),
ne

ur
oe
nd

oc
rin

e
tu
m
or
s
(7
/1
93

,3
.6
3%

),
ot
he

rf
em

al
e
ge

ni
ta
lt
ra
ct
m
al
ig
na

nc
ie
s
(1
/5
7,

1.
75

%
),
ly
m
ph

om
a
(0
/2
7,

0.
00

%
),
m
al
e

ge
ni
ta
lt
ra
ct
m
al
ig
na

nc
y
(0
/1
5,

0.
00

%
),
an

d
a
ca

te
go

ry
tit
le
d
“n
on

e
of
th
es
e
ap

pl
y”

(7
/7
05

,0
.9
9%

).
W
e
re
vi
ew

ed
th
e
in
di
vi
du

al
st
ud

ie
s
in
cl
ud

ed
in
D
ud

le
y
et
al

1
9
to
co

nfi
rm

an
d
in
cl
ud

e
ad

di
tio
na

ld
et
ai
ls
of

ea
ch

tu
m
or

ty
pe

.A
s
a
re
su
lt,
va
lu
es

sh
ow

n
in
th
e
“
M
SI
R
ev
ie
w
”
se
ct
io
n
di
ffe

rf
ro
m
th
os
e
of
D
ud

le
y
et
al
in
th
e
fo
llo
w
in
g
ca

se
s:
co

lo
re
ct
al
,2
4
w
he

re
D
ud

le
y
et
al
re
po

rt
13

%
,b

ut
w
ith

20
8
ca
se
s
re
po

rt
ed

as
M
SI
-

H
ou

to
f1

,0
66

fr
om

th
e
or
ig
in
al
m
an

us
cr
ip
t,
w
e
sh
ow

19
.5
1%

;e
nd

om
et
ria

l,2
5
,2
6
w
he

re
co

ns
ol
id
at
io
n
of
tw
o
ci
te
d
re
fe
re
nc

es
fr
om

D
ud

le
y
et
al
(1
18

/5
43

in
H
am

pe
le
ta
l,2

5
14

7/
44

6
in
Zi
gh

el
bo

im
et
al

2
6
)l
ea

ds
to

a
26

.7
9%

ra
te

of
M
SI
-H

en
do

m
et
ria

lt
um

or
s;
an

d
sk
in

(s
eb

ac
eo
us

tu
m
or
s)
,3
6
,3
7
w
he

re
co

ns
ol
id
at
io
n
of

tw
o
ci
te
d
re
fe
re
nc

es
fr
om

D
ud

le
y
et

al
(7
/2
0
in

C
es
in
ar
o
et

al
,3
7
15

/2
5
in

K
ru
se

et
al

3
6
)
le
ad

s
to

a
48

.8
0%

ra
te

of
M
SI
-H

se
ba

ce
ou

s
tu
m
or
s.

A
bb

re
vi
at
io
ns
:
M
M
R
-D
,
m
is
m
at
ch

re
pa

ir
de

fi
ci
en

cy
;
M
SI
,
m
ic
ro
sa
te
lli
te

in
st
ab

ili
ty
;
M
SI
-H

,
m
ic
ro
sa
te
lli
te

in
st
ab

ili
ty

hi
gh

;
N
/A
,
tu
m
or

ty
pe

no
t
as
se
ss
ed

or
sp
ec

ifi
ed

.

Albayrak et al

1092 © 2020 by American Society of Clinical Oncology



It is encouraging, however, that MMR-D prevalence in
most tumor types across independent studies was gen-
erally consistent (Fig 1), especially for other NGS-based

assessments,18,20,21 although more traditional MSI testing
performed via PCR or IHC showed greater variability in
some tumor types.19 For the TCGA and TARGET data
sets,18 MSI-H status was observed using tumor-normal
paired NGS in 27 different tumor types at an overall fre-
quency of 3.8%.37 Our predicted MMR-D frequency using
tumor-only NGS is similar for clinically signed-out cases
(3.3%), although only 2.8% were pathologist confirmed.
Coupled with the high sensitivity and specificity we ob-
served in comparison with manual review, this suggests
tumor-only NGS detection of MMR-D supported by simple
computational predictions may be a useful and cost-
effective screening tool for research and clinical use. In
this paradigm, computationally predicted MMR-D tumors
should, in many cases, still undergo validation with a clin-
ical test (eg, PCR or IHC) before being used for clinical care.
PCR testing has been considered the gold standard for the
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FIG 1. Comparison of mismatch repair–deficient (MMR-D)/microsatellite instability–high (MSI-H) patterns across tumor types. Across all studies described in
Table 3,18-39 the frequency of MMR-D or MSI-H was reported across all six cohorts in nine tumor types: colorectal, endometrial, esophagogastric, head and
neck, hepatocellular, prostate, renal cell carcinoma, thyroid cancer, and soft tissue sarcoma. Hepatocellular carcinoma and thyroid cancer had considerably
higher MSI-H rates reported in the review by Dudley et al.19

TABLE 4. Concordance Between Algorithmic Prediction and Final Pathology
Assessment for MMR Status

Final Pathology Assessment

Clinical Algorithm Prediction

Predicted MMR-D Predicted MMR-P Total

Signed out MMR-D 116 6 122

Signed out MMR-P 5 4,213 4,218

Signed out indeterminate 26 38 64

Total 147 4,257 4,404a

Abbreviations: MMR-D, mismatch repair deficient; MMR-P, mismatch repair
proficient.

aExcludes 84 samples that could not be assessed for MMR status by pathology
because of insufficient variants.
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determination of microsatellite stability, although the five-
marker Bethesda panel44 and updated MSI Analysis
System45 were originally optimized and validated in co-
lorectal cancer. Across tumor types, it remains unclear
which methodology to determine MMR status provides
greater accuracy, and NGS computational algorithms may
improve identification of these tumors compared with TMB,
PCR, or IHC testing. It will also be important for future
studies to measure the impact of MMR-D assessment on
treatment decisions and patient outcomes.

Given the low overall frequency of MMR-D across most
noncolorectal, nonendometrial tumors, we believe our al-
gorithm provides a cost-effective initial screening tool to
identify patients for PCR- or IHC-based testing. From
a clinical implementation standpoint, rather than testing all
patients with cancer with PCR or IHC to identify the , 3%
of patients who may be candidates for immune check-
point inhibitors on the basis of MMR-D, implementing the

algorithm in the context of an existing, multipurpose NGS
tumor-only panel, can provide an efficient initial screen and
allow clinicians to select only those tumors most likely to be
MMR-D for further testing. Biomarker studies in patients
with MMR-D tumors treated with immune checkpoint in-
hibition will provide further insight.

In the near future, combined testing of many biomarkers
across a large panel of genes as described heremay bemore
efficient in cost, time, and samplematerial than sequential or
more selective biomarker testing, and it also offers the ability
to quickly incorporate new biomarker discoveries into clinical
practice and bring effective treatments to patients who would
otherwise not benefit from these discoveries. Efforts to
evaluate the clinical utility of NGS-inferred MMR-D, de-
termined by the impact of physician notification of MMR/MSI
status on treatment decision making, are ongoing and may
provide further support for the implementation of targeted
NGS panels in routine clinical practice.
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APPENDIX

TABLE A1. Comparison of OncoPanel MMR Algorithm With Historical
Clinical MSI/MMR Testing
Laboratory Assessment Algorithm MMR-D Algorithm MMR-P Total

Laboratory MSI-H 41 4 45

Laboratory MSS 5 275 280

Total 46 279 325

NOTE. List of tumors tested (total number MSI-H by orthogonal
testing/total number tested): appendiceal cancer (1/3), biliary cancer
(1/4), bladder cancer (0/2), cancer of unknown primary (2/7),
colorectal cancer (17/227), endometrial cancer (19/64),
esophagogastric carcinoma (4/8), pancreatic cancer (0/4), prostate
cancer (1/4), small bowel cancer (0/1), soft tissue sarcoma (0/1).

Abbreviations: MMR-D, mismatch repair deficient; MMR-P,
mismatch repair proficient; MSI-H, microsatellite instability high; MSS,
microsatellite stable.
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