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Abstract 
It is difficult to model in vitro the intestine when seeking to include 
crosstalk with the gut microbiota, immune and neuroendocrine 
systems. Here we present a roadmap of the current models to 
facilitate the choice in preclinical and translational research with a 
focus on gut-on-chip. These micro physiological systems (MPS) are 
microfluidic devices that recapitulate in vitro the physiology of the 
intestine. We reviewed the gut-on-chips that had been developed in 
academia and industries as single chip and that have three main 
purpose: replicate the intestinal physiology, the intestinal pathological 
features, and for pharmacological tests.
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Introduction
The human gastrointestinal (GI) tract primarily processes food 
and absorbs nutrients, water, and minerals, while also playing 
key roles in immunity and in different neuroendocrine processes1. 
The physiological environments of different GI lumen sections 
are distinguished by their pH, redox potential, and transit time 
and they are deeply influenced by individual condition, diet,  
circadian clock, and physical activity2. A healthy gut is marked 
by effective digestion and absorption of food, normal and sta-
ble intestinal microbiota, effective immune status, and general 
wellbeing3. Poor quality diet, frequent use of antibiotics com-
promising gut microbiota biodiversity, aging4 and epigenetic fac-
tors have been associated with digestive diseases and linked to  
non-communicable diseases (NCDs)5,6. Dietary risk factors con-
tribute to 11 million deaths and 255 million cases of morbid-
ity worldwide, according to analysis of the Global Burden of 
Diseases (GBD) Study 20177. In a more recent GBD report8, the 
annualised rate of change between 2010 and 2019 for the Dietary 
risk factors assessed a decrease of -0.28, but an increase for the  
Metabolic risks factors (+1.46%), which can be also associated 
with the GI diseases9,10.

Considering the important role played by the gut in human  
physiology and pathology, considerable efforts have been 
invested to create relevant in vitro models for translational 
research and personalized medicine. Gut-on-chip (GOC) models  
provide an advanced and unique approach to combine and pre-
serve the original biological components, the biophysical archi-
tecture, and the biophysical phenomena of the gut in vitro. 
GOCs are organs-on-a-chip (OOC), small in vitro devices based 
on microfluidic technology that aim to replicate the minimal  
functional units of the intestine, enabling to culture intestinal 
cells and bioptic tissues11. The GOCs have demonstrated so far 
capability to replicate: (1) specific physiopathological conditions 
(e.g. inflammation12, intestinal bowel diseases – IBD13, colon  
cancer14); (2) in vitro drug pharmaco-kinetics (e.g. bioavail-
ability assays15, drug-to-drug interaction16); (3) host-microbes  
interactions (HMI)17–19.

Translational potentials and challenges of current 
gut models
The success rate of drug discovery and development from the 
preclinical phase to the clinical phases is only about 32%20.  
The same drugs are not necessarily going onto the clinical phase 
and succeeding. One of the main reasons of the high percentage 
of failures is due to the difficulty in finding preclinical models, 

both in vitro and in vivo, that resemble the human physiology, 
the pathological pathways, and the pharmacological response.  
Despite the disruptive therapeutic modalities such as gene 
therapy and immunotherapy, the development of more predic-
tive in vitro model to study the treatment efficacy and toxic-
ity is critical. In the preclinical research, the model roadmap to 
study the human GI tract pass by in silico, in vitro, and in vivo  
(Figure 1). In silico approach is based in computer modelling 
and aims at producing algorithms or numerical models able to 
predict the drug effects. They have different level of complex-
ity and include computational fluid dynamics (CFD)21, ordi-
nary differential equations (ODEs)22,23, aged-based modelling  
(ABM)24,25, and genome scale modelling (GSM)26. For the devel-
opment of in silico models, it is critical the reliability of input 
data that are coming from databases, data banks, data mining, 
data analysis tools, publications, homology models, and other 
repositories27. Data-based modelling approaches are effec-
tive for many ADME (absorption, distribution, metabolism, 
elimination) properties in relationship with the QSAR (quan-
titative structure-activity relationship). For example, computa-
tional models are used for molecular modelling with enzymes 
and their docking, drugs solubility and permeability in intes-
tine and brain, prediction of hepatic metabolism and mechanis-
tic models of tissue distribution28,29. The data acquired in silico  
requires validation to bridge the current gap between theoreti-
cal and experimental approaches30. In preclinical studies, a range 
of animal models are used, from small animals (mice and rats) 
to large animals (pigs, dogs, and non-human primates). This is 
done to study the effects of a potential treatment in a more com-
plex system than the in vitro systems allow, considering the 
whole organism. Animal studies require ethical approval and their  
predictability is challenged by different diets and thus different  
gut microbiota composition from humans, different genomes, 
difficulties in handling and maintenance (particularly for large 
animals), and high costs30. The use of animal models is not lim-
ited to pharmacological studies as the gut-brain axis research is 
becoming of critical importance in understanding physiological  
mechanisms31,32 and mental health disorders33.

In vitro models can be distinguished in static and dynamic 
models; the first are commonly culture epithelial cell lines on 
Transwell® insert15. The most used cell lines are the immortal-
ized human-derived Caco-2, HT29 or HT29-MTX, or the animal- 
derived IPEC-J2. The advantages of culturing Caco-2 cells in 
Transwell ®, under static condition, are that: it is the regulatory  
standard model for drug bioavailability assays34, it requires no 
ethical permissions as cells are commercially available, and 
it mimics features of both small and large intestine, despite 
being cells derived by colon cancer. However, there are some  
limitations to this static Caco-2 in vitro model. For instance, 
the human intestinal epithelium contains more than one cell 
type (enterocytes) and it is hard to accurately predict the human 
response to pathogens and drugs. In fact, the standard bio-
availability assay usually does not consider factors like nutrients,  
microbiota, hormonal factors, plasma carrier proteins, peristalsis 
speed, or bile acids35. Moreover, scientists suggest to con-
sider also the presence of mucus in the bioavailability and in 
the in vitro digestion, which can be possible by co-culturing 
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Caco-2 and HT29-MTX mucus-producing cells36,37. Recent  
studies have been working on including bacterial species, rep-
resenting the gut microbiota, into an in vitro Caco-2/HT29  
co-culture. The limitation to this is the restricted nutrient sup-
ply, and the time the mammalian and bacterial cells can  
co-exist in a static environment with build-up of bacterial metab-
olites and excessive growth rate of bacteria17,38. To overcome 
these limits, Caco-2 cells have been incorporated into macro-
models and GOCs in the dynamic models, which use the fluids  
flows across the cell cultures. 

Macromodels are bioreactors consisting of a series of com-
partments with different pressures, pH, flow rates, tempera-
tures, and cells aiming to simulate the different GI sections by 
replicating their biochemical and biophysical parameters39,40.  
In these models, it is possible to evaluate the bioavailabil-
ity of drugs and food, and their fermentation by using patient-
derived microbiota41. However, macromodels require costly lab  
equipment and space, need stabilization of the microbiota 
before use, and some of these systems do not mimic peristalsis  
and lack dialysis for removing microbial acid products30. 

On the other hand, when Caco-2 are cultivated in alterna-
tive GOCs, they express the morphological and functional  

characteristic of the static in vitro Caco-2 monolayer, both in 
dynamic fluidic systems with transwells and simpler GOCs42.  
These models have the advantage to control intestinal histogen-
esis, physiology, mucus production, drugs, and nutrients response. 
This is possible by modulating several parameters: directional 
flow rates, mechanical deformation, fluid shear stress, and  
asymmetric stimulation of the apical and basolateral sides of 
developing epithelium. Delon et al. used a Hele-Shaw cell to 
investigate the main features of Caco-2 cells in a microfluidic  
device by applying several fluid shear stresses43. They  
demonstrated that Caco-2 reach confluency within 5 days (earlier  
than in the static in vitro models) and that shear stress  
contributes to morphology, phenotype, and function of the  
epithelial layer. This turned into better mimicking tight junction 
expression, mitochondrial activity, mucus production, micro-
villi density, vacuolization, and cytochrome P450 (CYP450)  
expression. Gene expression study of Caco-2 on GOCs revealed 
that expression of MUC17, a transmembrane mucin, was  
highly enhanced in the 3D villi model compared to a static  
monolayer culture43. In a more recent study, the altered gene  
expression profile of Caco-2 was compared in static condition 
versus the flow culturing condition in a GOCs after 21 days.  
Differences had been spotted in the cellular homeostasis, signal 
transduction, cell life cycle, and in the immunological responses44.

Figure 1. Roadmap of the translation in preclinical studies of gastrointestinal (GI) model in physiology, pharmacology, disease 
modelling and personalized medicine. ADMET=Absorption, Distribution, Metabolism, Elimination, and Toxicology.
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Besides the translational advancement of these GOCs models, 
there is still a lack of standardization among labs and intrinsic 
difficulties to scale-up their production. Moreover, like the other 
aforementioned in vitro models, the currently proposed GOCs 
are more physiologically relevant model with a reduced number 
of cell lines, and they generally do not comprise neuroendocrine 
or immune parameters. Interestingly, some GOCs incorporate  
organoids, enteroids, and biopsies11,45,46.

Another commonly used in vitro model of the gut consist of 
3D organoids or enteroids, which can be grown from adult 
intestinal stem cells (ISCs), induced pluripotent stem cells  
(iPSCs) and primary intestinal epithelial cells (IEC). An advan-
tage of these models is the reproduction of complex struc-
tures, including both epithelia and mesenchyme47. However, 
3D-organoids have lower success in modelling diseases such 
as IBD because of difficulties maintaining the quality and  
quantity of cells due to high occurrence of inflammation and  
pre-apoptosis48. Challenges include viability (up to 48h), cost, and 
difficulties in accessing the lumen of the spheric structure for 
the application of microbiota and drugs. In pharmacology, there 
is potential to culture 2D organoids/enteroids in a monolayer 
to study drug interactions. Also in this case, when biopsies,  
enteroids or organoids have been integrated in GOCs it was 
possible to find some advantages in terms of better reproduc-
ibility of intestinal cytoarchitecture from a single donor11,49–51, 
more reliability in the results for personalized therapy, or longer  
time in culture in the case of the biopsies46,52,53.

Focusing on GOCs: from academia to industries 
and their proof-of-concept
GOCs are microfluidic devices hosting cell or tissue cultures 
in a single chip. In Table 1, we list each chip, its main features, 
and the level of industry involvement. GOCs may be used for  
bioavailability assays, intestinal absorption of nutrients12 and 
drugs, and real time evaluation of uptake and transports of 
drugs. The US Food and Drug Administration (FDA), the  
European Medicine Agency (EMA), and the World Health 
Organization (WHO) recommend Caco-2 intestinal permeability  
assays as the standard model to determine the intestinal perme-
ability rate and ratio of active pharmaceutical ingredients (API). 
These studies permit to compare the drug permeability from the 
apical to the basolateral side by considering the involvement  
of efflux transporter and active uptake transporters (EMA  
Guideline on the investigation of drug interaction). Multiple 
transporters of the adenosine triphosphate (ATP) binding cassette 
(ABC) active transporter family such as P-glycoprotein (P-gp)  
or multidrug resistance protein- (MDRP1 or ABCB1) and multi-
drug resistance protein-2 (MRP-2 or ABCC2) efflux pumps  
are expressed by Caco-254. A pharmaceutical compound needs 
to exhibit an apparent permeability (Papp) coefficient of  
> 90% compared with metoprolol, the gold standard for posi-
tive control in Caco-2 cells to be considered for exemption from  
bioequivalence studies; according to the Biopharmaceutical  
Classification System (BCS)55. A systematic approach for the 
comparison of the BCS in static and in dynamic conditions on a 
GOC was done by Kulthong et al.15, but no significant improve-
ments were found in drug bioavailability, probably due to the 

very low shear stress applied in the GOC. In fact, in another  
GOC model based on 12-wells transwell insert connected to a 
bioreactor (Quasi-Vivo Kirkstall Ltd), applied fluid mechani-
cal forces enhanced the absorbance of the fluorescein in a  
time-dependent manner56. Comparing a thiol-ene GOC with static 
in vitro culture42, the permeabilities of mannitol, insulin, and fluo-
rescein isothiocyanate were not significantly higher. However, 
the Caco-2 grew and differentiated faster in the thiol-ene GOC, 
expressing P-glycoprotein 1 (P-gp), aminopeptidase activity  
and mucous proteins, which play important roles in the oral 
bioavailability. A GOC with integrated optical fibers devel-
oped by Kimura enabled to observe the transport of rhodam-
ine 123 in real time57. Two organoid-derived intestine-on-chip 
used the Emulate commercially available chip, also containing a  
polydimethylsiloxane (PDMS) membrane, for a small intestine-
on-chip16 and colon-on-chip11 models. The advantage of using 
organoids derived from healthy donors compared to the Caco-2 
model is that they better reproduce the intestinal cytoarchitec-
ture, cell-cell interactions, transporters, and the expression of the  
CYP3A4. This is particularly relevant in studies on pharma-
cokinetics and pharmacodynamics. Duodenal epithelial cells 
are cultivated on top of the membrane, while human intestinal 
microvascular endothelial cells (HIMECs) grown at the bottom.  
Sontheimer-Phelps et al. have isolated human donor crypts, 
growing organoids, dissociating the spheres, and seeding the 
cell mixture onto the chip11. This method replicated the mucus 
bilayer of the colon to a full diameter of 0.6mm. Unfortunately,  
they did not report how this affected the fluid velocity of the 
apical channel (height: 1.0 mm), nor did they take this into  
consideration when reporting the effect of shear on villi bending.

Several GOCs aim to target a specific disease, as in the 
case of the tumor-on-a-chip for nanoparticles developed by  
Carvalho and colleagues14. Shear stress on HCT-116 cells (a 
human colon cancer cell line) and human colonic microvascular  
endothelial cells (HCoMECs) recreated the angiogenesis sprout-
ing typical of colon cancer. To replicate the intestinal tubules, 
Beaurivage C et al. integrated extracellular matrix (ECM)- 
supported intestinal tubules grown from Caco-2 cells into their 
perfused microfluidic devices, OrganoPlate®13. In this device, the  
cells exhibit cellular polarization, tight junction formation, and 
express key receptors. This GOC is easy to handle and allows 
different experimental settings for physiological, pathologi-
cal, and pharmacological studies. However, limitations of this 
model are 1) the use of a rocker that, by switching inclination  
of +/- 7 degree every 8 minutes, results in non-uniform bidirec-
tional shear stress; 2) the Caco-2 tubular structure of the chip  
remain stable only for 6 - 8h of perfusion58.

Dawson and colleagues developed their dual-flow biopsy- 
holding chamber as an improved Ussing chamber46. Biopsy  
culture was maintained for 68h at which point 80% of the  
tissue was alive as shown with lactate dehydrogenase (LDH) 
activity upon cell lysis. The longest culture time of intestinal 
explant tissue in a microfluidic device was reported by Baydoun 
and colleagues52. In their study on a PDMS GOC, they demon-
strated 3 of 9 biopsies to be intact upon histological observation  
after 8 days. Yissachar and colleagues implemented a gut organ 
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culture, accommodating a mice gut tissue fragment in a bath 
of nutrients53. The researchers cocultured ex vivo intestinal  
tissue with intestinal microbiota and investigated crosstalk with 
the immune system and expression of neuronal-specific genes. 
Limits of this model include the short length of experiments  
(structure degradation after 30–40 hours) and the microbiota 
overgrowth (24 hours). Scientists from Paul Wilmes group 
have developed and patented HuMiX, the “Human Microbial  
Cross-talk” model59. This GOC co-cultures Caco-2 and bacte-
ria, either Lactobacillus rhamnosus GG (LGG) or Bacteroides  
caccae18. HuMiX is made from polycarbonate (PC) and there-
fore has the potential of large-scale production. However, the  
Caco-2 and the microbiota are separated by a PC membrane 
which may be a limitation, because only indirect interactions 
can be assessed. Furthermore, the rigid membrane does not 
allow the chip to simulate peristalsis. On the contrary, the peri-
stalsis is part of the GOC described by Jalili-Firoozinezhad and  
colleagues17,62. This GOC is a Polydimethylsiloxane (PDMS) 
microfluidic two-channel device containing a porous membrane 
coated with ECM. The Caco-2 cells are cultured on top of the 
membrane, while below the human intestinal microvascular 
endothelial cells (HIMECs) lies. The peristaltic movement is  
controlled by two lateral vacuum chambers that stretch the  
membrane and regulate the suction force48, like in the Emulate 
chips. The gut microbiota in the chip lived for up to 5 days, more 
than doubling the 48h of static Caco-2 monoculture. A modi-
fied chip, called anoxic-oxic interface-on-a-chip (AOI Chip)19,  
was made by co-cultivating the Caco-2 cells with two obli-
gate anaerobic bacteria, Bifidobacterium adolescentis and  
Eubacterium hallii. The authors demonstrated that AOI does not 
compromise the viability, mucin production, barrier function, 
and the expression of proteins in the intestinal epithelial layer. 
Moreover, to produce the anoxic environment in the chip while  
oxic culture media was flowed in the oxic chamber, it was suffi-
cient to precondition culture media in an anoxic chamber. The 
same research group have more recently developed their own 
GOC called 3D physiodynamic mucosal interface-on-a-chip  
(PMI Chip)60. The novelty introduced with the PMI Chip is 
the multiaxial stretching motion that provides the tortuosity 
of hydrodynamic flow with approximately 5% in cell strain at  
0.15 Hz frequency. MOTiF biochips, designed by microfluidic 
ChipShop GmbH, is a microfluidic chip in polystyrol (PS)  
initially used to seed endothelial cells, human umbilical vein  
endothelial cells (HUVEC)61. A limitation of the study is the  
oxygen gradient, which is difficult to measure or control, 
because bacteria and fungi are sensitive to the gas composition,  
temperature, and humidity63. Following the differentiation of  
Caco-2 cells (which was faster compared to the transwell 
model), the authors demonstrated the possibility of coloniza-
tion with bacteria (L. rhamnosus) and the fungal pathogen  
Candida albicans showing the competitive mechanism in vitro.

Bulk and membrane materials
Materials employed in fabrication represent a crucial step and 
choosing a right material based on the application of the chip  
is not straightforward64. One of the main bottlenecks to scale up 
the GOC are the materials used to manufacture them65. PDMS 
is easy to prototype, elastic and optically transparent, but the  
costs are higher for mass production, it absorbs low molecular 

weight hydrophobic molecules, such as drug compounds, it is 
permeable to carbon dioxide (CO

2
) and it has rather unstable sur-

face properties66. However, limited gas permeability of PDMS 
has been turned into an advantage in HMI studies, controlling for  
oxygen and anoxic flows to grow different species of gut  
bacteria19. Thermoplastic materials, such as polycarbonate (PC), 
Poly(methyl methacrylate) PMMA, or Cycloolefins such as cyclic 
olefin polymers (COP) and copolymers (COC) are easier to pro-
duce in larger scale, through injection molding strategies67. How-
ever, they need to be accurately selected to facilitate sterilization 
and the needed optical properties for a given assay. PC is easier 
to produce in larger scale, through injection molding strategies, 
and can be sterilized in autoclave, but it is more rigid, limit-
ing its use to induce peristaltic deformations, and it has a poor  
resistance to organic solvents as well as some autofluorescence 
and sensitivity to ultraviolet (UV) radiation which could be  
minor inconveniences. COP and COC show low molecules absorp-
tion, minimum autofluorescence and excellent optical proper-
ties. However, thermoplastics are generally rigid materials and  
a flexible membrane, or a suitable biological structure should 
also be provided to induce realistic peristaltic deformations  
when needed in some GOC models68. In most of the GOCs 
reviewed, membranes serve as support for cell culture (Caco-2 
or primary cells) and to simulate peristalsis in combination  
with flow. They vary not only in manufacturing process and  
material, but also with regards to pore size, cell-to-cell  
distance, and overall porosity. Membrane permeability, a func-
tion of porosity, pore sizes and specific material properties like  
charge, is highly relevant for pharmacodynamic testing, such 
as bioavailability tests conducted in GOCs and other in vitro 
models. All of these GOCs have been trialed with synthetic  
membranes such as nylon, PDMS, PC, or polyester such as 
polyethylene terepthalate (PET). Some, for example Esch  
et al.69 and Kim et al.62 precondition or coat these membranes 
with collagen 1 to promote cell adhesion. Several papers 
lacked detail on the exact characteristics of the materials,  
simply stating that PC or PE from commercial transwells were  
used.

PC is one of the more commonly used synthetic membrane 
material due to low cost and rigid nature, as well as its resist-
ance to autoclave pressure and temperature. Aspects such as  
thickness and porosity can be precisely controlled. However, 
it is not naturally biocompatible, leading some researchers to  
precondition the surface with collagen or mucin18,70. Other popular  
membrane materials are polyesters, including PET. Along 
with PC, they are widely established in transwell inserts and do  
not optically interfere in a critical way with microscopy.

Other bioengineering approaches for mimicking the villi struc-
ture had been explored and included in larger scaffolds (like  
the macromodels above described), but not in the GOC models. 
Other membranes that may be tested in GOC are a combina-
tion of synthetic and natural components71–73. Examples include  
3D bioprinted membranes made of Poly(ethylene glycol) 
dimethacrylate (PEGDMA); gelatin methacrylate (GelMA);  
Lutrol; gelatin also mixed with chitosan; combination of fibrino-
gen, alginate, gelatin, and polyacrylamide; collagen; or silk  
proteins with spiral pattern30.
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Conclusions and future perspective of GOC
GOCs are microfluidic devices that respond to the need of  
GI models that consider the ethical dilemmas involved in direct 
studies on humans (Declaration of Helsinki74) and animal test-
ing. In fact, The final aim of these devices is to refine, reduce, 
and ultimately replace animal testing based on the 3Rs’75  
and utilise a closer model to the human physiology. Considering 
that the gut microbiota is also specie-specific and is influenced 
by nutrition76, animal models are often less reliable models 
for GI compared to other organs77. Efforts have been made to  
produce new GOCs or modify existing ones for new applications.  
There is however a lack of reported effort on stabilizing  
protocols to be applied on larger scales and ensuring the  
product is “fit for a purpose”78. In fact, modifications to the  
geometry design and the protocols seems to be the major con-
cerns of researchers in this field, making OOCs a niche not ready 
for a larger market and even less ready for the development  

and testing of therapeutic compounds. In the future, the GOCs 
described may have a higher output in in vitro studies on HMI, 
disease modelling, personalized medicine, and pharmacological 
studies. Fluid mechanical forces in GOCs enable to achieve intes-
tinal physiological features more realistically when compared to 
other in vitro methods not incorporating biophysical stimulus79.  
Therefore, GOCs can reduce the time for drug development 
and translational approaches with fewer ethical concerns than  
animal testing. The GOC approach is very promising but transla-
tion into industrial and commercial products aimed to cover the 
drug industry and healthcare markets require a larger effort to  
achieve robustness, to guarantee repeatability and to prove  
reliability.

Data availability
No data are associated with this article.
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The review article by Malaguarnera, Graute, and Corbera focuses on the current gut-on chip 
devices available in academia and the industrial sector, the challenges with using traditional static 
culture models, and the scale-up and design concerns with building the GOC models. The authors 
do a good job at pointing out the limitations to the different models included in the paper. The 
table listing the different GOC models available today is quite comprehensive, enabling the 
readers to have access to all the information in a single place. The article ends with a strong 
conclusion summarizing the current state of gut-on-chip research. 
 
I would suggest minor revisions to the paper. The article points out the limitation of Caco-2 
models by stating they lack mucus and microbiota but fails to provide all relevant information on 
the available co-culture models of Caco-2/HT29 models with microbiota components. I would 
suggest expanding on this aspect more, and then outlining the challenges with maintaining the 
Caco-2/HT29/microbiota tri-culture for longer durations and its limited physiological relevance 
compared to GOCs. 
 
The placement of some information is erratic and lacks overall flow to the read. Changes have 
been suggested below to address these concerns. 
 
Introduction - Translational potentials and challenges of current gut models - Page 3:

Paragraph 1: The resource is for only academic drug discovery and development. 32% 
success rate is associated with only the pre-clinical phase. The same drugs are not 
necessarily going onto the clinical phase and succeeding.  
 

○

Paragraph 2:GOCs are also in vitro, the difference arises between the flow of fluid across the 
intestinal barrier, static vs dynamic. Please make it clear that this paragraph deals with the 
static system. 
 

○

Include information on co-culture of Caco-2 and HT29 cells, where HT29 cells are mucin 
secreting cells, forming a mucus layer on the Caco-2 monolayer. Yes, there are limitations to 
the static gut model, however, complete lack of mucus is not one of them. 
 

○

See. Mahler G. J, Characterization of Caco-2 and HT29-MTX cocultures in an in vitro 
digestion/cell culture model used to predict iron bioavailability. 2009 

○

Open Research Europe

 
Page 13 of 17

Open Research Europe 2023, 1:62 Last updated: 26 APR 2023

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


 
Recent studies have been working on including bacterial species, representing the gut 
microbiota, into an in vitro Caco-2/HT29 co-culture. The limitation to this is the restricted 
nutrient supply, and the time the mammalian and bacterial cells can co-exist in a static 
environment with build-up of bacterial metabolites and excessive growth rate of bacteria. 
Please address the same by referencing research on the topic.

○

 
Page 4:

Paragraph 1: I wouldn't say GOCs are a simplified representation. There are a lot of 
complexities with constructing an organ-on-chip model. The better suited term would be 
'more physiologically relevant' model. 
 

○

Inconsistency with the use of GOC and GOCs. 
 

○

Paragraph 2: I would add a reference paper to support this statement, “However, 3D-
organoids have lower success in modelling diseases such as IBD because of difficulties 
maintaining the quality and quantity of cells due to high occurrence of inflammation and 
pre-apoptosis.” 
 

○

Paragraph 3: This paragraph should precede the introduction to different types of in vitro 
gut models in this section. The difference in data reproducibility when moving from animal 
trials to human trials is one of the primary reasons for the interest in the organ-on-chip 
model. So it is necessary to establish that before explaining the types of models.

○

Page 7:
Right column, 10 lines from the bottom:  “… more than doubling the 48h of static Caco-2 
monoculture.” - This is a contradiction to your claim in paragraph 2 of section 'Translational 
potentials and challenges of current gut models' that static 2D Caco-2 cultures lack 
microbiota.

○

Page 8:
Left column, end of the initial paragraph: The statement- "… and the fungal pathogen 
candida albicans.." should be changed to "… and the fungal pathogen Candida albicans ...". 
Candida albicans should be in italics to correctly represent the scientific name of the 
organism. 
 

○

Left column, Bulk and Membrane paragraph: “PDMS is easy to prototype, elastic and 
optically transparent, but the costs are higher for mass production, it absorbs little 
hydrophobic molecules, such as drug compounds, it is permeable to carbon dioxide (CO2) 
and it has rather unstable surface properties57.” - This statement seems to imply there is 
little absorption of hydrophobic molecules and that was not the authors intent.  To be more 
clear I think this should be worded "it absorbs low molecular weight hydrophobic 
molecules"

○
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Is the topic of the review discussed comprehensively in the context of the current 
literature?
Partly

Are all factual statements correct and adequately supported by citations?
Partly

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I have a background in working with both static and dynamic in vitro organ 
models. I have worked on a static Caco-2/HT29-MTX cell based gut model to analyze the effects of 
engineered nanoparticles and other food additives on gut permeability, nutrient transport, and 
tight junction distribution in presence of a bacterial mock community. My experience with 
dynamic in vitro systems entails developing and optimizing a two-organ microphysiological 
system for secondary drug toxicity study. My work has made me well versed with the complexities 
involved in building a physiologically relevant microphysiological system and the significant 
factors that need to be considered to design it.

We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard, however we have 
significant reservations, as outlined above.
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2 Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of 
Catania, Catania, Italy 

In this manuscript entitled "The translational roadmap of the gut models, focusing on gut-on-chip", 
Malaguarnera, Graute and Corbera sought at reviewing current knowledge on experimental 
models of gastrointestinal diseases. 
 
We find this review well written and pleasant to read. It is also well organized and balanced. The 
critical vision of the authors is offering significant insights, rising interesting scenarios such as the 
one pointing on increasing the reliability of gut-on-chip modelling. 
 
The authors took into account the complex physiological environment of gastrointestinal lumen 
sections and advised on the reductionistic approach of gut-on-chip and organs-on-a-chip. The 
review is also clearly pointing out that gut-on-chip modelling is a valuable tool when studying 
specific physiopathological conditions, pharmaco-kinetics and host-microbes interactions. 
 
We do not have any major points to rise, and we believe that the manuscript is ready to be shared 
with scientific community and with colleagues in the field. We just have some minor points:

Figure 1 describes a roadmap of translational study of gastrointestinal models. Authors 
clearly described most of the concepts herein described in the text. Perhaps, it might be 
useful to add a further brief description of in silico approaches to the manuscript. In 
particular on the simulation of known parameters, drug docking and genetic and nutritional 
parameters, highlighting the limitation of such an approach. 
 

○

The part of in vivo modeling also deserves to be expanded a bit. Indeed, in vivo studies on 
axes between gut and other organs, such as gut-to-brain axis, is today of critical importance 
and of great interest for the scientific community in the field. See Tan et al. Nature. 2020. 
PMID: 32322067 and Zimmerman et al. Nature. 2019. PMID: 30918408.

○

We believe that the manuscript is overall balanced, critical and it can be considered for indexing 
also if authors will decide not to include the previous minor points. 
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