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Abstract 
Background: The outbreak of Severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) triggered the rapid and successful 
development of vaccines to help mitigate the effect of COVID-19 and 
circulation of the virus. Vaccine efficacy is often defined as capacity of 
vaccines to prevent (severe) disease. However, the efficacy to prevent 
transmission or infectiousness is equally important at a population 
level. This is not routinely assessed in clinical trials. Preclinical vaccine 
trials provide a wealth of information about the presence and 
persistence of viruses in different anatomical sites. 
Methods: We systematically reviewed all available preclinical SARS-
CoV-2 candidate vaccine studies where non-human primates were 
challenged after vaccination (PROSPERO registration: 
CRD42021231199). We extracted the underlying data, and 
recalculated the reduction in viral shedding. We summarized the 
efficacy of  vaccines to reduce viral RNA shedding after challenge by 
standardizing and stratifying the results by different anatomical sites 
and diagnostic methods. We considered shedding of viral RNA as a 
proxy measure for infectiousness. 
Results: We found a marked heterogeneity between the studies in the 
experimental design and the assessment of the outcomes. The best 
performing vaccine candidate per study caused only low (6 out of 12 
studies), or moderate (5 out of 12) reduction of viral genomic RNA, 
and low (5 out of 11 studies) or moderate (3 out of 11 studies) 
reduction of subgenomic RNA in the upper respiratory tract, as 
assessed with nasal samples. 
Conclusions: Since most of the tested vaccines only triggered a low or 
moderate reduction of viral RNA in the upper respiratory tract, we 
need to consider that most SARS-CoV-2 vaccines that protect against 
disease might not fully protect against infectiousness and vaccinated 
individuals might still contribute to SARS-CoV-2 transmission. Careful 
assessment of secondary attack rates from vaccinated individuals is 
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warranted. Standardization in design and reporting of preclinical trials 
is necessary.
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Research in context
Evidence before this study
Vaccine efficacy is often defined as the proportion of a vac-
cinated individuals to not fall ill after infection. However, its 
ability to curb transmission is equally important, especially  
during early vaccine roll-out when many people are still  
susceptible to infection. For most SARS-CoV-2 vaccines that are 
on the market, the vaccine efficacy to prevent disease is good,  
however, much is still unclear about their ability to prevent 
infectiousness. We assessed the protocols of the clinical trials 
(clinicaltrials.gov and covid19.trackvaccines.org) and performed 
a PubMed and EMBASE search on ‘vaccine efficacy’ and  
‘SARS-CoV-2’. The clinical trials in which these vaccines were 
tested, did not assess infectiousness or viral shedding over time, 
and were underpowered to produce, for example, estimates  
of secondary attack rates. Similarly, to date, no large studies have 
compared the secondary attack rates between vaccinated and 
unvaccinated individuals. It remains unknown and debated how 
effective these vaccines are to lower infectiousness and prevent  
SARS-CoV-2 transmission.

Added value of this study
To our knowledge, this is the first systematic review and  
re-analysis of the underlying data of preclinical challenge stud-
ies that assessed the efficacy of SARS-CoV-2 vaccine candi-
dates. Animal models allow rigorous and systematic assessment 
of viral shedding over time and provide evidence on vaccine  
efficacy that is often overlooked.

Implications of all the available evidence
Many of the candidate vaccines only triggered a low reduc-
tion of shedding of viral RNA in the upper respiratory tract. 
This calls for caution, since these SARS-CoV-2 vaccines might 
not fully protect against infectiousness. Standardization of trial 
design and reporting will help contribute to the comparability  
and interpretation of preclinical trials.

Introduction
The pandemic of severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) that causes coronavirus disease 2019  
(COVID-19) prompted an outbreak response without prec-
edent. To mitigate the devastating effect of the disease, vaccine 
development has been rapid and successful. In under a year 
after the World Health Organization declared the outbreak 
a public health emergency of international concern, the first  
SARS-CoV-2 vaccine (Pfizer-BioNTech) had received emer-
gency use authorization by the United States Food and Drug  
Administration. In China and Russia emergency access to the 
first vaccines was already granted mid-2020; the ‘CoronaVac’ 
vaccine received approval for emergency use in July 20201, and 
the Russian Sputnik V vaccine received emergency authori-
zation in early August 20202. As of March 26, 2021, there 
were 92 vaccine candidates in trials, of which 13 had received  
approval in one or more countries.

An important metric to quantify the performance of a vaccine 
is the ‘vaccine efficacy’, which, in a clinical setting, is often 
defined as capacity of a vaccine to prevent (severe) disease3.  

However, vaccine efficacy is not only reflected by the preven-
tion of symptomatic disease after infection, but also the effect 
on the susceptibility and infectiousness4,5, e.g., the ability of a  
virus to establish infection in a host and the ability of a host to 
infect others. As Lipsitch and Dean (2020) comprehensively 
explain, there is a necessity to look beyond the effect of a vaccine  
on an individual, and also examine the efficacy in the context 
of preventing transmission6. Where frontline health workers 
are among the first to be vaccinated, Lipsitch and Dean note  
that “A worst-case scenario is a vaccine that reduces dis-
ease while permitting viral shedding; this could fail to reduce 
transmission or conceivably even increase transmission if it  
suppressed symptoms.”. Even though vaccination might reduce 
the severity of disease, the vaccination effect on the risk of trans-
mission also needs to be considered. Individuals, despite hav-
ing an asymptomatic SARS-CoV-2 infection, can still transmit  
virus7. Similarly, this could mean that infected vaccinated peo-
ple, despite not showing any symptoms or even being aware 
of their infection status, pose a risk to others. Ongoing trans-
mission under this scenario could lead to emergence of new  
virus variants.

The typical development cycle of any vaccine includes an 
assessment of safety, immunogenicity and efficacy in preclini-
cal animal models8. Successful candidates are then trialled in  
humans during different phases. Preclinical studies already 
provide a wealth of information regarding the vaccine effi-
cacy and transmission dynamics. Several animal models have 
been established in both small animals like mice, hamsters, and  
ferrets, and larger animals such as non-human primates (NHP)9.

Early in the pandemic, NHP models were established. Experimen-
tal infection of Cynomolgus macaques (Macaca fascicularus), 
with SARS-CoV-2, caused COVID-19-like disease and viral  
shedding in the nose and throat10. Similarly, a rhesus macaque 
(Macaca mulatta) model was established, that mimicked 
human infection characteristics, however, with less marked  
clinical signs11. Both models allowed assessment of viral shed-
ding kinetics in the upper and lower respiratory tract. Espe-
cially for vaccine development, challenge studies in these animal  
models provide insight in the efficacy of the vaccines to prevent  
virus replication and illness, but most importantly on their 
effect on infectiousness by measuring viral shedding over 
time; a measurement that is much harder to obtain in human  
field trials.

Here, we present a systematic assessment and comparison 
of the preclinical SARS-CoV-2 vaccine evaluation studies in 
NHPs to provide insight in the vaccine efficacy of the candidate  
vaccines.

Methods
Research question
We defined the elements of the research question by PICO  
(Population, Intervention, Control, Outcome) question12: The 
population of interest was defined as ‘any non-human primates’. 
The intervention of interest as ‘vaccination against SARS-CoV-2,  
followed by a challenge experiment’; experiments needed to  
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compare against a control group. The outcome of interest was 
‘vaccine efficacy’. We use the reduction in shedding of viral 
RNA as proxy for the vaccine efficacy to prevent infectiousness  
(Figure 1). The reduction in clinical and pathological findings  
is interpreted as the vaccine efficacy to prevent disease.

Search strategy and selection criteria
We searched the electronic databases PubMed, EMBASE, 
BioRxiv, and MedRxiv as indexed by the ‘COVID Open Access  
Project’13. We filtered the dataset of COVID-19 related research 
based on keywords in the title and or abstract: “(animal OR mouse 
OR mice OR hamster OR macaque OR primate OR monkey 
OR preclinical OR pre-clinical) AND (vaccine OR immuniza-
tion OR vaccination)”. The full review protocol is available  
on PROSPERO (registration: CRD42021231199).

We imported the deduplicated search results into the online 
screening tool ‘Rayyan’14. Additionally to the search-strategy, 
we checked the reference lists of the included studies and review 
articles on the same topic for relevant publications. We included  
studies published before January 20, 2021.

We included studies that assessed COVID-19 vaccine candi-
dates in preclinical NHP models, and that conducted a chal-
lenge study in both preprint and peer-reviewed literature. We 
included animal models in any of the following species: Rhesus  
macaques (Macaca mulatta), cynomolgus macaques (Macaca 
fascicularis), African green monkeys (Chlorocebus aethiops),  
and other non-human primates. We included animal models 

regardless of the sex any age of the animals. We only included 
studies that compared a control group with the vaccinated 
group or groups. Studies that did not provide extractable data  
on the presence of viral RNA after challenge were excluded.

Two reviewers screened titles and abstracts of the retrieved 
papers independently. If retained, we assessed the full text of 
the study. One reviewer extracted data into piloted extraction  
forms in Excel (version 16.0.12527). A second reviewer 
reviewed exclusion decisions and data entry. Disagreement was  
resolved by discussion between the reviewers.

Data extraction
We extracted the full citation information, and relevant informa-
tion on the methods used in the different studies (the full data 
is available in Supplementary Material Text 1). We extracted  
the results either from the text, figures or the supplementary 
data files. For studies that did not provide the full data, we used  
WebPlotDigitizer to extract the data from the figures. We  
collected the type of RNA that was assessed (subgenomic or 
genomic), from which anatomical sites the samples came, and 
the raw values of number of viral RNA copies at all provided  
time-points. For the reported results of vaccination on reduc-
tion in pathological and clinical changes, we summarized the 
direction of the effect (increased, null, or reduced) and whether  
the reporting was qualitative or quantitative.

To allow the comparison between studies, we standardized 
the nomenclature of groups. Groups that were challenged, but  

Figure 1. The relationship between the challenge experiments’ outcomes (A) and the vaccine efficacy (B). (A) The timeline of a typical 
non-human primate vaccination-challenge experiment. After challenge, viral shedding and clinical parameters are collected until time of 
euthanasia, after which pathological examination is performed. (B) Vaccine efficacy (VE) can help: (i) Protect an individual (1) against infection 
(VES), (ii) Prevent infectiousness (VEI) and prevent transmission to a second individual (2) for which viral shedding can be a proxy measure, 
(iii) Prevent illness (VEP) for which clinical or pathological findings can serve as indicator.
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that did not receive a vaccine are considered ‘control’ groups, 
we provide the corresponding name of the intervention groups  
in the Supplementary Material Table 1.

We also standardized the anatomical sites where samples 
were taken. We grouped nasal swabs, nasal washes, and nasal 
brushes as “nasal samples (NS)”, tracheal swab and tracheal 
brushes as “tracheal samples (TS)”. Anal and rectal swabs were  
grouped as “anal samples”. We assumed that the nasal and  
tracheal samples provided information on the upper respiratory 
tract; the BAL provided insight in the presence of virus in the 
lower respiratory tract. Anal samples provided proof of systemic  
infection. To standardize the challenge dose in plaque form-
ing units (PFU), we assumed that the Median Tissue Culture 
Infectious Dose (TCID50) was approximated by halve of the  
PFU value15.

Synthesis of the evidence
We provided a narrative synthesis of the methodology of the 
different challenge experiments. For the outcome ‘vaccine 
efficacy to reduce infectiousness’, we used the reduction of  
shedding of RNA as measured by RT-PCR in the different  
anatomical sites as a proxy measure. We assessed the relative  
reduction in viral RNA shedding by calculating the differ-
ence in AUC between the vaccinated group and the control 
group. We defined the relative difference as the AUC of the vac-
cinated group minus the AUC of the control group, divided by  
the AUC of the control group. For visualization purposes we 
grouped the difference in AUC using ‘Jenks natural breaks’ into 
three groups: low (<18%), moderate (18–44%) and high (>44%) 
reduction of viral RNA excretion16. We explored the relation-
ship between relative reduction in AUC and the challenge  
dose visually. All analyses were performed using R (version 
4.0.3). We assessed the efficacy in the prevention of disease, by  
summarizing the reported results on clinical outcomes and  
pathological changes. We tabulated the description of the out-
come, and whether the outcome was quantitatively or qualita-
tively described. We report this review following the Preferred 
Reporting Items for Systematic review and Meta-Analysis  
(PRISMA)17.

Results
Description of the included studies
We performed a systematic review of the literature indexed in 
PubMed, EMBASE, BioRxiv and MedRix until January 20,  
2021. We identified and screened 742 studies of which we 
included 147 based on title and abstract (Extended data: PRISMA: 
flowchart & checklist). After the screening of the full text,  
we retained 21 studies18–38.

In the retained studies, that describe preclinical challenge 
experiment in non-human primates, a total of 16 studies 
used rhesus macaques18,20–23,25–28,31,33–38 five used cynomolgus  
macaques19,24,29,30,32 The age of the animals ranged between  
2–22 years; the majority of animals were young adults (Sup-
plementary Material Figure 1). On average two vaccinations 
(range: 1–7) per study were tested. These were either different  

formulations or different doses (Supplementary Material Table 1). 
The animals were challenged after vaccination at a median  
duration of 28 days (range: 8–91 days) after administration of 
the last vaccine. Challenges were administered at different doses, 
in different volumes, via different routes: In the majority of  
studies, the animals (13 out of 21) were challenged both intra-
nasally and intratracheally. In five studies, animals were chal-
lenged only either intranasally or intratracheally. In Table 1  
we provide an overview of the experimental methods of the  
included studies. Additional properties of the vaccines are  
provided in Supplementary Material Table 2.

Reduction in excretion of viral RNA
For the quantification of viral RNA in the different anatomi-
cal sites after challenge, the data of individual animals was 
provided for seven studies20–22,26,29,33,36. For the remaining 14  
studies we extracted the aggregated results from the text or the 
figures18,19,23–25,27,28,30–32,34,35,37,38. All studies reported measurements  
of the presence of viral RNA (genomic or subgenomic)  
at multiple timepoints. Animals were followed-up after chal-
lenge for a median period of seven days (range: 4–14 days). 
In most studies (17 out of 21) the presence of viral RNA 
in the upper respiratory airways was detected either by 
using nasal samples18–22,24–28,30–35,38 or by tracheal samples  
(10 out of 21)18,19,23,25,29–32,36,37, To detect viral RNA in the 
lower airways, bronchoalveolar lavage (BAL) was used in 10 
out of 21 studies20,22,24,26,27,31,33–35,38. Seven studies assessed the  
viral excretion using anal swabs19,23,25,32,35–37.

In the upper respiratory tract, as assessed with nasal samples, 
the best performing vaccine candidate per study caused only 
a low (6 out of 12 studies), or moderate (5 out of 12) reduction  
of viral genomic RNA, and low (5 out of 11 studies) or moder-
ate (3 out of 11 studies) reduction of subgenomic RNA. Figure 2  
provides an overview of the relative reduction of excretion of 
viral RNA in the different samples for the best performing vac-
cine candidates by study. A full overview of all tested vaccines  
is provided in Supplementary Material Figure 2. We observed 
a negative trend between the challenge dose and the reduction 
of viral genomic RNA (Figure 3). We did not see a trend for the 
age of the animals used and the time between last vaccination  
and challenge (Supplementary Material Figure 3 & 4).

Reduction in clinical and pathological outcomes
Reports on clinical and pathological outcomes were used as 
indicators of the potential efficacy of the vaccine candidates 
to reduce or prevent disease. Out of the 21 included studies, 14  
reported histopathological findings18,20,21,23,24,28–33,35–37 and eight 
reported on the clinical status of the animals18,22,25,26,31,33,35,36. The 
reporting was often qualitative (Figure 4), and clinical symp-
toms were seldom reported, which may indicate the difficulty 
of monitoring clinical signs in these animal models. Of the 14  
studies reporting pathological findings, 12 indicated a reduc-
tion in severity (histopathology lesions) in the vaccinated 
group. Whilst clinical status was reported in eight studies only 
two reported a reduction in clinical manifestation. All studies 
that reported a reduction in viral load in the lung also reported  
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(qualitatively or quantitatively) a reduction in histopathologi-
cal lesions. The data did not allow a quantitative comparison  
of the results.

Discussion
Here, we provided a systematic and standardized summary of 
the results of preclinical SARS-CoV-2 vaccine trials in NHPs,  
where animals were challenged after vaccination. There 

was a strong heterogeneity in the methodology and report-
ing between studies, hampering comparability of the candidate  
vaccines. However, we were able to summarize the efficacy of 
the vaccines to reduce viral RNA shedding after challenge by  
standardizing and stratifying the results by different anatomi-
cal sites and diagnostic method. We found that vaccination 
with many of the candidate vaccines only seem to result in  
a low or moderate reduction of the shedding of viral RNA 

Figure 2. Reduction in viral genomic and subgenomic RNA after vaccination in different anatomical sites, expressed as relative 
difference in area under the curve (AUC). The best performing vaccines are shown by study; control groups serve as reference group for 
the comparison and are thus omitted from the figure. Labels show the first author of the study and the vaccine manufacturer in brackets. 
For visualization purposes we grouped the difference in AUC using ‘Jenks natural breaks’ into three groups: low (<18%), moderate (18–44%) 
and high (>44%) reduction of viral RNA excretion. Abbreviations: gRNA, genomic ribonucleic acid (RNA); sgRNA, subgenomic RNA; BAL, 
Bronchioalveolar lavage; NS, nasal or nasopharyngeal swab; TS, tracheal swab or tracheal brush.
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in the upper respiratory tract as detected in nasal swabs. The 
effect on the clinical parameters and histological findings were  
often only reported qualitatively.

A strength of this review is that we standardized the results of  
preclinical NHP vaccine models where possible, and visual-
ized the remaining heterogeneity. Compared to other published 
reviews on the same topic, we are the first to provide a system-
atic quantitative analysis of the data that facilitates the inter-
pretation and future trial design, where in other reviews, the 
results of preclinical vaccine models have only been summarized  
narratively8.

Our review also has limitations. First, we chose to assess the 
vaccine efficacy only in NHP models. Despite being closest 
to humans on many aspects, the NHP models do not mimic the  
COVID-19 clinical disease in humans35. However, the pro-
file of viral shedding, which is the most relevant proxy meas-
ure of infectiousness, seems similar9,10,39. Second, the way we  

calculated the area under the curve (AUC) was hampered by 
the reporting quality of the studies. The absence of viral RNA 
cannot be measured other than that the value falls below a  
certain limit of detection. This threshold varies between tech-
niques and the way the data is visually presented differs 
between studies. For example, studies can plot points at the 
limit of detection, or some arbitrary value to ‘aid’ visualization:  
Yang et al. impute artificial zero’s37 and Vogel et al. chose to 
plot values below the limit of detection at halve the value of that  
limit35. No access to the full data, hence relying on digitizing 
images, creates an artificial ‘baseline’ AUC at the limit of detec-
tion, which affects the theoretical reduction in AUC between  
vaccine and control groups. We did account for this by provid-
ing a semi-quantitative description of the reduction in shed-
ding of RNA. Last, the results might have been biased towards  
positive findings; Out of the 13 vaccines that are on the mar-
ket as of March 26, 202140, we were only able to identify pre-
clinical trials for eight in non-human primates. The absence of a  
complete overview could be an effect of a publication bias.

Figure 3. The relationship between challenge dose and reduction in area under the curve (AUC) between the best-performing 
vaccine per study in different anatomical sites. Abbreviations: gRNA, genomic ribonucleic acid (RNA); sgRNA, subgenomic RNA; BAL, 
Bronchioalveolar lavage; NS, nasal or nasopharyngeal swab; TS, tracheal swab or tracheal brush.

Page 8 of 14

Open Research Europe 2022, 2:4 Last updated: 18 JUL 2023



Our study implies that the lack of efficacy of many of the can-
didate vaccines to prevent infectiousness calls for caution, and 
one should be careful assuming that these vaccines prevent  
transmission. We interpret the limited reduction of viral RNA 
in the upper respiratory tract of some of the vaccine candidates  
as reason to consider individuals vaccinated with these vac-
cines to be potentially infectious after natural infection despite  
vaccination. However, interpreting the presence and reduction 
of viral RNA in the different samples as a measure of reduc-
tion of infectiousness depends on several assumptions that need 
to be validated or at least be made explicit. The evidence that 
comes from preclinical studies suffers from ‘indirectness’41.  
We do not measure the presence of infectious particles in vac-
cinated humans after natural infection, but measure viral RNA 
in artificially challenged NHPs. Despite that it is likely that viral  
RNA correlated with infectious virus, it remains unclear 
whether these RNA titres actually correspond with de novo pro-
duced infectious particles, or that a fraction of viral the RNA  
represents still input challenge virus38. Some authors argued 
that subgenomic RNA might be more indicative of replica-
tion competent virus34,42, however, due to its stability, this might  
be an overestimate43. We need to consider that the level of shed-
ding might be age-dependent as well, since higher levels of  

SARS-CoV-2 RNA were detected in nasal swabs of older ani-
mals compared with younger animals10,44, thus the shedding  
might be more prominent in older individuals.

The results of the NHP challenge trials only allowed for a lim-
ited quantitative interpretation of the results in the context of 
the efficacy to prevent disease. The viral loads in lungs could  
be considered an indirect indicator of severity (lower viral 
loads may lead to milder lung pathology). In most studies, 
the vaccines did reduce either (histo)pathological changes or  
viral load in the lungs; the clinical changes, however, were 
often poorly assessed. Although NHP models might not always 
show severe COVID-19 disease10,11, Munster et al. presented a 
clinical score for NHP SARS-CoV-2 infection experiments11,  
which showed that assessing clinical changes in this animal model 
is possible. From the assessed studies, only Doremalen et al.33  
quantified, using Munster et al. clinical score, the clinical effect 
of the challenge after vaccination. Liang et al., despite refer-
ring to Muster et al., only present the body weight as measure 
of clinical effectiveness25. A meticulous assessment of clinical 
outcomes, as done for example by Doremalen et al., does pro-
vide additional information for assessing the potential efficacy  
of vaccine candidates.

Figure 4. Summary of pathological and clinical results from the included preclinical vaccine studies. Abbreviations: NA, not 
available.
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Our study also has several implications for the design and 
reporting of preclinical studies: First, it highlights the need for  
standardization. We found differences in almost all aspects of 
the preclinical trial design: In the timing, the dose, the strain and 
the administration route of the challenge; the diagnostic meth-
ods used, the selected timepoints at which the animals were  
sampled, and the assays used. These parameters influence 
the outcomes: For example, we showed here the relationship 
between the relative reduction in viral RNA shedding (efficacy)  
and the challenge dose and in the literature a more promi-
nent viral replication in aged macaques than young macaques is  
described44. Besides the properties of the experimental designs 
that we assessed, plenty other factors might influence the 
results: including serological- and/or microbiological status of  
the animals, the specifications of the challenge virus (RNA 
sequence heterogenicity and matching with the vaccine), sampling  
strategy, etc.. This all highlights a clear need for standardiza-
tion and registration of protocols. Preregistration of the study 
and its protocol would allow others to harmonize and com-
pare methods. Human trial registration has been the standard for  
over a decade45. Second, it highlights the need to improve and 
standardize the quality of reporting: there is a heterogeneity 
in how the data is analysed and presented, adding another layer  
of difficulty to compare studies. Even within the same outcome, 
assay, and experiment, aggregating data and showing medi-
ans or means gives different results. The choice of the authors is  
often not transparent and seems ad hoc. Third, sharing research 
and data, preferably raw data, allows to make these compari-
sons more accurate. Especially during disease outbreaks, rapid 
open access sharing of manuscripts and its underlying data is 
of utmost importance46. It does not only increase transparency 
and reproducibility, but helps tremendously in the interpretation  
and aggregation of data.

The development of SARS-CoV-2 vaccines is far from fin-
ished. New virus variants will continue to emerge and vaccines 
might become less effective against these new strains as was  
shown for the ChAdOx1 vaccine and its marked reduced effi-
cacy against the B.1.351 variant47. NHP trials might hold a key 
in predicting efficacy, however, only with standardized meth-
ods will studies be comparable and results could be used to be  
translated into guidance. Transmission experiments similar to 
those in ferrets48, will help correlate persistence of viral RNA 
to actual infectiousness. Furthermore, we need to continue to 
improve our understanding on how the results of NHP models  
translate to ‘real world’ vaccine efficacy, in humans. For that, we 
need data. Importantly, as discussed above, we need to under-
stand how effective these vaccines are in preventing infec-
tiousness. We need carefully designed trials and observational  

studies5,49. We need to document the secondary attack rates 
originating from the vaccinated and unvaccinated groups;  
however, selective vaccination of risk groups complicates the 
interpretation of these comparisons. More advanced study 
designs, comparing populations with different vaccine coverages, 
could provide additional estimates of the vaccine efficacy on  
infectiousness49. Early observations from Israel, where the vac-
cine roll-out has been rapid, reveals that individuals vaccinated 
with the BNT162b2 mRNA vaccine had markedly reduced RNA 
titres in the blood from 12 days post-vaccination. Consistent  
with these findings was an observed drop of the average CT val-
ues as vaccination roll-out progressed50. These findings suggest  
a reduced infectiousness after vaccination.

Conclusions
Preclinical challenge studies show that the majority of SARS-
CoV-2 vaccines might not fully protect against infectiousness.  
Careful assessment of secondary attack rates from vacci-
nated individuals is warranted. Standardization of trial design 
and reporting will help contribute to the comparability and  
interpretation of preclinical trials.

Data availability
Underlying data
All data underlying the results are available as part of the  
article and no additional source data are required.

Extended data
Open Science Framework: SARS-CoV-2 Vaccine efficacy  
Preclinical trials, https://doi.org/10.17605/OSF.IO/RDKMF. 

This project contains the following extended data:

-  Data/DataSet_COVIDNHP.xlsx

-  Data_Code.RprojOutput/Report_12april_rendered.html

-  Scripts/COVRIN_Figures.R

-  Scripts/main.R

Reporting guidelines
Open Science Framework: PRISMA checklist and flow 
diagram,https://doi.org/10.17605/OSF.IO/RDKMF.

- PRISMA2009_checklist_sections.doc

- PRISMA_flowchart.docx

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).
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