
RESEARCH ARTICLE

 Towards an integrated automatic design process for

robot swarms [version 2; peer review: 3 approved]

Darko Bozhinoski , Mauro Birattari
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

First published: 27 Sep 2021, 1:112
https://doi.org/10.12688/openreseurope.14025.1
Latest published: 04 Nov 2022, 1:112
https://doi.org/10.12688/openreseurope.14025.2

v2

Abstract
Background: The specification of missions to be accomplished by a
robot swarm has been rarely discussed in the literature: designers do
not follow any standardized processes or use any tool to precisely
define a mission that must be accomplished.
Methods: In this paper, we introduce a fully integrated design process
that starts with the specification of a mission to be accomplished and
terminates with the deployment of the robots in the target
environment. We introduce Swarm Mission Language (SML), a textual
language that allows swarm designers to specify missions. Using
model-driven engineering techniques, we define a process that
automatically transforms a mission specified in SML into a
configuration setup for an optimization-based design method. Upon
completion, the output of the optimization-based design method is an
instance of control software that is eventually deployed on real robots.
Results: We demonstrate the fully integrated process we propose on
three different missions.
Conclusions: We aim to show that in order to create reliable,
maintainable and verifiable robot swarms, swarm designers may
benefit from following standardised automatic design processes that
will facilitate the design of control software in all stages of the
development.

Keywords
swarm robotics, integrated automatic design process, optimization-
based design method, model-driven engineering, domain-specific
languages (DSL),

This article is included in the European

Research Council (ERC) gateway.

Open Peer Review

Approval Status

1 2 3

version 2

(revision)
04 Nov 2022

view

version 1
27 Sep 2021 view view view

Adam Schroeder , University of Toledo,

Toledo, USA

1.

Alan Millard , University of York, York, UK2.

Edmund Hunt , University of Bristol,

Bristol, UK

James Ward, University of Bristol, Bristol, UK

3.

Any reports and responses or comments on the

article can be found at the end of the article.

Open Research Europe

Page 1 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

https://open-research-europe.ec.europa.eu/articles/1-112/v2
https://open-research-europe.ec.europa.eu/articles/1-112/v2
https://orcid.org/0000-0002-6853-0310
https://orcid.org/0000-0003-3309-2194
https://doi.org/10.12688/openreseurope.14025.1
https://doi.org/10.12688/openreseurope.14025.2
https://open-research-europe.ec.europa.eu/gateways/erc
https://open-research-europe.ec.europa.eu/gateways/erc
https://open-research-europe.ec.europa.eu/gateways/erc
https://open-research-europe.ec.europa.eu/articles/1-112/v2
https://open-research-europe.ec.europa.eu/articles/1-112/v2#referee-response-30379
https://open-research-europe.ec.europa.eu/articles/1-112/v1
https://open-research-europe.ec.europa.eu/articles/1-112/v2#referee-response-28418
https://open-research-europe.ec.europa.eu/articles/1-112/v2#referee-response-28563
https://open-research-europe.ec.europa.eu/articles/1-112/v2#referee-response-29339
https://orcid.org/0000-0002-4059-5593
https://orcid.org/0000-0002-4424-5953
https://orcid.org/0000-0002-9647-124X
http://crossmark.crossref.org/dialog/?doi=10.12688/openreseurope.14025.2&domain=pdf&date_stamp=2022-11-04

Corresponding authors: Darko Bozhinoski (darko.bozhinoski@ulb.be), Mauro Birattari (Mauro.Birattari@ulb.be)
Author roles: Bozhinoski D: Conceptualization, Data Curation, Formal Analysis, Methodology, Project Administration, Software,
Validation, Visualization, Writing – Original Draft Preparation; Birattari M: Conceptualization, Funding Acquisition, Methodology, Project
Administration, Supervision, Validation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (DEMIURGE Project, grant agreement No [681872]) and from Belgium’s Wallonia-Brussels
Federation through the ARC Advanced Project GbO (Guaranteed by Optimization). DB and MB acknowledge support from the Belgian
Fonds de la Recherche Scientifique (FNRS), of which they are a Postdoctoral Researcher and a Research Director, respectively.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2022 Bozhinoski D and Birattari M. This is an open access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
How to cite this article: Bozhinoski D and Birattari M. Towards an integrated automatic design process for robot swarms [version
2; peer review: 3 approved] Open Research Europe 2022, 1:112 https://doi.org/10.12688/openreseurope.14025.2
First published: 27 Sep 2021, 1:112 https://doi.org/10.12688/openreseurope.14025.1

This article is included in the Horizon 2020

gateway.

This article is included in the Robotics

collection.

Open Research Europe

Page 2 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

mailto:darko.bozhinoski@ulb.be
mailto:Mauro.Birattari@ulb.be
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/openreseurope.14025.2
https://doi.org/10.12688/openreseurope.14025.1
https://open-research-europe.ec.europa.eu/gateways/h2020
https://open-research-europe.ec.europa.eu/gateways/h2020
https://open-research-europe.ec.europa.eu/collections/robotics
https://open-research-europe.ec.europa.eu/collections/robotics

1 Introduction
In this paper, we make two original contributions: 1) we define
a textual language for the specification of missions to be
performed by a robot swarm and 2) we realize an engine that
transforms a mission specification given in the aforementioned
language into an objective function (and other configura-
tion files) needed to automatically perform the design by opti-
mization of a robot swarm that will accomplish the mission.
These two original contributions, combined with an existing
method for the design by optimization of control software for
robot swarms1, enable a fully integrated process that starts
with the specification of a mission to be accomplished and
terminates with the deployment of the robots in the target
environment.

In swarm robotics, a large number of robots perform a
mission that can not be accomplished by a single robot2,3. The
collective behavior of the robot swarm is obtained through
individual robots collaboration and cooperation. Hence, the
collective behavior of a robot swarm is a result of the local inter-
actions between the individual robot and its neighbors and its
environment4. In the general case, the complex nature of these
interactions are virtually impossible to trace to the behaviour
of the individual robots, which creates a gap between the col-
lective behaviour that one wishes to obtain and what each of
the individual robots should do. Bridging this gap is one of the
main challenges in swarm robotics and the lack of a general meth-
odology to bridging this gap influences how control software
for robot swarms is designed and realized.

So far, robot swarms have been mostly designed manually:
an individual-level behavior is iteratively improved and
tested until a desired collective behavior is obtained. This
non-systematic approach is neither reliable, nor consistent.
The quality of the resulting solution strongly depends on
the experience and intuition of the designer. To avoid, or at
least reduce, the uncertainty induced by the crucial role of
the human designer, automatic and semi-automatic design
approaches have been proposed5–8.

Although a number of automatic approaches have been
proposed in the software and system engineering literature9, they
have not been investigated in the context of swarm robotics. This
is because these approaches, which focus on decoupling and
automatizing the different phases of the robot life-cycle, appear

to be inappropriate in swarm robotics. Indeed, they model the
system to be realized at a level of abstraction that is too
high and neglects the complex robot-robot and robot-
environment interactions that characterize the operation of a
robot swarm. For example, these approaches assume that it is
possible to establish a mapping between high-level collective
goals of the swarm and low-level individual behaviors of the
robots comprised therein10–12. Unfortunately, the swarm robotics
praxis indicates that making such a mapping explicit is not
generally possible2,3.

For this reason, the most promising approaches that have been
proposed so far for the automatic design of robot swarms are in
the area of design by optimization13. In design by optimization,
the design problem is re-formulated into an optimization
problem: an optimization algorithm searches a space of candi-
date solutions to maximize an objective function. In the context
of the application of design by optimization to swarm robotics, a
candidate solution is an instance of control software and the
objective function is a mission-dependent metric that measures
the performance of the swarm on the given mission3. Depending
on whether the design phase happens before or after the deploy-
ment of the software on the robots, we can distinguish between
two classes of design methods14: off-line and on-line. In
this work, we focus on off-line automatic design15, although
the proposed ideas could be adapted to on-line design as well.
Within an off-line design process, the performance of candidate
designs are assessed by an optimization algorithm typically via
computer-based simulations. After the optimization algorithm
terminates, the selected design is deployed to the individual
robots and the swarm is placed in its target environment.

In this paper, we present a first instance of a fully automatic
and integrated process for the design of collective behaviors
for robot swarms. The novel contribution that enables this inte-
grated process is the definition of a formal and systematic
approach to the specification of missions to be accomplished
by a robot swarm. This approach is rooted in model-driven
engineering16: a research direction in software engineering that
aims at simplifying the design, implementation, and realization
of complex software systems by shifting the designer’s attention
from code to models. Recently, model-driven engineering has
been often used in the design of robot systems as it dispenses the
designer from reasoning on complex robot behaviours at the code
level, which is cumbersome and undesirable17. Indeed, in model-
driven engineering, models are expressed at an appropriately
high level of abstraction using domain-specific languages with
concepts that are close to the problem domain and not directly
bound to the robotic platform at hand. This makes the realiza-
tion of complex systems manageable as models are easier than
code to specify, understand, and maintain18. Specifically, in
this paper we present and demonstrate an integrated automatic
design process for robot swarms that, starting from require-
ments specified in a textual language, generates code and
deploy it on real robots. We introduce a language that we call
swarm mission language (SML) which allows one to specify
missions to be accomplished by a robot swarm. In the paper,
we present a first implementation of SML that supports the
specification of missions in which rewards and penalties can be
expressed with reference to regions: that is, rewards and penal-
ties are computed according to whether robots (and/or relevant

      Amendments from Version 1
The new version is a minor revision which includes
typographic corrections and clarifications based on
reviewers’ comments:
- rephrasing and clarification of certain concepts;
- updating the Listings and Figures that demonstrate the
Swarm Mission Language (SML) syntax for better readability;
- extending the Conclusions by adding new research
directions as future work.
Any further responses from the reviewers can be found at
the end of the article

REVISED

Page 3 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

objects) are in a particular part of the environment at specific
moments in time. Many of the most studied swarm robotics
missions like aggregation, foraging and collective exploration
can be modeled through the concept of a region. Furthermore,
we develop an engine that translates a range of missions specified
in SML into all the resources needed to launch Chocolate1, a
state-of-the-art automatic method for the off-line design of robot
swarms19 that, using simulation performed by ARGoS320, pro-
duces control software that can be directly ported to e-puck
robots21. To demonstrate SML and the integrated automatic
design process, we specify three missions and we automatically
generate the control software that allows a swarm of e-puck
robots to accomplish them.

2 Related work
2.1 Automatic off-line design of robot swarms
In swarm robotics, neuro-evolutionary robotics22,23 is the most
studied automatic design approach. In neuro-evolutionary
swarm robotics6, each individual robot control software is
a neural network. The parameters of the neural network are
obtained via an evolutionary algorithm that optimizes a mission-
specific objective function taking sensor readings as an input
and returning actuation commands as an output. A large litera-
ture shows that neuro-evolutionary robotics is able to produce
robot swarms that can perform well in a variety of missions4,24.
However, the neuro-evolutionary approach does not appear to
be able to scale in complexity for realistic robot swarm applica-
tions. One of the main causes is the difficulty to overcome the
so called reality gap4. The reality gap is the discrepancy between
reality and the simulation models used in the design process25.
Because of the reality gap, the performance of control soft-
ware developed in simulation typically drops when the control
software is ported to the real robots. It has been argued that
this drop in performance is the result of a sort of overfitting of
the obtained solution to the particular conditions encountered
during the design process25–27.

AutoMoDe7,28 is an alternative approach that deviates from tra-
ditional neuro-evolutionary robotics. It aims to address one
of the main concerns in neuro-evolutionary robotics and that
is the reality gap due to the excessive representation power
of neural networks. Inspired by the notion of bias-variance
tradeoff29, AutoMoDe produces control software with restricted
representational power. It does so by selecting, combining,
and fine-tuning a set of predefined modules. AutoMoDe is a
general, abstract framework. To define a design method that can
be used to design control software, AutoMoDe must be spe-
cialized to the specific platform at hand, as formally described
by a reference model. Also, a number of elements need to be
defined, including the optimization algorithm to be adopted,
the modules that will be used by the optimization algo-
rithm, and the architecture into which the predefined modules
should be combined. Up to now, AutoMoDe has been special-
ized for a specific version of the e-puck robot; the optimiza-
tion algorithms that have been adopted are F-Race30,31, Iterated
F-Race32, and simulation annealing33; and the architecture in
which modules have been combined are probabilistic finite-state
machines1,34 and behaviour trees35. Chocolate is a state of
the art automatic design method from the AutoMoDe family
that achieves significantly better results in crossing the reality
gap than neuro-evolutionary approaches1. It uses Iterated

F-Race as an optimization algorithm and probabilistic
finite-state machines as a control architecture.

An aspect that is rarely discussed in the literature is the
specification of the mission for which the automatic design
method must generate control software3. Designers of robot
swarms do not follow any standardized processes or use any
tool that precisely defines the mission to be accomplished. For
example, the aforementioned ARGoS simulator enables speci-
fying missions through a combination of XML files and loop
functions defined in C++20. It provides a great deal of flexibility
for designers to design missions the way they prefer. Designers
can incorporate a rich variety of elements related to the opera-
tional context or the characteristics of the robots. However, it
is a tedious process to manually specify all elements of a mis-
sion to be performed by a robot swarm without following any
predefined process. This might create situations where design-
ers use environmental elements that are important to obtain
a desired collective behaviour for one application scenario,
while omitting the same elements if they impede the desired
collective behaviour. This ad-hoc mission specification proc-
ess might create confusion between designers that are working
on a same set of missions. Moreover, if requirements are not
defined explicitly, it is impossible to check the consistency
of mission models. It is also impossible to tell whether a robot
swarm eventually performs the mission successfully or not.
To simplify the communication between designers and to
check for possible inconsistencies, all these aspects must be
formally defined and automatized.

2.2 System and software engineering for robotics
System and software engineers have made their contribution
to robotics by providing tools and standardized methodolo-
gies for the specification and the definition of robot systems36.
In system and software engineering, researchers have addressed
a variety of emerging challenges in the design and develop-
ment of complex systems by providing generic solutions,
often disregarding their specific nature. One of the main
challenges is collecting requirements37. To simplify the require-
ments’ elicitation for complex system, researchers have focused
on defining standard processes and methods that can be fully or
partially automatized.

In requirements engineering, there is a basic assumption that
underlines most of the approaches: if all requirements are
known, it is always possible to decompose any high-level goal
into a sequence of operations that allow the system to attain it.
For example, goal orientation38 is a widely recognized process
for eliciting, modeling, specifying and analyzing system require-
ments. Goals are statements of intent organized in AND/OR
structures that can range from high-level strategic concerns to
low-level technical requirements and assumptions on the system
and the environment where it operates. It is generally accepted
that robotic systems are too complex for engineers to obtain
complete requirements on the system and the environment37.
Hence, it is typically assumed that robotic systems are highly
uncertain due to incomplete requirements. However, this is not
a valid assumption to be made in swarm robotics. The uncer-
tainty of a robot swarm is not only the result of incomplete
requirements, but it mostly emerges from the complex inter-
actions between the robots and between the robots and the

Page 4 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

environment. This means that the gap between the high-level
swarm goals and the low-level robot behaviours is inevitable.

In a number of works10–12, system and software engineers have
synthesized low-level robot behaviours from high-level mission
descriptions. For example, FLYAQ11 is a tool that allows defining
missions for teams of multi-copters. Starting from a high-level
description of the mission, FLYAQ automatically generates a
detailed flight plan for a team of autonomous multicopters that
can perform the specified mission, while preventing collisions
between multicopters and obstacles. FLYAQ was developed
based on model-driven engineering principles. It uses a family
of domain-specific languages for specifying civilian missions for
multi-robot systems10. Each language focuses on a certain
aspect of the system:

• �Monitoring modeling language: a language that enables
the specification of the mission goals complemented
by the definition of the context in which the mission
will be realized.

• �Robot language (RL): a language to specify the type and
the configuration of the robots that will be in charge of
realizing the specified mission.

• �Behaviour language (BL): a language that specifies
robot atomic movements and actions.

However, FLYAQ cannot be used in swarm robotics because
the nature of robot swarms does not support the synthesis
of the individual robot behaviour from the collective swarm
behaviour.

To the best of our knowledge, requirements specification for
swarm robotics has not been properly addressed as a research
question. The highest level of abstraction that has been exten-
sively discussed in swarm robotics is the development process.
A work in this direction is Buzz, a scripting language for pro-
gramming heterogeneous robot swarms39,40. The language
offers primitives to define swarm behaviors, both in a bot-
tom-up and in a top-down fashion. The formal specification of
requirements for robot swarms was partially discussed by
Brambilla et al.41 in a work devoted to a top-down design
approach based on prescriptive modeling and model
checking. The approach of Brambilla et al. consists of four
phases to specify, design, realize, and validate a robot swarm.
In the first phase, the developer specifies the requirements
using temporal logic. However, the approach does not provide
a precise process definitionof requirements specification but
rather a set of examples on how designers can use probabilistic
computation tree logic to specify swarm-level requirements.

We believe that model-driven engineering can provide
support in gathering explicit and clear requirements for robot
swarms. Model-driven engineering has been explored in the
design of complex systems being an essential factor in reduc-
ing costs and development time. It has been successfully used
in various domains including avionics, automotive, and
telecommunications16. For example, domain-specific mod-
elling (DSM)42 is a powerful methodology in model-driven
engineering, which enables users to model systems using
concepts close to the problem definition.

3 Integrated automatic design process for robot
swarms
We present here the main phases and key activities to design
control software for a robot swarm in a systematic way
(Figure 1). In an automatic off-line design process, we identify
three phases: requirements specification, design by optimization,
and deployment of the control software on the robots.

In requirements specification, the designer identifies and
declares all the characteristics of the robot swarm, the target
environment in which it will operate, the mission that it
should accomplish, the objective that it should fulfil, the pos-
sible constraints, etc. In the current state of the art, no standard
process has been defined for collecting requirements. Typi-
cally, designers specify missions informally and in an ad-hoc
manner, which makes specifications vague and eventually
hinders a final verification of whether the swarm developed
satisfies the requirements or not43. Starting from the require-
ments, the designer defines an objective function to be then
optimized in the second phase. As requirements are specified
informally, this step must be performed manually and is
discretionary, non-repeatable, and error prone. In the second
phase, design by optimization, the control software of the indi-
vidual robots comprised in the swarm is produced by an auto-
matic design method14,15. An automatic design method is defined
through: (i) a reference model of the robotic platform for which
it can design control software; (ii) an optimization algorithm;
and (iii) the space of control software it can possibly
produce. The reference model is an abstraction of the robotic
platform that specifies in formal terms the characteristics and
capabilities of the robots; the optimization algorithm is the
algorithm that drives the optimization process; and the space of
the control software that can be produced is typically expressed
by a parametric architecture and by the set of the possible
values of its parameters.

The last phase is the deployment on the robots. It consists
of all the activities related to the transfer of the control soft-
ware produced to the robots in the target environment. Some

Figure 1. Automatic off-line design of robot swarms.

Page 5 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

tools exist that are able to generate code that can be directly
ported to the robots. For example, ARGoS20, a multi-engine
simulator for robot swarms, can currently generate code for a
number of platforms including marXbot44, e-puck21, Thymio45,
Kilobot46, and Khepera IV47. Due to its modular nature, ARGoS
can be extended to generate code for a variety of robotic
platforms.

3.1 Requirements specification for robot swarms
We present an approach that enables experts (control soft-
ware designers) and non-expert users (non-technical end
users) to specify requirements for robot swarms in a standard
and consistent way. Figure 2 depicts the workflow of the auto-
matic design process. The novelty of our approach is the require-
ments specification phase, outlined by the dash-dotted line
in Figure 2.

The user has an informal picture of what the robot swarm
should do and of the environment in which it should operate.
From these informal requirements, a formal model of the
mission goals and the target environment should be defined.
We developed swarm mission language (SML) to allow users
to specify requirements. The output of this phase is an objective
function that will be subsequently optimized by the optimization
process, and a model of the target environment to be used in
the simulations performed within the automatic design proc-
ess. The model of the target environment is specific to the
automatic design method and the tools used. In our work,
we used model-to-model transformation techniques to trans-
late the missions specified in SML into configuration files for
Chocolate.

3.2 Design by optimization
In the subsequent automatic design phase, we use Chocolate
with a design budget of 200K simulation runs as an auto-
matic design method to generate control software for the
robot swarm. Chocolate operates on a set of six low-level
behaviors and six conditions1. In this context, a low-level
behavior defines how the robot operates its actuators in response
to the readings of its sensors. On the other hand, a condition is
an event that the robot perceives via its sensors and that deter-
mines whether the robot should transition from one behavior
to another. Conditions contribute to determine which behavior
is executed at any moment in time.

The low-level behaviors on which Chocolate operates are the
following.

 Exploration: the robot moves straight forward, if the front of
the robot is clear of obstacles. If an obstacle is perceived via the
front proximity sensors, the robot turns in-place for a random
number of control cycles drawn in {0, ..., τ}, where τ is an integer
parameter ∈ {0, ..., 100}.

 Stop: the robot stops its movement.

 Phototaxis: the robot moves towards a light source. The
robot moves forward while avoiding obstacles, if it does not
perceive any light source.

 Anti-phototaxis: the robot moves away from a light source.
The robot moves forward while avoiding obstacles, if no light
source is perceived.

Figure 2. Integrated automatic design process for robot swarms.

Page 6 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

 Attraction: the robot moves towards its neighboring peers,
following αV

d
, where α ∈ [1, 5] controls the speed of conver-

gence towards the peers. The robot moves straight forward
while avoiding obstacles, if it does not perceive any peer.

 Repulsion: the robot moves away from its neighboring
peers, following –αV

d
, where α ∈ [1, 5] controls the speed of

divergence. The robot moves straight forward while avoiding
obstacles, if it does not perceive any peer in its neighborhood.

The conditions under which a robot switches from a behavior to
another are the following.

 Black-floor: true with probability β, if the ground situated below
the robot is perceived as black.

 Gray-floor: true with probability β, if the ground situated below
the robot is perceived as gray.

 White-floor: true with probability β, if the ground situated below
the robot is perceived as white.

 Neighbor-count: true with probability z (n) = (1 + eη(ξ−n))–1,
where n is number of detected peers. The parameters η ∈ [0,
20] and ξ ∈ {0, ..., 10} control the steepness and the inflection
point of the function, respectively.

 Inverted-neighbor-count: true with probability 1−z (n).

 Fixed-probability: true with probability β.

For more details on the low-level behaviours and condi-
tions of Chocolate, we refer the reader to their original
description7.

4 An approach to specifying swarm missions
In this section, we present an approach to specifying swarm
missions. To be able to specify missions, we need to under-
stand the nature of the requirements in swarm robotics. First,
we discuss a classification framework for swarm missions,
then we develop a metamodel that defines the semantics of the
Swarm Modeling Language (SML).

4.1 Classification framework for swarm missions
A classification framework of the main missions studied
in the literature has already been proposed4. Missions have
been classified in different categories: spatially organizing
missions, navigation missions, collective decision-making, and
other swarm missions.

Spatially organizing missions focuses on organizing and
distributing robots and objects in the environment. This category
consists of missions like aggregation (robots group in a
region of the environment), pattern formation (robots position
themselves on a regular lattice), chain formation (robots position
themselves so as to connect two points in the environment),

self-assembly and morphogenesis (robots physically connect
to each other following a particular pattern), and object
clustering and assembling (robots position objects in the
environment).

Navigation missions focus on coordinating the movements
of a swarm of robots. The following missions are part of this
category: collective exploration (robots explore an unknown
environment), coordinated motion, also known as flocking
(robots move in formation similarly to schools of fish or flocks
of birds), collective transport (robots cooperate to transport an
object).

Collective decision-making is a set of missions where the
focus is on how robots influence each other when making
choices. Here, we can find missions like consensus achievement
(robots reach a consensus on one choice among different
alternatives) and task allocation (robots dynamically choose
the task to execute in order to maximize performance). The last
category is for missions that are outside the scope of the previous
classes. Here, we can find missions like collective fault detection
(robots autonomously detect failures and faulty behaviors)
and human-swarm interaction. This classification framework
is interesting to understand the different types of collective
behaviours robots can perform. However, one important
aspect that has not been discussed in this framework is how do
we tell whether the swarm accomplishes its mission and how we
quantify the degree to which it is successful. In this work, we
classify missions in terms of the objective function that describes
them. That being said, we propose a different classification
framework based on a measure of success for the mission.
In many of the missions mentioned above, the typical way to
measure success is through the concept of a region. Rewards
and penalties can be naturally given according to whether
robots (and/or relevant objects) are in a specific region at a
certain moment in time, or not.

4.2 SML metamodel
In this section, we describe the SML metamodel on which we
base the Swarm Mission Language. In Figure 3, Figure 4, and
Figure 5, we present the concepts used to design the language.
The proposed abstractions are tailored to the literature in swarm
robotics, as discussed in the previous section. With them,
we intend to provide a way to define missions in a standard
and consistent way. We formally define a mission as follows.

Definition 4.1 (Mission). A mission is a triplet M = (E, S, O)
where:

• �E is the environment where the mission is performed;

• �S is the robot swarm that should perform it;

• �O is the objective function to be optimized.

The SML metamodel provides modeling constructs that
enable the specification of the three aspects: the environment, the
robot swarm and the objective function.

Page 7 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

Figure 3. Constructs to specify the environment.

Figure 4. Constructs to specify the overall robot swarm, individual robot behaviour, and the mission class.

Page 8 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

The environment where the mission is performed is defined
through the Environment construct. It consists of an Arena that
gives the context of the mission. The EnvironmentElement is
an abstract metaclass that can be implemented through the
classes of the various elements placed in the environment. The
number and type of elements that can be used across missions
might vary. The central concept in SML is the one of Region.
The Region is an abstract class that can be instantiated as a spe-
cific geometric shape referring to coordinates in the environment.
All environment constructs can be found in Figure 3.

The Swarm is a construct that is developed to specify the number
and type of robots performing the mission, their initial posi-
tion, and the set of low-level behaviours they can perform. The
Robot construct represents a specific instance of the reference
model of a robot.

Definition 4.2 (Reference Model). A reference model of a
robot is a tuple R = (T, A, P, V, Z) where:

• �T is a set of actuators and sensors;

• �A is a set of attributes;

• �P : T →A is an assignment function that maps
sensors/actuators T to the corresponding attributes A;

• �V is a set of values that can be given to the attributes;

• �Z : A →V is an assignment function for the attributes.

An example of a reference model is shown in Table 1.

The Behaviour is an abstract class that represents a low-level
action that an individual robot can perform. A behaviour can
be instantiated on a different level of abstraction and can be
modular, as in our implementation. The modular structure of
the Behavior construct of the language allows composition of
atomic sub-behaviors into complex behaviours. For example, in
Chocolate1 we implemented an Obstacle Avoidance behav-
ior as a sub-behaviour into five low-level behaviors. Behav-
ior is associated with the concept of MissionClass, an abstract
class that presents a set of missions. The association between
the behavior and mission class relates to the correspond-
ing mapping that defines which behaviors are suitable for a
specific mission class to be performed. The MissionClass is
a construct that provides a template for a set of missions that
share similar behavior patterns. In this work, all implemented
behaviors were used to create a swarm controller for each
instantiated mission class. We instantiated three mission classes:
aggregation, foraging and migration.

Figure 5. Constructs to specify the assessment of the mission objectives.

Page 9 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

The third aspect of the language is the representation of the
objective function that is used to measure the success of the mis-
sion execution (Figure 5). The ObjectiveFunction is a construct
that consists of a set of Indicators. An Indicator is an abstract
class that represents the smallest measurable unit of performance
in a mission. It can take one of the two forms:

• �Atomic Indicator: a construct that represents the
smallest measurable unit of performance for an individual
robot;

• �Compound Indicator: a construct that represents the
smallest measurable unit of performance for a set of
robots.

The idea of the indicator is taken from Dwyer et al.49 and Autili
et al.50. Indicators are defined as a pattern in a scope—i.e., each
indicator is represented through two constructs:

• �Pattern: a construct used to measure the degree of
success in a mission;

• �Scope: a timeframe within the duration of the mission
during which the pattern is quantified.

We identify the following scopes: GLOBALLY, AFTER the
occurrence of an event, BEFORE the occurrence of an event,
BETWEEN the occurrence of two events, or AFTER the occurrence
of one event, and UNTIL the occurrence of an another one
(AFTER UNTIL). Atomic Event is an abstract class that specifies
the possible events that can happen during a mission. In our
work, we identified four abstract events:

• �Color Change: an event that is triggered when there is a
color change in the mission entities;

• �Entity at Region: an event that is triggered when a set
of entities are in a specific region (e.g., robots stay in a
certain region);

• �Collision: an event that is triggered when two entities in
the mission collide. For example, it might be a colli-
sion between two robots, a collision between a robot and

an obstacle, a collision between a robot and a wall in
the arena etc.;

• �Global Tick: an event that is triggered at every step of
the mission execution.

As mentioned before, patterns are mission-agnostic concepts
that are used to quantify the success of a mission. We identify
a set of patterns that quantifies the appearance of a specific
mission concept during execution. In the following, we describe
three patterns of SML:

• �Absence: a pattern that quantifies the absence of an
event—e.g., a robot is not in a specific region, a robot
does not perceive light, etc.;

• �Existence: a pattern that quantifies the existence of
an event—e.g., a robot is in a specific region, a robot
broadcasts a message, etc.;

• �Universality: a pattern that quantifies the universality of
an event—something that should always occur.

• �Transition: a pattern that quantifies the transition between
two events—e.g., a robot moves from one region to
another.

Bounded existence is a sub-pattern of an existence which quanti-
fies the existence of an event only in certain bounds (something
should occur at most n times).

These constructs are abstract and need to be instantiated to be
realized in SML. More details about the instantiation of these
constructs is given in Section 5.

5 Implementation of SML as a textual domain
specific language (DSL)
The SML Language conforms to the SML metamodel dis-
cussed in Section 4.2. We implemented SML as a textual domain
specific language (DSL) to enable non-technical end users

Table 1. Reference model RM 1.148. Sensors and actuators of the
extended version of the e-puck robot.

sensor/actuator variables values

proximity proxi, with i ∈ {0, ..., 7} [0, 1]

light lighti, with i ∈ {0, ..., 7} [0, 1]

ground groundi, with i ∈ {0, ..., 2} {black, gray, white}

range-and-bearing n {0, ..., 19}

Vd ([0, 0.7]m,[0, 2π] radian)

wheels νl ,νr [–0.12, 0.12]ms–1

Page 10 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

(users that do not necessarily have technical knowledge in
swarm robotics) and swarm designers to specify missions
using structured English grammar. The development of SML is
based on the following concepts:

• �Extensibility:Control software designers should be able
to add new constructs for new classes of missions.
One of the most important goals in the development
of SML was to provide an easy way for designers to
add new language constructs. This enables reusability
of the language across projects, missions, and research
groups.

• �Variability: Control software designers should be able
to define missions in a variety of ways. Variability
plays an important role in the definition of swarm mis-
sions. There are many examples in the swarm robotics
literature where the position of the robots and of other
objects in the environment is defined in a probabil-
istic way. There are many other examples where the
position of the objects is provided in a deterministic way.
Providing a rich interface using variability points was the
second most important goal in the design of SML.

• �Usability: Non-technical end users (users that do not nec-
essarily have technical knowledge in swarm robotics)
should be able to specify missions.

• �Generality: Control software designers should be able
to specify classes of missions that are non-trivial. Hav-
ing constructs that are generic and independent from the
functional behaviour of the robots is extremely relevant
for managing the complexity of the missions to be
performed.

5.1 SML syntax
To implement the language we used Xtext51. Xtext is a frame-
work for developing domain-specific languages. It provides

a full infrastructure, including parser, linker, typechecker,
and compiler. The current implementation of SML is focused
on realizing abstract concepts through a set of elements that
are necessary to define a mission. We will extend the set of these
elements in a future work, which will increase the application
domain of SML. It is important to note that the current imple-
mentation of SML in Xtext includes variable name resolution,
parse error visualisation, and syntax highlighting. A screenshot
of the SML editor is shown in Figure 6.

Snippet code of the grammar that enables mission description
and swarm configuration is presented in Listing 1. In the imple-
mentation, the model of the language is realised through
three high level concepts: Environment specification, Swarm
configuration, and Mission objective specification. The current
implementation of the language supports three different types
of mission: aggregation, foraging, and migration. In aggrega-
tion, the robot swarm must group (Figure 8). In foraging, the
swarm must collect items from the environment and brings
them to the nest (Figure 9); while in migration, the swarm must
move from one initial location to another one (Figure 10). The
current implementation of the language is extensible in the
following directions: (i) it allows new classes of missions to
be defined through the Task construct and (ii) it allows new
types of robots to be defined through the Robot construct.
The current implementation includes support for e-puck21
and s-bot52. Each of these robots has different sensors and
actuators with different attributes and values.

Snippet code of the grammar that enables the specification
of mission objectives is presented in Listing 2. In the current
implementation of the language, Occurence is the only pattern
that we used to quantify the success of the mission. Through
this pattern, we can specify a variety of missions that are non-
trivial. We satisfy one of the main aspects of our language
mentioned in Section 5—generality. Patterns enable gener-
ality by separating the concepts on how the success of the

Figure 6. Screenshot of the Swarm Mission Language (SML) editor in Xtext.

Page 11 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

https://www.eclipse.org/Xtext/

Listing 1. Language grammar for defining the mission and the swarm configuration.

Listing 2. Language grammar for defining mission objectives.

Page 12 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

mission is measured from the functional behavior of the
robots. As we identify additional patterns in robot swarm mis-
sions, we plan to add them as additional constructs in SML.
SML is highly extensible, which allows new pattern constructs
to be added at a later stage of the development.

Patterns need to be instantiated. Occurence is instantiated
through the concepts of Reward and Penalty. Condition is another
construct that plays an important role in the definition of the
language. We use it to determine the situations under which a
score is assigned to the swarm that executes the mission. This
construct can be extended by identifying other situations that
are relevant in swarm robotics. In the current implementation, a
score is assigned only through the concept of a region: whether
a robot, a set of robots, or objects are in a particular part of the
environment.

Snippet code of the grammar that enables the specifica-
tion of the environment elements is presented in Listing 3.
We implemented a set of environmental elements that can be
directly used in missions. At the moment of writing, we have

implemented four environmental elements: Wall, Light Source,
Floor Patch and Obstacle. Each of these elements has been
defined through different attributes. The extensibility of SML
allows designers to easily add new environmental constructs
if they need them.

To demonstrate the variability of SML, we defined a set of
variability points for the different constructs in SML. These
variability points allow designers to formulate mission concepts
in a variety of ways. For example, the position of robots, objects,
and obstacles in the environment can be specified either in a
deterministic or a stochastic way. In Figure 6, we present a simple
mission specification. An obstacle is defined in a deterministic
way with the following statement:

The arena contains the following elements:
An obstacle as a Circle obs with center at point 0.3, 0.5 and
radius 0.7 m.

An example of obstacle description in a stochastic way is
presented through the following statement:

Listing 3. Language grammar for defining the environment.

Page 13 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

The arena contains the following elements:

A Circle c1 with center at point 0.5, 0.5 and radius 0.8 m.

There are 4 obstacles distributed with a Gaussian distribution in
c1.

This aspect of the language provides a rich platform for the
definition of the various elements in the environment. Region
is the basic language construct we use to define the various
elements. In the current implementation of SML, we have three
variability points on how we specify regions:

• �through one reference point and set of dimensions
(Definition1: Figure 9);

• �only through a set of reference points (Definition2:
Figure 9);

• �through the global coordinate system (Definition3:
Figure 9).

We made the assumption that a global coordinate system exists
and its origin is positioned in the center of the arena. This
coordinate system is only used to specify the position of ele-
ments in the environment. It is important to note that robots
are unable to utilize this coordinate system to position them-
selves or place objects in the arena because usage of a global
coordinate system to create a certain robot behaviour goes
against the main principles of swarm robotics.

5.2 Model-to-model transformation from SML to ARGoS
XML files
ARGoS is a multi-engine simulator for swarm robotics.
ARGoS has two main components that need to be defined in
order to specify a mission: the XML configuration file and the
so-called loop functions. Using the ARGoS XML file, users can
specify the simulated space. ARGoS provides a way to specify
several entity types. Each entity type stores information about a
specific aspect of the simulation. It includes the position and
the orientation of each object in the environment such as obsta-
cles, light sources, boxes, and robots. The file is highly custom-
izable and extendable—new entity types can be easily added

and new features of the entities can be easily adapted and
adjusted.

The loop functions are user-defined functions that are exe-
cuted in strategic points of the simulation loop. Developers
can customize the initialization and the end of an experiment,
and add custom functions to be executed before and/or after
each simulation step. Loop functions allow one to access and
modify the entire state of the simulation. In particular, loop
functions are a convenient way for computing relevant
performance metrics used to measure the success of a mission.

Using model-to-model transformation techniques from the mis-
sion specification defined in SML, we automatically generate
the XML file that is used by ARGoS to describe the simulation
space and the loop functions that are used by ARGoS to run
experiments. The mission models that are used by ARGoS
are represented in Figure 7.

The Simulated Environment and the Controller are speci-
fied in the .xml file. A fragment of the generated XML
configuration file is shown in Listing 4. It consists of five parts:
experiment configuration details, definition of loop functions,
specification of controllers, specification of the environment
(the arena) and e-puck specification and distribution in the
environment.

The loop functions are defined in a C++ file. We describe the
main loop functions that are generated from the SML speci-
fication (fragment of the generated C++ file is shown in
Listing 5). Init is a function that is used to instantiate
all mission elements. We use it to create all mission enti-
ties, including the robots and the environment elements.
PostStep is a function that is executed after each simula-
tion steps. In this function, we iterate through the robot swarms
and perform calculations, based on the definition of the
objective function. In our scenarios, we used the concepts of
reward and penalty to increase or decrease the value of the
variable score which is an information on how well the robot
swarm is performing the mission. GetSwarmPosition()

Figure 7. ARGoS architectural model.

Page 14 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

Listing 4. A fragment of the generated XML configuration file for Aggregation.

is a function that defines the region where the robots are placed
at the start of the mission. Here, we position each of the robots
in the environment using some of the preexisting algorithms for
placement. We only specify the boundaries of the region that
is used for initial placement. Reset() is a function that is

used by Chocolate to reset all variables before initializing
a new run. PostExperiment() is a function that is executed
after the mission is over. In our case, this function reports only the
value of the ObjectiveFunction. GetObjectiveFunction()
is a function that is used to return the score of an experimental

Page 15 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

Listing 5. A fragment of the generated C++ file.

Page 16 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

run for a mission. If the score is high, Chocolate considers
that the robot swarm performs the mission well.

5.3 Validation of the SML implementation
The internal consistency of SML is critical for a fully
integrated design process. To validate the internal consistency
of the language we followed these steps:

1. �Instantiate a mission that contains all language
constructs. We created an instance of a mission that
contains (almost) all language constructs. Furthermore,
we specified smaller instances that instantiate the ele-
ments that could not be included in a single large instance
due to exclusion constraints in the language.

2. �Validate the language in Xtext. We created a set of
validation rules that each mission instance should com-
ply to. First, we created validation rules that ensure
the structure of the mission instance. Each instance of
a mission specification must contain a specification of
the arena, specification of the environment, specifica-
tion of the robot swarm and the objective that is meas-
ured. If any of these elements are missing, an error to
the user is reported. Second, each physical element must
be fully specified in terms of its location. The robot
swarm, obstacles, lights, patches and all other environ-
ment elements must be located in a region of the arena.
Third, all environment elements in the environment must
be unambiguously specified in terms of their dimen-
sions. As SML supports different type of specification
variations (through a set of vertices, through side size,
through a combination of a side size and a size of a
diagonal), we created rules that verify that each specifi-
cation is unambiguous representation of a physical ele-
ment i.e. does not have any missing information (e.g., a
designer that specifies a circle with a radius, must also
specify the center of the circle, otherwise the information is
incomplete.) These rules help the designer to dou-
ble check semantic inconsistencies between different
environmental elements.

3. �Check consistency of the generated model files.
To validate the consistency of the generated files, we
performed the following analysis:

• �XML configuration consistency: For each system
specification, we loaded the generated configura-
tion file in ARGoS to confirm their internal consist-
ency. Each configuration was successfully loaded
by ARGoS. If there is an error in the configuration
file, ARGoS is not able to load the file or if it loads it,
some elements in the visualization will be missing.

• �Use the Chocolate design process to check for
coherence and consistency of the loop functions. For
each generated loop function file, we run Choco-
late to confirm the validity. Chocolate is not
able to run if the XML configuration is not properly
specified or if the required functions Init(), PostStep(),
GetSwarmPosition(), PostExperiment() are not

instantiated (Figure 7). If the loop functions
contain a syntactical error, Chocolate throws an
exception.

6 Demonstration
Setup
To demonstrate the generality of SML, we present three
different missions for which code was automatically gener-
ated and ported to real robots (see Underlying data53). In the
demonstration, we use e-puck robots21 equipped with several
extension boards54, including the range-and-bearing board55.
We specify three missions in the SML editor. When we save a
mission specification in the editor, the code generation proc-
ess starts and generates an ARGoS .xml file and a .cpp file that
contains the loop-functions that measure the performances of the
swarm on the mission at hand. These files are used as artifacts for
Chocolate1. Chocolate generates control software for
the reference model of the e-puck reported in Table 148.

Results
The following examples demonstrate the applicability of
SML. For each of the three missions, Chocolate is executed
10 times to obtain 10 instances of control software. Each design
process relies on a maximum of 200000 simulated runs. The
simulator adopted in the study is ARGoS3, beta 48. We evalu-
ated each instance of control software obtained by Chocolate
in simulation. The best one was chosen and evaluated on real
robots, as well.

In Listing 6, we specify Aggregation on one spot. First, we iden-
tify the shape of the arena, which is a Hexagon with sides of
1 m. Then, we declare various environmental elements and
their location in a global coordinate system with an origin at the
center of the arena. In this context, at line 4, we specify a circular
black patch placed in the center of the arena with radius of
25 cm. At line 5, we specify the number and type of robots
that will be used in the mission. We use 15 e-pucks distrib-
uted across the whole arena. At line 6, we define the details
of the mission. Here, we explicitly state the mission goal and
connect it to environmental elements. In this mission, the
robots must aggregate on the black patch c1. At line 7, we
specify that the mission completion time is 360 seconds.

At the end, we finish our specification with the definition of
the objective function (line 9–10)—we state which concepts
of the mission should be measured: we reward each robot that
position itself on the black patch c1. Using the aforemen-
tioned mission specification, we generate the control software
shown in Figure 8(c). The performance of the control
software is evaluated in simulation—Figure 8(a) and on real
robots—Figure 8(b).

In Listing 7, we specify a Foraging mission with two sources
and one nest. The arena is a dodecagon with a side of 0.66 m
(line 1). We declare 4 environmental elements (line 2 – 6). For
each environmental element, we specify its position in a glo-
bal coordinate system with origin at the center of the arena.
We declare a light source with intensity 5.0, two food sources

Page 17 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

Figure 8. Aggregation on one spot.

Listing 6. Mission specification.

located on b1 and b2 and a nest w1. At line 7, we state that
20 e-puck robots will be used in the mission. At line 8, we
state the explicit details about the mission—connecting the
mission goals (collect food, bring food) with their correspond-
ing environmental elements (Circle b1, Circle b2, Region
w1). At line 9, we define that the mission completion time is
270 seconds. At the end, we declare the specific elements of
the objective function—we quantify when an individual robot
arrives in one of the black patches b1 or b2 and gets back
to its nest w1. Using the aforementioned mission specifica-
tion, we generate the control software shown in Figure 9(c).

The performance of the control software is evaluated in
simulation—Figure 9(a) and on real robots—Figure 9(b).

In Listing 8, we specify Migration with an obstacle. The arena
of the this mission is a square with a side of 1.5 m (line 1). We
declare four environmental elements (line 2 - 6). For each envi-
ronmental element, we specify its position in a global coor-
dinate system with origin at the center of the arena. We declare
a light source with intensity 3.0, a triangular white patch
t1—an area to which the swarm must move, a large obstacle r

0

b in the center of the arena and initial location of the swarm

Page 18 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

Figure 9. Foraging.

Listing 7. Mission specification.

r t. At line 7, we state that 10 e-puck robots will be used in
the mission. At line 8, we state the explicit details about the
mission—connecting the mission goals (migration to an area)
with their corresponding environmental elements (Trian-
gle t1). At line 9, we define that the mission completion time
is 300 seconds. In the end, we declare the specific elements
of the objective function (line 9–13): we reward the swarm

if more than 5 robots are at the target location. Moreover,
every time the swarm receives a reward, we add a small
penalty for each robot outside the target area. Using the
aforementioned mission specification, we generate the control
software shown in Figure 10(c). The performance of the
control software is evaluated in simulation—Figure 10(a) and
on real robots—Figure 10(b).

Page 19 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

The generated code, the data collected in simulation and in real-
ity, and the videos of the behavior by the swarm of physical
robots are available online as supplementary material53,56.

7 Conclusions
We presented a first instance of a fully automatic and inte-
grated process for the design of collective behaviors for robot

swarms. The novel contribution in this paper is the defini-
tion of a specification language and an automatic approach
that transforms a formal mission specification into a configura-
tion setup needed to run the design by optimization of control
software using Chocolate. We introduced SML, a textual
language to specify a mission that can be accomplished
by a robot swarm. From the mission specification, we

Figure 10. Migration with an obstacle.

Listing 8. Mission specification.

Page 20 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

automatically generated code and deployed it on real robots.
We demonstrated the applicability of SML on three missions.

The current implementation of SML supports the specification
of missions in which rewards and penalties can be expressed
with reference to regions: depending on whether robots or
objects are in a particular part of the environment at a given
moment in time. Missions like aggregation, foraging and
collective exploration can be modeled through the concept of
a region. However, collective decision making or coordinate
navigation missions discussed in Section 4.1 (e.g., flocking,
consensus achievement, and task allocation) cannot be
modeled using the current implementation of SML.

Future work will develop along three lines. First, we will work
on the language extensibility. We plan to extend the set of
constructs to support the specification of new classes of missions.
We will introduce new indicators and patterns to measure
success of new mission types. Moreover, we plan to enrich the
language by introducing quality attributes as part of the mission
specification. Safety, performance, and energy-efficiency are
just a few important quality attributes that should be modeled
as separate language constructs in the definition of missions
for robot swarms. Introducing quality attributes in the mission
specification process will contribute towards a better defini-
tion of mission objectives. Moreover, we will work on a formal
language validation. After employing new constructs that
should support new classes of missions, we plan to perform
model validation to understand if there are constructs that are
not covered by the current implementation of SML. We plan to
create a mission generator and generate a set of mission instances
that can help us to analyze the coverage of the language. This
will help us to increase the number of mission classes that
can be captured by the language implementation.

Second, we plan on developing our contribution towards a
systematic methodology for designing robot swarms. We are
focused on a full-fledged linear automatic design process as we
were making our first steps in closing all the gaps in the fully
automatic design process: a swarm designer is able to specify
robot swarm requirements, but also include details about the
design setup to be used to obtain the desired robot swarm. This
includes information on which automatic design method use,
how many simulation runs to perform, and information on the
target environment. In this contribution, these details were
manually specified as part of the automatic design method (we
considered only Chocolate and a fixed design budget of 200K
simulation runs). Moreover, to obtain a fully systematic inte-
grated design process, swarm designers need to be able to select
a set of predefined individual behaviours that can be used by
the automatic design method to generate the control software.
In this work, six behaviours were considered and they were
selected as part of the automatic design method. Swarm design-
ers need to be able to specify these details in the early phases
of the design process, together with the definition of the system
requirements. After obtaining a full-fledged linear automatic
design process, we plan to move to an iterative design proc-
ess where there is a feedback loop between design and test-
ing before deployment of the control software in the target
environment.

Third, we will focus on the usability of our integrated design
process by investigating two research directions: i) We will
perform an extensive user study to investigate SML’s usability.
To obtain deeper insights on how easily swarm designers can
use SML for swarm missions, we will define a rigour proto-
col for evaluation based on objective qualitative and quanti-
tative metrics that should demonstrate the usefulness of our
domain-specific language; ii) We will develop a graphical user
interface for non-expert users. The aim of the graphical inter-
face is defining a process for non-expert users that is user
friendly and less prone to input errors.

Data availability
Underlying data
Zenodo: Integrated automatic design process for robot
swarms. https://zenodo.org/record/518472053.

This project contains the following underlying data:
• �SML (Swarm Mission Language) related files: (i) speci-

fication files used to create missions; (ii) generated files
to be used by an optimization method

• �AutoMoDe related files: (i) the log files running AutoMoDe
- an optimization method that generates control software
for different missions; (ii) generated control software

• �Demonstration: (i) snapshots and videos of running the
missions on real robots

Data are available under the terms of the Creative Commons
Attribution 4.0 International license (CC-BY 4.0).

Software availability
ARGoS3-AutoMoDe for the implementation of AutoMoDe-
Chocolate

• �Source code available from: https://github.com/demiurge-
project/ARGoS3-AutoMoDe

• �Archived source code at time of publication: https://doi.
org/10.5281/zenodo.4849541;

• �License: MIT license.

Demiurge-epuck-dao for the reference model of the robots
used by the AutoMoDe design method

• �Source code available from: https://github.com/demiurge-
project/demiurge-epuck-dao

• �Archived source code at time of publication: https://doi.
org/10.5281/zenodo.4849535

• �License: MIT license.

Argos3-epuck for the e-puck robot ARGoS3 plugin
• �Source code available from: https://github.com/demiurge-

project/argos3-epuck

• �Archived source code at time of publication: https://doi.
org/10.5281/zenodo.4882714

• �License: MIT license.

Page 21 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

https://zenodo.org/record/5184720
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/demiurge-project/ARGoS3-AutoMoDe
https://github.com/demiurge-project/ARGoS3-AutoMoDe
https://doi.org/10.5281/zenodo.4849541
https://doi.org/10.5281/zenodo.4849541
https://opensource.org/licenses/MIT
https://github.com/demiurge-project/demiurge-epuck-dao
https://github.com/demiurge-project/demiurge-epuck-dao
https://doi.org/10.5281/zenodo.4849535
https://doi.org/10.5281/zenodo.4849535
https://opensource.org/licenses/MIT
https://github.com/demiurge-project/argos3-epuck
https://github.com/demiurge-project/argos3-epuck
https://doi.org/10.5281/zenodo.4882714
https://doi.org/10.5281/zenodo.4882714
https://opensource.org/licenses/MIT

ARGoS3 for the ARGoS3 simulator
• �Source code available from: https://github.com/ilpincy/

argos3

• �Archived source code at time of publication: https://doi.
org/10.5281/zenodo.4889111

• �License: Creative Commons Attribution 4.0 International
license (CC-BY 4.0).

Irace for the Iterated F-race algorithm
• �Software available from: https://cran.r-project.org/

package=irace

• �Archived source code at time of publication: https://doi.
org/10.5281/zenodo.4888996

• �License: Creative Commons Attribution 4.0 International
license (CC-BY 4.0).

References

1.	 Francesca G, Brambilla M, Brutschy A, et al.: AutoMoDe-Chocolate: automatic
design of control software for robot swarms. Swarm Intell. 2015; 9(2/3):
125–152.
Publisher Full Text

2.	 Dorigo M, Birattari M, Brambilla M: Swarm robotics. Scholarpedia. 2014; 9(1):
1463.
Publisher Full Text

3.	 Bozhinoski D, Birattari M: Designing control software for robot swarms:
Software engineering for the development of automatic design methods.
In: ACM/IEEE 1st International Workshop on Robotics Software Engineering RoSE.
New York, ACM, 2018; 33–35.
Reference Source

4.	 Brambilla M, Ferrante E, Birattari M, et al.: Swarm robotics: a review from the
swarm engineering perspective. Swarm Intell. 2013; 7(1): 1–41.
Publisher Full Text

5.	 Quinn M, Smith L, Mayley G, et al.: Evolving controllers for a homogeneous
system of physical robots: structured cooperation with minimal sensors.
Philos Trans A Math Phys Eng Sci. 2003; 361(1811): 2321–43.
PubMed Abstract | Publisher Full Text

6.	 Trianni V: Evolutionary swarm robotics: evolving self-organising behaviours
in groups of autonomous robots. Springer, 2008; 108.
Publisher Full Text

7.	 Francesca G, Brambilla M, Brutschy A, et al.: AutoMoDe: a novel approach to
the automatic design of control software for robot swarms. Swarm Intell.
2014; 8(2): 89–112.
Publisher Full Text

8.	 Birattari M, Ligot A, Hasselmann K: Disentangling automatic and semi-
automatic approaches to the optimization-based design of control
software for robot swarms. Nat Mach Intell. 2020; 2(9): 494–499.
Publisher Full Text

9.	 Brugali D, Prassler E: Software engineering for robotics. IEEE Robot Autom
Mag. 2009; 16(1): 9–15.
Publisher Full Text

10.	 Di Ruscio D, Malavolta I, Pelliccione P: A family of domain-specific languages
for specifying civilian missions of multi-robot systems. In: First Workshop
on Model-Driven Robot Software Engineering-MORSE. York, UK, 2014; 13–26.
Reference Source

11.	 Bozhinoski D, Di Ruscio D, Malavolta I, et al.: Flyaq: Enabling non-expert users
to specify and generate missions of autonomous multicopters. In: 2015
30th IEEE/ACM International Conference on Automated Software Engineering (ASE).
San Diego, CA, USA, IEEE, 2015; 801–806.
Publisher Full Text

12.	 Bozhinoski D, Garlan D, Malavolta I, et al.: Managing safety and mission
completion via collective run-time adaptation. J Syst Archit. 2019; 95: 19–35.
Publisher Full Text

13.	 Hoos HH: Programming by optimization. Commun ACM. 2012; 55(2): 70–80.
Publisher Full Text

14.	 Francesca G, Birattari M: Automatic design of robot swarms: achievements
and challenges. Front Robot AI. 2016; 3(29): 1–9.
Publisher Full Text

15.	 Birattari M, Ligot A, Bozhinoski D, et al.: Automatic off-line design of robot
swarms: a manifesto. Front Robot AI. 2019; 6: 59.
PubMed Abstract | Publisher Full Text | Free Full Text

16.	 Schmidt DC: Model-driven engineering. IEEE Computer. 2006; 39(2): 25.
Reference Source

17.	 Schlegel C, Lotz A, Lutz M, et al.: Model-driven software systems engineering
in robotics: covering the complete life-cycle of a robot. Info Technol. 2015;
57(2): 85–98.
Publisher Full Text

18.	 Schlegel C, Haßler T, Lotz A, et al.: Robotic software systems: From code-
driven to model-driven designs. In: 2009 International Conference on Advanced
Robotics. Munich, Germany, IEEE, 2009; 1–8.
Reference Source

19.	 Hasselmann K, Ligot A, Ruddick J, et al.: Empirical assessment and
comparison of neuro-evolutionary methods for the automatic off-line
design of robot swarms. Nat Commun. 2021; 12(1): 4345.
PubMed Abstract |� Publisher Full Text | Free Full Text

20.	 Pinciroli C, Trianni V, O’Grady R, et al.: ARGoS: a modular, parallel, multi-
engine simulator for multi-robot systems. Swarm Intell. 2012; 6(4): 271–295.
Publisher Full Text

21.	 Mondada F, Bonani M, Raemy X, et al.: The e-puck, a robot designed
for education in engineering. In P. Gonçalves, P. Torres, and C. Alves,
editors, Proceedings of the 9th Conference on Autonomous Robot Systems and
Competitions. Portugal, Instituto Politécnico de Castelo Branco, 2009; 59–65.
Reference Source

22.	 Nolfi S, Floreano D, Floreano DD: Evolutionary robotics: The biology,
intelligence, and technology of self-organizing machines. MIT press, 2000.
Reference Source

23.	 Nolfi S: Behavioral and Cognitive Robotics: An Adaptive Perspective.
Institute of Cognitive Sciences and Technologies, National Research Council,
CNR-ISTC, Roma, Italy, 2021.
Reference Source

24.	 Hauert S, Zufferey JC, Floreano D: Reverse-engineering of artificially evolved
controllers for swarms of robots. In: 2009 IEEE Congress on Evolutionary
Computation. IEEE, 2009; 55–61.
Publisher Full Text

25.	 Ligot A, Birattari M: Simulation-only experiments to mimic the effects of
the reality gap in the automatic design of robot swarms. Swarm Intell. 2020;
14(1): 1–24.
Publisher Full Text

26.	 Koos S, Mouret JB, Doncieux S: The transferability approach: crossing the
reality gap in evolutionary robotics. IEEE Trans Evol Comput. 2013; 17(1):
122–145.
Publisher Full Text

27.	 Haasdijk E, Bredeche N, Nolfi S, et al.: Evolutionary robotics. Evol Intell. 2014; 7:
69–70.
Publisher Full Text

28.	 Birattari M, Ligot A, Francesca G: AutoMoDe: a modular approach to the
automatic off-line design and fine-tuning of control software for robot
swarms. In: Nelishia Pillay and Rong Qu, editors, Automated Design of Machine
Learning and Search Algorithms. Nature, Cham, Switzerland, 2021; 73–90.
Publisher Full Text

29.	 Geman S, Bienenstock E, Doursat R: Neural networks and the bias/variance
dilemma. Neural Comput. 1992; 4: 1–58.
Reference Source

30.	 Birattari M, Stützle T, Paquete L, et al.: A racing algorithm for configuring
metaheuristics. In: W.B. Langdon and et al., editors, Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO. San Francisco CA Morgan
Kaufmann. 2002; 11–18.
Reference Source

31.	 Birattari M: Tuning Metaheuristics: A Machine Learning Perspective.
Springer, Berlin, Germany, 2009.
Publisher Full Text

32.	 Birattari M, Yuan Z, Balaprakash P, et al.: F-race and iterated f-race: An
overview. In: Thomas Bartz- Beielstein, Marco Chiarandini, Luís Paquete, and
Mike Preuss, editors, Experimental Methods for the Analysis of Optimization
Algorithms. Springer, Berlin, Germany, 2010; 311–336.
Publisher Full Text

Page 22 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

https://github.com/ilpincy/argos3
https://github.com/ilpincy/argos3
https://doi.org/10.5281/zenodo.4889111
https://doi.org/10.5281/zenodo.4889111
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://cran.r-project.org/web/packages/irace/index.html
https://cran.r-project.org/web/packages/irace/index.html
https://doi.org/10.5281/zenodo.4888996
https://doi.org/10.5281/zenodo.4888996
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/s11721-015-0107-9
http://dx.doi.org/10.4249/scholarpedia.1463
https://ieeexplore.ieee.org/document/8445817
http://dx.doi.org/10.1007/s11721-012-0075-2
http://www.ncbi.nlm.nih.gov/pubmed/14599322
http://dx.doi.org/10.1098/rsta.2003.1258
http://dx.doi.org/10.1007/978-3-540-77612-3
http://dx.doi.org/10.1007/s11721-014-0092-4
http://dx.doi.org/10.1038/s42256-020-0215-0
http://dx.doi.org/10.1109/MRA.2009.932127
https://research.vu.nl/en/publications/a-family-of-domain-specific-languages-for-specifying-civilian-mis
http://dx.doi.org/10.1109/ASE.2015.104
http://dx.doi.org/10.1016/j.sysarc.2019.02.018
http://dx.doi.org/10.1145/2076450.2076469
http://dx.doi.org/10.3389/frobt.2016.00029
http://www.ncbi.nlm.nih.gov/pubmed/33501074
http://dx.doi.org/10.3389/frobt.2019.00059
http://www.ncbi.nlm.nih.gov/pmc/articles/7806002
https://ptolemy.berkeley.edu/projects/truststc/pubs/30.html
http://dx.doi.org/10.1515/itit-2014-1069
https://ieeexplore.ieee.org/document/5174736
http://www.ncbi.nlm.nih.gov/pubmed/34272382
http://dx.doi.org/10.1038/s41467-021-24642-3
http://www.ncbi.nlm.nih.gov/pmc/articles/8285396
http://dx.doi.org/10.1007/s11721-012-0072-5
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.180.8110
https://mitpress.mit.edu/books/evolutionary-robotics
https://bacrobotics.com/
http://dx.doi.org/10.1109/CEC.2009.4982930
http://dx.doi.org/10.1007/s11721-019-00175-w
http://dx.doi.org/10.1109/TEVC.2012.2185849
http://dx.doi.org/10.1007/s12065-014-0113-7
http://dx.doi.org/10.1007/978-3-030-72069-8_5
https://www.dam.brown.edu/people/documents/bias-variance.pdf
https://dl.acm.org/doi/10.5555/2955491.2955494
http://dx.doi.org/10.1007/978-3-642-00483-4
http://dx.doi.org/10.1007/978-3-642-02538-9_13

33.	 Franzin A, Stützle T: Revisiting simulated annealing: A component-based
analysis. Comput Oper Res. 2019; 104: 191–206.
Publisher Full Text

34.	 Hasselmann K, Birattari M: Modular automatic design of collective
behaviors for robots endowed with local communication capabilities. PeerJ
Comput Sci. 2020; 6: e291.
PubMed Abstract | Publisher Full Text | Free Full Text

35.	 Ligot A, Kuckling J, Bozhinoski D, et al.: Automatic modular design of robot
swarms using behavior trees as a control architecture. PeerJ Comput Sci.
2020; 6: e314.
PubMed Abstract | Publisher Full Text | Free Full Text

36.	 Nordmann A, Hochgeschwender N, Wigand D, et al.: A survey on domain-specific
modeling and languages in robotics. 2016.
Reference Source

37.	 Neill CJ, Laplante PA: Requirements engineering: the state of the practice.
IEEE Softw. 2003; 20(6): 40–45.
Publisher Full Text

38.	 Van Lamsweerde A: Goal-oriented requirements enginering: a roundtrip
from research to practice. In: Proceedings. 12th IEEE International Requirements
Engineering Conference, 2004. Washington, DC USA, IEEE. 2004; 4–7.
Publisher Full Text

39.	 Pinciroli C, Beltrame G: Buzz: An extensible programming language for
heterogeneous swarm robotics. In: 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2016; 3794–3800.
Publisher Full Text

40.	 Beltrame G, Merlo E, Panerati J, et al.: Engineering safety in swarm
robotics. In: Proceedings of the 1st International Workshop on Robotics Software
Engineering. 2018; 36–39.
Publisher Full Text

41.	 Brambilla M, Brutschy A, Dorigo M, et al.: Property-driven design for swarm
robotics: A design method based on prescriptive modeling and model
checking. ACM Transactions on Autonomous and Adaptive Systems. 2015; 9(4): 17.
Publisher Full Text

42.	 Kelly S, Tolvanen JP: Domain-specific modeling: enabling full code
generation. John Wiley & Sons, 2008.
Publisher Full Text

43.	 Dixon C, Winfield AFT, Fisher M, et al.: Towards temporal verification of
swarm robotic systems. Rob Auton Syst. 2012; 60(11): 1429–1441.
Publisher Full Text

44.	 Bonani M, Longchamp V, Magnenat S, et al.: The marxbot, a miniature mobile
robot opening new perspectives for the collective-robotic research. In: 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway,
NJ, IEEE., 2010; 4187–4193.
Publisher Full Text

45.	 Riedo F, Chevalier M, Magnenat S, et al.: Thymio II a robot that grows wiser
with children. In: 2013 IEEE workshop on advanced robotics and its social

impacts. Tokyo, Japan, IEEE. 2013; 187–193.
Publisher Full Text

46.	 Rubenstein M, Ahler C, Nagpal R: Kilobot: A low cost scalable robot system
for collective behaviors. In: 2012 IEEE Int Conf Robot Autom. St Paul, MNUSA,
IEEE., 2012; 3293–3298.
Publisher Full Text

47.	 Soares JM, Navarro I, Martinoli A: The Khepera IV mobile robot: performance
evaluation, sensory data and software toolbox. In Robot 2015: Second Iberian
Robotics Conference. Lisbon, Portugal, Springer. 2016; 767–781.
Publisher Full Text

48.	 Hasselmann K, Ligot A, Francesca G, et al.: Reference models for AutoMoDe.
Technical Report TR/IRIDIA/2018-002, IRIDIA, Université libre de Bruxelles,
Belgium, 2018.
Reference Source

49.	 Dwyer MB, Avrunin GS, Corbett JC: Patterns in property specifications for
finite-state verification. In: Proceedings of the 1999 International Conference
on Software Engineering (IEEE Cat. No. 99CB37002). Los Angeles, CA, USA, IEEE.,
1999; 411–420.
Publisher Full Text

50.	 Autili M, Grunske L, Lumpe M, et al.: Aligning qualitative, real-time, and
Probabilistic property specification patterns using a structured english
grammar. IEEE Trans Softw Eng. 2015; 41(7): 620–638.
Publisher Full Text

51.	 Eysholdt M, Behrens H: Xtext: implement your language faster than the
quick and dirty way. In: Proceedings of the ACM International Conference
Companion on Object Oriented Programming Systems Languages and Applications
Companion. Nevada, USA, ACM. 2010; 307–309.
Publisher Full Text

52.	 Mondada F, Guignard A, Bonani M, et al.: Swarm-bot: from concept to
implementation. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems. Piscataway, NJ, IEEE. 2003; 2: 1626–1631.
Publisher Full Text

53.	 Bozhinoski D, Birattari M: Integrated automatic design process for robot
swarms. 2021.
http://www.doi.org/10.5281/zenodo.5184720

54.	 Garattoni L, Francesca G, Brutschy A, et al.: Software infrastructure for e-puck
(and TAM). Technical Report TR/IRIDIA/2015-004, IRIDIA, Université libre de
Bruxelles, Belgium, 2015.
Reference Source

55.	 Gutiérrez I, Campo A, Dorigo M, et al.: Open e-puck range & bearing
miniaturized board for local communication in swarm robotics. In:
Kinugawa Kosuge, editor, IEEE Int Conf Robot Autom. ICRA. Piscataway, NJ, IEEE.
2009; 3111–3116.
Publisher Full Text

56.	 Bozhinoski D, Birattari M: Requirements specification for swarm robotics:
Supplementary material. 2020.
Reference Source

Page 23 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

http://dx.doi.org/10.1016/j.cor.2018.12.015
http://www.ncbi.nlm.nih.gov/pubmed/33816942
http://dx.doi.org/10.7717/peerj-cs.291
http://www.ncbi.nlm.nih.gov/pmc/articles/7924432
http://www.ncbi.nlm.nih.gov/pubmed/33816965
http://dx.doi.org/10.7717/peerj-cs.314
http://www.ncbi.nlm.nih.gov/pmc/articles/7924474
https://aisberg.unibg.it/handle/10446/87804#.YUcdcX3hXIU
http://dx.doi.org/10.1109/MS.2003.1241365
http://dx.doi.org/10.1109/ICRE.2004.1335648
http://dx.doi.org/10.1109/IROS.2016.7759558
http://dx.doi.org/10.1145/3196558.3196565
http://dx.doi.org/10.1145/2700318
http://dx.doi.org/10.1002/9780470249260
http://dx.doi.org/10.1016/j.robot.2012.03.003
http://dx.doi.org/10.1109/IROS.2010.5649153
http://dx.doi.org/10.1109/ARSO.2013.6705527
http://dx.doi.org/10.1109/ICRA.2012.6224638
http://dx.doi.org/10.1007/2F978-3-319-27146-0_59
https://iridia.ulb.ac.be/IridiaTrSeries/rev/IridiaTr2018-002r002.pdf
http://dx.doi.org/10.1145/302405.302672
http://dx.doi.org/10.1109/TSE.2015.2398877
http://dx.doi.org/10.1145/1869542.1869625
http://dx.doi.org/10.1109/IROS.2003.1248877
http://www.doi.org/10.5281/zenodo.5184720
https://iridia.ulb.ac.be/IridiaTrSeries/link/IridiaTr2015-004.pdf
http://dx.doi.org/10.1109/ROBOT.2009.5152456
http://iridia.ulb.ac.be/supp/IridiaSupp2020-013/index.html

Open Peer Review
Current Peer Review Status:

Version 2

Reviewer Report 04 November 2022

https://doi.org/10.21956/openreseurope.16243.r30379

© 2022 Hunt E et al. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Edmund Hunt
University of Bristol, Bristol, UK
James Ward
University of Bristol, Bristol, UK

I have no further comments to make.

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Swarm robotics

We confirm that we have read this submission and believe that we have an appropriate level
of expertise to confirm that it is of an acceptable scientific standard.

Version 1

Reviewer Report 07 June 2022

https://doi.org/10.21956/openreseurope.15113.r29339

© 2022 Hunt E et al. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Edmund Hunt
University of Bristol, Bristol, UK
James Ward
University of Bristol, Bristol, UK

Open Research Europe

Page 24 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

https://doi.org/10.21956/openreseurope.16243.r30379
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-9647-124X
https://doi.org/10.21956/openreseurope.15113.r29339
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-9647-124X

This paper presents work on a textual language (‘SML’) for specification of swarm robot missions,
and an engine to transform this SML into a form that can be used by the previously published
‘AutoMoDe-Chocolate’ automatic controller designer. The pipeline from mission specification to
deployment is demonstrated in three example missions.

The ambitious goal to show a ‘fully integrated design process’ for swarm deployment, using off-
line optimization methods, is met with an initial proof concept. Obviously, much work remains to
be done on showing that this approach will be successful in ‘real world’ environments, both in
relation to mission success (relative to alternative approaches, e.g. hand-design of controllers) and
usability for non-expert users. But it is a useful step in that direction, and the paper therefore is a
meaningful contribution to the field.

Specific points arising:

Given the focus on swarms and emergent behaviour – e.g. the Introduction “Hence, the
collective behavior of a robot swarm is a result of the local interactions between the
individual robot and its neighbors and its environment” – the three missions tested do not
especially rely on neighbour interactions/emergence, and could equally be tested on a
single robot? And so the real-world validation is arguably on the boundary of what could
properly be called swarm robotics, and I look forward to the promised future work on e.g.
collective decision-making missions.

○

In the Abstract, I would contest the claim that ‘swarm designers need to follow standardised
automatic design processes…’ I suggest ‘may benefit from following’ rather than ‘need to’.

○

In section 3.1, it is claimed that the ‘approach…enables…non-expert users (non-technical
end-users) to specify requirements for robot swarms…’. Realistically though, how accessible
is SML to a non-expert? Would some kind of graphical interface be easier to use and less
prone to input errors?

○

In section 3.2, the design budget is 200k simulation runs. This seems like a lot. What is the
run time on what hardware? Why is such a large number necessary? What would be
possible with e.g. 2k runs?

○

‘Chocolate’ operates on only six low-level behaviours and six conditions. This is fine for lab-
based swarm concepts, but how extensible is this framework into the ‘real world’, e.g. with
ROS-based robots running with sensors such as LiDARs, depth cameras, etc – robots with
greater ‘spatial intelligence’ to understand context, performing more complex missions? I
wonder if BDRML is a relevant approach.1

○

It would be interesting to test missions where the simulation is not quite matching the
deployed environment; e.g. with the aggregation mission, would it make much difference to
specify 3 obstacles rather than the actual 5?

○

On Fig. 1, realistically for real-world deployments, will there be a feedback loop between
step 2 and 3? Take driverless cars as an example, development requires thousands of hours
of trials and controller refinement. Are you focused on missions where iterative testing and
design will not be possible? Do you have specific contexts in mind?

○

Open Research Europe

Page 25 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-29339-1

I find the large ‘figures’ showing code to be better suited to supplementary information, it
interrupts the paper flow and makes the page count overlong.

○

Minor points: p.3 ‘alea’ – I am not familiar with this term, please clarify your meaning. p.3
‘through the concept of region’ – awkward phrasing.

○

References
1. Pitonakova L, Crowder R, Bullock S: Behaviour-Data Relations Modelling Language For Multi-
Robot Control Algorithms. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 2017. 727-732 Publisher Full Text

Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and does the work have academic merit?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Swarm robotics

We confirm that we have read this submission and believe that we have an appropriate level
of expertise to confirm that it is of an acceptable scientific standard.

Author Response 04 Aug 2022
Darko Bozhinoski

We are glad that the reviewer appreciated the work we have performed. In the following,
we address his comments point by point.

Concerning the idea of creating a graphical interface to facilitate the usage of SML,
we extended the Conclusions by adding this research direction as a future
contribution.

○

Concerning the large design budget of 200k simulation runs, we would like to stress ○

Open Research Europe

Page 26 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

https://doi.org/10.1109/IROS.2017.8202231

that the decision of adopting such a large design budget is outside of the specific
scope of the contribution we are making with this paper. We decided to adopt a large
design budget, so that the design process has sufficient resources to obtain a
controller that performs well. The focus here is on the specification of the mission
and on the automatic process that transforms specifications into the input to be fed
to Chocolate.

Concerning the fact that the automatic design method Chocolate operates on only six
low-level behaviours and 6 conditions, we would like to stress that the focus in this
paper is not Chocolate per se, but rather how to define a fully automatic design
process (from specifications to the actual execution of the mission). As we already
mentioned in answer to the other reviewers, this work is only a first step towards an
integrated automatic design process for robot swarms: a proof of concept
implementation. Extending the framework from a lab-based environment to a real-
world environment is definitely an important issue that will be addressed in future
research work. In the Behaviour-Data Relations Modelling Language (BDRML) [1]
approach, the authors propose a methodology to represent robot behaviours, data,
and a set of conditional relations between the different primitives. In contrast, the
main focus in our work is on establishing an end-to-end automatic approach where
from a mission specification in natural language, swarm control software can be
obtained without focusing on the specificities of data structures and behaviours.

○

Concerning the idea of testing the approach on missions where the simulation
environment does not fully match the deployment environment, we would like to
point out that our current approach already provides support for it. Many
environmental features can be described in a probabilistic manner, meaning that the
automatic design process generates control software that is trained on a
representative set of environments that are different from the one into which the
swarm is eventually deployed. We refer to a class of missions (environments) and we
only make the working hypothesis that all the environments experienced in
simulation and the real one into which the swarm is deployed are part of the same
mission class.

○

We agree with the reviewer’s comment that having a feedback loop in the automatic
design process is an important part of the development of robust and reliable robot
swarms. Yet, the setting we considered in the paper—that is, the linear life-cycle
model—is the basic building block to achieve any more complex life-cycle. We feel
that considering a lifecycle with a feedback loop will be an important future step. In
this work, we focused on the simplest development model as we are making our first
steps in closing the gaps in the fully automatic design process: starting from the
specification of a mission, obtaining a swarm controller in simulation and finally
deploying it in a real environment. We strongly believe that before we move to an
iterative design process, we must focus on having a full-fledged linear automatic
design process and fully master it.

○

We thank the reviewer for his valuable feedback.

 [1] Pitonakova L, Crowder R, Bullock S: Behaviour-Data Relations Modelling Language For

Open Research Europe

Page 27 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

Multi-Robot Control Algorithms. 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2017; 727-732 |

Competing Interests: No competing interests were disclosed.

Reviewer Report 30 May 2022

https://doi.org/10.21956/openreseurope.15113.r28563

© 2022 Millard A. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Alan Millard
Department of Computer Science, University of York, York, UK

This article presents a novel textual language for the specification of robot swarm missions called
Swarm Mission Language (SML). Model-driven engineering techniques are used to automatically
transform missions specified in SML into a format compatible with the previously published
AutoMoDe-Chocolate optimisation-based design method. The authors demonstrate the potential
of this integrated design process on three different example missions, with validation on physical
robots.

This work is a valuable contribution to the field, bridging the gap between the high-level
specification of swarm behaviours and automated design methods that determine the behaviour
of individual robots. Integration with an established simulation tool (ARGoS) and robot platform
(e-puck) makes the approach accessible to the research community, and the source code and data
have been made available to aid reproducibility.

The current implementation of SML is relatively limited - for example, rewards/penalties can only
be expressed based on the spatial locations of robots (or objects) at a particular time. However,
the language is designed to be extensible, so this shortcoming can be addressed in future
development (by the authors, or a third party).

To aid the design process (particularly for non-expert users), future work may wish to consider the
development of a graphical interface that can automatically generate SML files (e.g. via interactive
placement of spatial entities), to avoid laborious textual specification directly in Xtext.

Although the end-to-end design integration is validated in this article, there is no empirical
evaluation of SML's usability, so it is unclear whether this new specification language actually
makes the process of designing swarm behaviours significantly easier. The contribution would be
significantly strengthened by conducting a user study like that presented in "An Experiment in
Automatic Design of Robot Swarms: AutoMoDe-Vanilla, EvoStick, and Human Experts", to
demonstrate the utility of SML in comparison to other methods like Buzz.1

Open Research Europe

Page 28 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

https://doi.org/10.21956/openreseurope.15113.r28563
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-4424-5953
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#rep-ref-28563-1

Minor comments:

The figure captions are too brief and not sufficiently descriptive - it should be possible to
understand what each figure represents in isolation, based on context from the caption.

Figure 11 is excessively long - I suggest that you remove the XML comments, as they simply repeat
the named tagged sections. Please also modify this example to use relative paths, instead of
absolute paths specific to the author's personal filesystem.

The code listings are quite difficult to read (especially the C++ code in Figure 12). Please consider
using a condensed monospace font, reformatting the code, or including additional syntax
highlighting to improve clarity. They should also be captioned as listings, rather than figures (like
"Listing 1. Mission specification").

Page 6 - "Phototaxis" should be italicised like the other items.
Page 8 - Figure 3: "Perimetar" > "Perimeter"
Page 10 - Under "Transition": "e.g.a" > "e.g., a"
Page 11 - "s-boot" > "s-bot". Should this even say s-bot? The grammar presented in Figure 7
mentions only the e-puck and foot-bot (marXbot).
Page 17 - "Fist" > "First"
Page 17 - "xml" > "XML"
Page 17 - "ARGOS" > "ARGoS"

References
1. Francesca G, Brambilla M, Brutschy A, Garattoni L, et al.: An Experiment in Automatic Design of
Robot Swarms AutoMoDe-Vanilla, EvoStick, and Human Experts in ANTS 2014: Ninth International
Conference on Swarm Intelligence. Springer. 2014. 25-37

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and does the work have academic merit?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Open Research Europe

Page 29 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

Reviewer Expertise: Swarm robotics

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 04 Aug 2022
Darko Bozhinoski

We are glad that the reviewer appreciated the work done. In the following, we address the
comments point by point.

We agree with the reviewer: the current implementation of SML is limited. It is indeed
intended to be a proof of concept and opens the way to future developments. This is
reflected also in the title of the article: “Towards an integrated automatic design
process for robot swarms”. As the reviewer points out, the language is extensible,
and can be further developed, possibly by third parties. In this first, proof-of-concept
implementation we decided to use spatial locations of robots for rewards/penalties
due to the fact that in our analysis on a set of swarm missions, we noticed that most
of the swarm missions measure success through an indicator that assesses the
swarm being in a particular location at a specific time or by a mission objective that
can be easily converted to this indicator. This definitely does not address all possible
missions of interest, but covers a good share of them and, in our opinion, provides a
clear idea of the potential of the proposal.

○

Regarding the idea of developing a graphical interface to aid the design process and
avoid laborious textual specification, we fully agree with the reviewer and we have
plans to extend this contribution by introducing a graphical interface for swarm
designers to design their missions as discussed in our conclusions. Yet, we would like
to emphasise that the current textual specification of the swarm mission is already a
significant step ahead with respect to what is described in the literature. Regarding
the suggestion of conducting a user study to evaluate the SML usability, we would
like to highlight that an evaluation of this kind is a huge endeavour and really rare in
the literature. We feel that this deserves to be done as a separate study. We consider
that an empirical evaluation of SML is an important future contribution that requires
a definition of a protocol for evaluation based on objective qualitative and
quantitative metrics that demonstrate the usefulness of our domain-specific
language.

○

We have reviewed and fixed all the other minor comments and typos highlighted by
the reviewer.

○

We thank the reviewer for his valuable feedback.

Competing Interests: No competing interests were disclosed.

Reviewer Report 08 February 2022

https://doi.org/10.21956/openreseurope.15113.r28418

Open Research Europe

Page 30 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

https://doi.org/10.21956/openreseurope.15113.r28418

© 2022 Schroeder A. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Adam Schroeder
University of Toledo, Toledo, OH, USA

The main contribution of this work is the creation of a formal and standardized way to specify the
requirements for a robot swarm mission and how the performance of a swarm can be
quantitatively evaluated. Their tool is called swarm mission language (SML). After the
requirements for a mission have been specified in SML, existing software tools are used to
simulate swarm performance, optimize performance, and eventually write a controller for a
physical robot. Overall, SML in combination with existing software enables an automatic design
process for robot swarms.

The authors validated their tool and the use of an automatic design process with three example
missions.

This work fills a current research gap and creates a useful tool for a swarm designer. It is adopting
automatic design principles that are used in other disciplines to the specific discipline of robot
swarm design. The authors acknowledge which scenarios are currently supported by their tool
and that it could be extended to support more.

Communication within a swarm is one important design decision and it would be helpful for the
authors to explicitly discuss this and how it is addressed with their tool.

In thinking of actual missions I would try to design a swarm for, it would be useful for the authors
to discuss if and how their tool could handle (i) unknown or partially-known environments, where
it would not be possible to specify their details in advance, (ii) dynamic objects in an environment,
(iii) environments with non-discrete objects, e.g. a continuous distribution of food sources instead
of discrete food sources, (iv) outdoor environments. Of course, even if these elements were
supported by SML, they also would need to be supported in any simulator used.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and does the work have academic merit?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?

Open Research Europe

Page 31 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-4059-5593

Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Swarm robotics

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 04 Aug 2022
Darko Bozhinoski

We are glad that the reviewer appreciated the work we have done so far. In the following,
we will provide details and explanation about the concerns he raised.

Regarding the question on how our work addresses communication within a swarm, we
would like to mention that AutoMoDe-Chocolate, the automatic design method used in this
work - does not work with communication behaviours. In other works, we have developed
 automatic design methods that design control software for robots described by an
extended reference model which include the ability to communicate via light and infra-red
signals. These design methods (AutoMoDe-Gianduja [1] and AutoMoDe-TuttiFrutti [2]) are
similar to AutoMoDe-Chocolate, but include modules that implement communication.The
SML language can be extended to serve these other design methods. Concerning the
question on how SML can handle: (i) unknown or partially-known environments, (ii) dynamic
objects in an environment, (iii) environments with non-discrete objects and (iv) outdoor
environments, we would like to clarify that SML supports the specification of a class of
missions where a probabilistic description of the environment is provided. The robot swarm
performs the mission in this range of possible environments. In our current setup, SML
enables specification of semi-structured partially-known environments, environments with
non-discrete objects (region of food source) and the execution of the mission can happen in
an indoor or outdoor environment. We thank the reviewer for his valuable feedback.

[1] Hasselmann, Ken, and Mauro Birattari. "Modular automatic design of collective
behaviors for robots endowed with local communication capabilities." PeerJ Computer
Science 6 (2020): e291.

[2] Garzón Ramos, David, and Mauro Birattari. "Automatic design of collective behaviors for
robots that can display and perceive colors." Applied Sciences 10, no. 13 (2020): 4654.

Competing Interests: No competing interests were disclosed.

Open Research Europe

Page 32 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

