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Abstract 
Background: The specification of missions to be accomplished by a 
robot swarm has been rarely discussed in the literature: designers do 
not follow any standardized processes or use any tool to precisely 
define a mission that must be accomplished. 
Methods: In this paper, we introduce a fully integrated design process 
that starts with the specification of a mission to be accomplished and 
terminates with the deployment of the robots in the target 
environment. We introduce Swarm Mission Language (SML), a textual 
language that allows swarm designers to specify missions. Using 
model-driven engineering techniques, we define a process that 
automatically transforms a mission specified in SML into a 
configuration setup for an optimization-based design method.  Upon 
completion, the output of the optimization-based design method is an 
instance of control software that is eventually deployed on real robots. 
Results: We demonstrate the fully integrated process we propose on 
three different missions. 
Conclusions: We aim to show that in order to create reliable, 
maintainable and verifiable robot swarms,  swarm designers may 
benefit from following standardised automatic design processes that 
will facilitate the design of control software in all stages of the 
development.

Keywords 
swarm robotics, integrated automatic design process, optimization-
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1 Introduction
In this paper, we make two original contributions: 1) we define 
a textual language for the specification of missions to be  
performed by a robot swarm and 2) we realize an engine that 
transforms a mission specification given in the aforementioned  
language into an objective function (and other configura-
tion files) needed to automatically perform the design by opti-
mization of a robot swarm that will accomplish the mission. 
These two original contributions, combined with an existing 
method for the design by optimization of control software for  
robot swarms1, enable a fully integrated process that starts 
with the specification of a mission to be accomplished and 
terminates with the deployment of the robots in the target  
environment.

In swarm robotics, a large number of robots perform a  
mission that can not be accomplished by a single robot2,3. The 
collective behavior of the robot swarm is obtained through 
individual robots collaboration and cooperation. Hence, the  
collective behavior of a robot swarm is a result of the local inter-
actions between the individual robot and its neighbors and its  
environment4. In the general case, the complex nature of these 
interactions are virtually impossible to trace to the behaviour 
of the individual robots, which creates a gap between the col-
lective behaviour that one wishes to obtain and what each of  
the individual robots should do. Bridging this gap is one of the 
main challenges in swarm robotics and the lack of a general meth-
odology to bridging this gap influences how control software  
for robot swarms is designed and realized.

So far, robot swarms have been mostly designed manually:  
an individual-level behavior is iteratively improved and 
tested until a desired collective behavior is obtained. This 
non-systematic approach is neither reliable, nor consistent.  
The quality of the resulting solution strongly depends on  
the experience and intuition of the designer. To avoid, or at 
least reduce, the uncertainty induced by the crucial role of  
the human designer, automatic and semi-automatic design  
approaches have been proposed5–8.

Although a number of automatic approaches have been  
proposed in the software and system engineering literature9, they 
have not been investigated in the context of swarm robotics. This 
is because these approaches, which focus on decoupling and 
automatizing the different phases of the robot life-cycle, appear 

to be inappropriate in swarm robotics. Indeed, they model the  
system to be realized at a level of abstraction that is too 
high and neglects the complex robot-robot and robot- 
environment interactions that characterize the operation of a  
robot swarm. For example, these approaches assume that it is 
possible to establish a mapping between high-level collective  
goals of the swarm and low-level individual behaviors of the 
robots comprised therein10–12. Unfortunately, the swarm robotics 
praxis indicates that making such a mapping explicit is not  
generally possible2,3.

For this reason, the most promising approaches that have been  
proposed so far for the automatic design of robot swarms are in 
the area of design by optimization13. In design by optimization,  
the design problem is re-formulated into an optimization  
problem: an optimization algorithm searches a space of candi-
date solutions to maximize an objective function. In the context 
of the application of design by optimization to swarm robotics, a  
candidate solution is an instance of control software and the 
objective function is a mission-dependent metric that measures 
the performance of the swarm on the given mission3. Depending  
on whether the design phase happens before or after the deploy-
ment of the software on the robots, we can distinguish between 
two classes of design methods14: off-line and on-line. In  
this work, we focus on off-line automatic design15, although 
the proposed ideas could be adapted to on-line design as well. 
Within an off-line design process, the performance of candidate  
designs are assessed by an optimization algorithm typically via 
computer-based simulations. After the optimization algorithm 
terminates, the selected design is deployed to the individual  
robots and the swarm is placed in its target environment.

In this paper, we present a first instance of a fully automatic 
and integrated process for the design of collective behaviors 
for robot swarms. The novel contribution that enables this inte-
grated process is the definition of a formal and systematic 
approach to the specification of missions to be accomplished 
by a robot swarm. This approach is rooted in model-driven  
engineering16: a research direction in software engineering that 
aims at simplifying the design, implementation, and realization 
of complex software systems by shifting the designer’s attention 
from code to models. Recently, model-driven engineering has 
been often used in the design of robot systems as it dispenses the 
designer from reasoning on complex robot behaviours at the code 
level, which is cumbersome and undesirable17. Indeed, in model-
driven engineering, models are expressed at an appropriately 
high level of abstraction using domain-specific languages with 
concepts that are close to the problem domain and not directly  
bound to the robotic platform at hand. This makes the realiza-
tion of complex systems manageable as models are easier than 
code to specify, understand, and maintain18. Specifically, in 
this paper we present and demonstrate an integrated automatic 
design process for robot swarms that, starting from require-
ments specified in a textual language, generates code and  
deploy it on real robots. We introduce a language that we call 
swarm mission language (SML) which allows one to specify 
missions to be accomplished by a robot swarm. In the paper, 
we present a first implementation of SML that supports the 
specification of missions in which rewards and penalties can be 
expressed with reference to regions: that is, rewards and penal-
ties are computed according to whether robots (and/or relevant  

          Amendments from Version 1
The new version is a minor revision which includes 
typographic corrections and clarifications based on 
reviewers’ comments:
- rephrasing and clarification of certain concepts;
- updating the Listings and Figures that demonstrate the 
Swarm Mission Language (SML) syntax for better readability;
- extending the Conclusions by adding new research 
directions as future work.
Any further responses from the reviewers can be found at 
the end of the article
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objects) are in a particular part of the environment at specific 
moments in time. Many of the most studied swarm robotics  
missions like aggregation, foraging and collective exploration 
can be modeled through the concept of a region. Furthermore, 
we develop an engine that translates a range of missions specified 
in SML into all the resources needed to launch Chocolate1, a  
state-of-the-art automatic method for the off-line design of robot 
swarms19 that, using simulation performed by ARGoS320, pro-
duces control software that can be directly ported to e-puck  
robots21. To demonstrate SML and the integrated automatic  
design process, we specify three missions and we automatically 
generate the control software that allows a swarm of e-puck  
robots to accomplish them.

2 Related work
2.1 Automatic off-line design of robot swarms
In swarm robotics, neuro-evolutionary robotics22,23 is the most 
studied automatic design approach. In neuro-evolutionary 
swarm robotics6, each individual robot control software is 
a neural network. The parameters of the neural network are 
obtained via an evolutionary algorithm that optimizes a mission- 
specific objective function taking sensor readings as an input  
and returning actuation commands as an output. A large litera-
ture shows that neuro-evolutionary robotics is able to produce 
robot swarms that can perform well in a variety of missions4,24. 
However, the neuro-evolutionary approach does not appear to 
be able to scale in complexity for realistic robot swarm applica-
tions. One of the main causes is the difficulty to overcome the  
so called reality gap4. The reality gap is the discrepancy between 
reality and the simulation models used in the design process25. 
Because of the reality gap, the performance of control soft-
ware developed in simulation typically drops when the control  
software is ported to the real robots. It has been argued that 
this drop in performance is the result of a sort of overfitting of  
the obtained solution to the particular conditions encountered  
during the design process25–27.

AutoMoDe7,28 is an alternative approach that deviates from tra-
ditional neuro-evolutionary robotics. It aims to address one 
of the main concerns in neuro-evolutionary robotics and that 
is the reality gap due to the excessive representation power 
of neural networks. Inspired by the notion of bias-variance  
tradeoff29, AutoMoDe produces control software with restricted 
representational power. It does so by selecting, combining, 
and fine-tuning a set of predefined modules. AutoMoDe is a  
general, abstract framework. To define a design method that can 
be used to design control software, AutoMoDe must be spe-
cialized to the specific platform at hand, as formally described  
by a reference model. Also, a number of elements need to be 
defined, including the optimization algorithm to be adopted, 
the modules that will be used by the optimization algo-
rithm, and the architecture into which the predefined modules  
should be combined. Up to now, AutoMoDe has been special-
ized for a specific version of the e-puck robot; the optimiza-
tion algorithms that have been adopted are F-Race30,31, Iterated 
F-Race32, and simulation annealing33; and the architecture in 
which modules have been combined are probabilistic finite-state  
machines1,34 and behaviour trees35. Chocolate is a state of 
the art automatic design method from the AutoMoDe family  
that achieves significantly better results in crossing the reality  
gap than neuro-evolutionary approaches1. It uses Iterated  

F-Race as an optimization algorithm and probabilistic  
finite-state machines as a control architecture.

An aspect that is rarely discussed in the literature is the 
specification of the mission for which the automatic design 
method must generate control software3. Designers of robot  
swarms do not follow any standardized processes or use any 
tool that precisely defines the mission to be accomplished. For 
example, the aforementioned ARGoS simulator enables speci-
fying missions through a combination of XML files and loop 
functions defined in C++20. It provides a great deal of flexibility 
for designers to design missions the way they prefer. Designers 
can incorporate a rich variety of elements related to the opera-
tional context or the characteristics of the robots. However, it 
is a tedious process to manually specify all elements of a mis-
sion to be performed by a robot swarm without following any  
predefined process. This might create situations where design-
ers use environmental elements that are important to obtain 
a desired collective behaviour for one application scenario,  
while omitting the same elements if they impede the desired 
collective behaviour. This ad-hoc mission specification proc-
ess might create confusion between designers that are working 
on a same set of missions. Moreover, if requirements are not 
defined explicitly, it is impossible to check the consistency  
of mission models. It is also impossible to tell whether a robot 
swarm eventually performs the mission successfully or not. 
To simplify the communication between designers and to 
check for possible inconsistencies, all these aspects must be  
formally defined and automatized.

2.2 System and software engineering for robotics
System and software engineers have made their contribution 
to robotics by providing tools and standardized methodolo-
gies for the specification and the definition of robot systems36.  
In system and software engineering, researchers have addressed 
a variety of emerging challenges in the design and develop-
ment of complex systems by providing generic solutions, 
often disregarding their specific nature. One of the main  
challenges is collecting requirements37. To simplify the require-
ments’ elicitation for complex system, researchers have focused 
on defining standard processes and methods that can be fully or  
partially automatized.

In requirements engineering, there is a basic assumption that 
underlines most of the approaches: if all requirements are 
known, it is always possible to decompose any high-level goal 
into a sequence of operations that allow the system to attain it. 
For example, goal orientation38 is a widely recognized process 
for eliciting, modeling, specifying and analyzing system require-
ments. Goals are statements of intent organized in AND/OR  
structures that can range from high-level strategic concerns to 
low-level technical requirements and assumptions on the system 
and the environment where it operates. It is generally accepted 
that robotic systems are too complex for engineers to obtain 
complete requirements on the system and the environment37.  
Hence, it is typically assumed that robotic systems are highly 
uncertain due to incomplete requirements. However, this is not 
a valid assumption to be made in swarm robotics. The uncer-
tainty of a robot swarm is not only the result of incomplete 
requirements, but it mostly emerges from the complex inter-
actions between the robots and between the robots and the  
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environment. This means that the gap between the high-level  
swarm goals and the low-level robot behaviours is inevitable.

In a number of works10–12, system and software engineers have 
synthesized low-level robot behaviours from high-level mission 
descriptions. For example, FLYAQ11 is a tool that allows defining 
missions for teams of multi-copters. Starting from a high-level 
description of the mission, FLYAQ automatically generates a  
detailed flight plan for a team of autonomous multicopters that 
can perform the specified mission, while preventing collisions 
between multicopters and obstacles. FLYAQ was developed 
based on model-driven engineering principles. It uses a family 
of domain-specific languages for specifying civilian missions for  
multi-robot systems10. Each language focuses on a certain  
aspect of the system:

•   �Monitoring modeling language: a language that enables 
the specification of the mission goals complemented 
by the definition of the context in which the mission  
will be realized.

•   �Robot language (RL): a language to specify the type and 
the configuration of the robots that will be in charge of  
realizing the specified mission.

•   �Behaviour language (BL): a language that specifies  
robot atomic movements and actions.

However, FLYAQ cannot be used in swarm robotics because 
the nature of robot swarms does not support the synthesis 
of the individual robot behaviour from the collective swarm  
behaviour.

To the best of our knowledge, requirements specification for 
swarm robotics has not been properly addressed as a research 
question. The highest level of abstraction that has been exten-
sively discussed in swarm robotics is the development process.  
A work in this direction is Buzz, a scripting language for pro-
gramming heterogeneous robot swarms39,40. The language  
offers primitives to define swarm behaviors, both in a bot-
tom-up and in a top-down fashion. The formal specification of  
requirements for robot swarms was partially discussed by  
Brambilla et al.41 in a work devoted to a top-down design 
approach based on prescriptive modeling and model  
checking. The approach of Brambilla et al. consists of four  
phases to specify, design, realize, and validate a robot swarm.  
In the first phase, the developer specifies the requirements  
using temporal logic. However, the approach does not provide 
a precise process definitionof requirements specification but  
rather a set of examples on how designers can use probabilistic 
computation tree logic to specify swarm-level requirements.

We believe that model-driven engineering can provide  
support in gathering explicit and clear requirements for robot 
swarms. Model-driven engineering has been explored in the 
design of complex systems being an essential factor in reduc-
ing costs and development time. It has been successfully used  
in various domains including avionics, automotive, and  
telecommunications16. For example, domain-specific mod-
elling (DSM)42 is a powerful methodology in model-driven  
engineering, which enables users to model systems using  
concepts close to the problem definition.

3 Integrated automatic design process for robot 
swarms
We present here the main phases and key activities to design 
control software for a robot swarm in a systematic way  
(Figure 1). In an automatic off-line design process, we identify 
three phases: requirements specification, design by optimization, 
and deployment of the control software on the robots.

In requirements specification, the designer identifies and 
declares all the characteristics of the robot swarm, the target 
environment in which it will operate, the mission that it 
should accomplish, the objective that it should fulfil, the pos-
sible constraints, etc. In the current state of the art, no standard  
process has been defined for collecting requirements. Typi-
cally, designers specify missions informally and in an ad-hoc 
manner, which makes specifications vague and eventually 
hinders a final verification of whether the swarm developed  
satisfies the requirements or not43. Starting from the require-
ments, the designer defines an objective function to be then 
optimized in the second phase. As requirements are specified  
informally, this step must be performed manually and is  
discretionary, non-repeatable, and error prone. In the second 
phase, design by optimization, the control software of the indi-
vidual robots comprised in the swarm is produced by an auto-
matic design method14,15. An automatic design method is defined 
through: (i) a reference model of the robotic platform for which 
it can design control software; (ii) an optimization algorithm;  
and (iii) the space of control software it can possibly  
produce. The reference model is an abstraction of the robotic  
platform that specifies in formal terms the characteristics and 
capabilities of the robots; the optimization algorithm is the  
algorithm that drives the optimization process; and the space of 
the control software that can be produced is typically expressed 
by a parametric architecture and by the set of the possible  
values of its parameters.

The last phase is the deployment on the robots. It consists 
of all the activities related to the transfer of the control soft-
ware produced to the robots in the target environment. Some 

Figure 1. Automatic off-line design of robot swarms.
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tools exist that are able to generate code that can be directly 
ported to the robots. For example, ARGoS20, a multi-engine  
simulator for robot swarms, can currently generate code for a 
number of platforms including marXbot44, e-puck21, Thymio45, 
Kilobot46, and Khepera IV47. Due to its modular nature, ARGoS 
can be extended to generate code for a variety of robotic  
platforms.

3.1 Requirements specification for robot swarms
We present an approach that enables experts (control soft-
ware designers) and non-expert users (non-technical end 
users) to specify requirements for robot swarms in a standard  
and consistent way. Figure 2 depicts the workflow of the auto-
matic design process. The novelty of our approach is the require-
ments specification phase, outlined by the dash-dotted line  
in Figure 2.

The user has an informal picture of what the robot swarm  
should do and of the environment in which it should operate.  
From these informal requirements, a formal model of the  
mission goals and the target environment should be defined. 
We developed swarm mission language (SML) to allow users 
to specify requirements. The output of this phase is an objective 
function that will be subsequently optimized by the optimization  
process, and a model of the target environment to be used in 
the simulations performed within the automatic design proc-
ess. The model of the target environment is specific to the 
automatic design method and the tools used. In our work, 
we used model-to-model transformation techniques to trans-
late the missions specified in SML into configuration files for  
Chocolate.

3.2 Design by optimization
In the subsequent automatic design phase, we use Chocolate 
with a design budget of 200K simulation runs as an auto-
matic design method to generate control software for the 
robot swarm. Chocolate operates on a set of six low-level 
behaviors and six conditions1. In this context, a low-level  
behavior defines how the robot operates its actuators in response 
to the readings of its sensors. On the other hand, a condition is 
an event that the robot perceives via its sensors and that deter-
mines whether the robot should transition from one behavior 
to another. Conditions contribute to determine which behavior  
is executed at any moment in time.

The low-level behaviors on which Chocolate operates are the 
following.

  Exploration: the robot moves straight forward, if the front of 
the robot is clear of obstacles. If an obstacle is perceived via the 
front proximity sensors, the robot turns in-place for a random  
number of control cycles drawn in {0, ..., τ}, where τ is an integer 
parameter ∈ {0, ..., 100}.

  Stop: the robot stops its movement.

  Phototaxis: the robot moves towards a light source. The 
robot moves forward while avoiding obstacles, if it does not  
perceive any light source.

  Anti-phototaxis: the robot moves away from a light source. 
The robot moves forward while avoiding obstacles, if no light  
source is perceived.

Figure 2. Integrated automatic design process for robot swarms.
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  Attraction: the robot moves towards its neighboring peers, 
following αV

d
, where α ∈ [1, 5] controls the speed of conver-

gence towards the peers. The robot moves straight forward  
while avoiding obstacles, if it does not perceive any peer.

  Repulsion: the robot moves away from its neighboring 
peers, following –αV

d
, where α ∈ [1, 5] controls the speed of  

divergence. The robot moves straight forward while avoiding  
obstacles, if it does not perceive any peer in its neighborhood.

The conditions under which a robot switches from a behavior to 
another are the following.

  Black-floor: true with probability β, if the ground situated below 
the robot is perceived as black.

  Gray-floor: true with probability β, if the ground situated below 
the robot is perceived as gray.

  White-floor: true with probability β, if the ground situated below 
the robot is perceived as white.

  Neighbor-count: true with probability z (n) = (1 + eη(ξ−n))–1, 
where n is number of detected peers. The parameters η ∈ [0, 
20] and ξ ∈ {0, ..., 10} control the steepness and the inflection  
point of the function, respectively.

  Inverted-neighbor-count: true with probability 1−z (n).

  Fixed-probability: true with probability β.

For more details on the low-level behaviours and condi-
tions of Chocolate, we refer the reader to their original  
description7.

4 An approach to specifying swarm missions
In this section, we present an approach to specifying swarm 
missions. To be able to specify missions, we need to under-
stand the nature of the requirements in swarm robotics. First, 
we discuss a classification framework for swarm missions,  
then we develop a metamodel that defines the semantics of the 
Swarm Modeling Language (SML).

4.1 Classification framework for swarm missions
A classification framework of the main missions studied 
in the literature has already been proposed4. Missions have 
been classified in different categories: spatially organizing  
missions, navigation missions, collective decision-making, and  
other swarm missions.

Spatially organizing missions focuses on organizing and  
distributing robots and objects in the environment. This category  
consists of missions like aggregation (robots group in a  
region of the environment), pattern formation (robots position 
themselves on a regular lattice), chain formation (robots position  
themselves so as to connect two points in the environment), 

self-assembly and morphogenesis (robots physically connect  
to each other following a particular pattern), and object 
clustering and assembling (robots position objects in the  
environment).

Navigation missions focus on coordinating the movements 
of a swarm of robots. The following missions are part of this 
category: collective exploration (robots explore an unknown 
environment), coordinated motion, also known as flocking  
(robots move in formation similarly to schools of fish or flocks 
of birds), collective transport (robots cooperate to transport an 
object).

Collective decision-making is a set of missions where the 
focus is on how robots influence each other when making 
choices. Here, we can find missions like consensus achievement  
(robots reach a consensus on one choice among different  
alternatives) and task allocation (robots dynamically choose 
the task to execute in order to maximize performance). The last  
category is for missions that are outside the scope of the previous 
classes. Here, we can find missions like collective fault detection  
(robots autonomously detect failures and faulty behaviors) 
and human-swarm interaction. This classification framework 
is interesting to understand the different types of collective 
behaviours robots can perform. However, one important  
aspect that has not been discussed in this framework is how do 
we tell whether the swarm accomplishes its mission and how we 
quantify the degree to which it is successful. In this work, we 
classify missions in terms of the objective function that describes 
them. That being said, we propose a different classification  
framework based on a measure of success for the mission.  
In many of the missions mentioned above, the typical way to 
measure success is through the concept of a region. Rewards 
and penalties can be naturally given according to whether 
robots (and/or relevant objects) are in a specific region at a  
certain moment in time, or not.

4.2 SML metamodel
In this section, we describe the SML metamodel on which we 
base the Swarm Mission Language. In Figure 3, Figure 4, and 
Figure 5, we present the concepts used to design the language. 
The proposed abstractions are tailored to the literature in swarm  
robotics, as discussed in the previous section. With them, 
we intend to provide a way to define missions in a standard  
and consistent way. We formally define a mission as follows.

Definition 4.1 (Mission). A mission is a triplet M = (E, S, O)  
where:

•   �E is the environment where the mission is performed;

•   �S is the robot swarm that should perform it;

•   �O is the objective function to be optimized.

The SML metamodel provides modeling constructs that  
enable the specification of the three aspects: the environment, the  
robot swarm and the objective function.
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Figure 3. Constructs to specify the environment.

Figure 4. Constructs to specify the overall robot swarm, individual robot behaviour, and the mission class.
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The environment where the mission is performed is defined 
through the Environment construct. It consists of an Arena that 
gives the context of the mission. The EnvironmentElement is  
an abstract metaclass that can be implemented through the 
classes of the various elements placed in the environment. The 
number and type of elements that can be used across missions 
might vary. The central concept in SML is the one of Region.  
The Region is an abstract class that can be instantiated as a spe-
cific geometric shape referring to coordinates in the environment.  
All environment constructs can be found in Figure 3.

The Swarm is a construct that is developed to specify the number 
and type of robots performing the mission, their initial posi-
tion, and the set of low-level behaviours they can perform. The 
Robot construct represents a specific instance of the reference  
model of a robot.

Definition 4.2 (Reference Model). A reference model of a  
robot is a tuple R = (T, A, P, V, Z ) where:

•   �T is a set of actuators and sensors;

•   �A is a set of attributes;

•   �P : T →A is an assignment function that maps  
sensors/actuators T to the corresponding attributes A;

•   �V is a set of values that can be given to the attributes;

•   �Z : A →V is an assignment function for the attributes.

An example of a reference model is shown in Table 1.

The Behaviour is an abstract class that represents a low-level 
action that an individual robot can perform. A behaviour can 
be instantiated on a different level of abstraction and can be 
modular, as in our implementation. The modular structure of 
the Behavior construct of the language allows composition of 
atomic sub-behaviors into complex behaviours. For example, in  
Chocolate1 we implemented an Obstacle Avoidance behav-
ior as a sub-behaviour into five low-level behaviors. Behav-
ior is associated with the concept of MissionClass, an abstract 
class that presents a set of missions. The association between 
the behavior and mission class relates to the correspond-
ing mapping that defines which behaviors are suitable for a  
specific mission class to be performed. The MissionClass is 
a construct that provides a template for a set of missions that 
share similar behavior patterns. In this work, all implemented 
behaviors were used to create a swarm controller for each  
instantiated mission class. We instantiated three mission classes:  
aggregation, foraging and migration.

Figure 5. Constructs to specify the assessment of the mission objectives.
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The third aspect of the language is the representation of the 
objective function that is used to measure the success of the mis-
sion execution (Figure 5). The ObjectiveFunction is a construct 
that consists of a set of Indicators. An Indicator is an abstract 
class that represents the smallest measurable unit of performance  
in a mission. It can take one of the two forms:

•   �Atomic Indicator: a construct that represents the  
smallest measurable unit of performance for an individual 
robot;

•   �Compound Indicator: a construct that represents the 
smallest measurable unit of performance for a set of  
robots.

The idea of the indicator is taken from Dwyer et al.49 and Autili 
et al.50. Indicators are defined as a pattern in a scope—i.e., each  
indicator is represented through two constructs:

•   �Pattern: a construct used to measure the degree of  
success in a mission;

•   �Scope: a timeframe within the duration of the mission  
during which the pattern is quantified.

We identify the following scopes: GLOBALLY, AFTER the 
occurrence of an event, BEFORE the occurrence of an event, 
BETWEEN the occurrence of two events, or AFTER the occurrence  
of one event, and UNTIL the occurrence of an another one 
(AFTER UNTIL). Atomic Event is an abstract class that specifies  
the possible events that can happen during a mission. In our  
work, we identified four abstract events:

•   �Color Change: an event that is triggered when there is a 
color change in the mission entities;

•   �Entity at Region: an event that is triggered when a set 
of entities are in a specific region (e.g., robots stay in a  
certain region);

•   �Collision: an event that is triggered when two entities in 
the mission collide. For example, it might be a colli-
sion between two robots, a collision between a robot and 

an obstacle, a collision between a robot and a wall in  
the arena etc.;

•   �Global Tick: an event that is triggered at every step of  
the mission execution.

As mentioned before, patterns are mission-agnostic concepts 
that are used to quantify the success of a mission. We identify 
a set of patterns that quantifies the appearance of a specific  
mission concept during execution. In the following, we describe  
three patterns of SML:

•   �Absence: a pattern that quantifies the absence of an  
event—e.g., a robot is not in a specific region, a robot  
does not perceive light, etc.;

•   �Existence: a pattern that quantifies the existence of 
an event—e.g., a robot is in a specific region, a robot  
broadcasts a message, etc.;

•   �Universality: a pattern that quantifies the universality of  
an event—something that should always occur.

•   �Transition: a pattern that quantifies the transition between 
two events—e.g., a robot moves from one region to  
another.

Bounded existence is a sub-pattern of an existence which quanti-
fies the existence of an event only in certain bounds (something  
should occur at most n times).

These constructs are abstract and need to be instantiated to be 
realized in SML. More details about the instantiation of these  
constructs is given in Section 5.

5 Implementation of SML as a textual domain 
specific language (DSL)
The SML Language conforms to the SML metamodel dis-
cussed in Section 4.2. We implemented SML as a textual domain 
specific language (DSL) to enable non-technical end users  

Table 1. Reference model RM 1.148. Sensors and actuators of the 
extended version of the e-puck robot.

sensor/actuator variables values

proximity proxi, with i ∈ {0, ..., 7} [0, 1]

light lighti, with i ∈ {0, ..., 7} [0, 1]

ground groundi, with i ∈ {0, ..., 2} {black, gray, white}

range-and-bearing n {0, ..., 19}

Vd ([0, 0.7]m,[0, 2π] radian)

wheels νl ,νr [–0.12, 0.12]ms–1
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(users that do not necessarily have technical knowledge in  
swarm robotics) and swarm designers to specify missions  
using structured English grammar. The development of SML is 
based on the following concepts:

•   �Extensibility:Control software designers should be able  
to add new constructs for new classes of missions. 
One of the most important goals in the development  
of SML was to provide an easy way for designers to 
add new language constructs. This enables reusability 
of the language across projects, missions, and research  
groups.

•   �Variability: Control software designers should be able 
to define missions in a variety of ways. Variability 
plays an important role in the definition of swarm mis-
sions. There are many examples in the swarm robotics 
literature where the position of the robots and of other  
objects in the environment is defined in a probabil-
istic way. There are many other examples where the  
position of the objects is provided in a deterministic way.  
Providing a rich interface using variability points was the  
second most important goal in the design of SML.

•   �Usability: Non-technical end users (users that do not nec-
essarily have technical knowledge in swarm robotics)  
should be able to specify missions.

•   �Generality: Control software designers should be able 
to specify classes of missions that are non-trivial. Hav-
ing constructs that are generic and independent from the 
functional behaviour of the robots is extremely relevant  
for managing the complexity of the missions to be  
performed.

5.1 SML syntax
To implement the language we used Xtext51. Xtext is a frame-
work for developing domain-specific languages. It provides 

a full infrastructure, including parser, linker, typechecker, 
and compiler. The current implementation of SML is focused 
on realizing abstract concepts through a set of elements that  
are necessary to define a mission. We will extend the set of these 
elements in a future work, which will increase the application 
domain of SML. It is important to note that the current imple-
mentation of SML in Xtext includes variable name resolution, 
parse error visualisation, and syntax highlighting. A screenshot  
of the SML editor is shown in Figure 6.

Snippet code of the grammar that enables mission description  
and swarm configuration is presented in Listing 1. In the imple-
mentation, the model of the language is realised through 
three high level concepts: Environment specification, Swarm  
configuration, and Mission objective specification. The current 
implementation of the language supports three different types  
of mission: aggregation, foraging, and migration. In aggrega-
tion, the robot swarm must group (Figure 8). In foraging, the 
swarm must collect items from the environment and brings  
them to the nest (Figure 9); while in migration, the swarm must 
move from one initial location to another one (Figure 10). The 
current implementation of the language is extensible in the  
following directions: (i) it allows new classes of missions to 
be defined through the Task construct and (ii) it allows new 
types of robots to be defined through the Robot construct. 
The current implementation includes support for e-puck21  
and s-bot52. Each of these robots has different sensors and  
actuators with different attributes and values.

Snippet code of the grammar that enables the specification 
of mission objectives is presented in Listing 2. In the current 
implementation of the language, Occurence is the only pattern 
that we used to quantify the success of the mission. Through 
this pattern, we can specify a variety of missions that are non-
trivial. We satisfy one of the main aspects of our language  
mentioned in Section 5—generality. Patterns enable gener-
ality by separating the concepts on how the success of the  

Figure 6. Screenshot of the Swarm Mission Language (SML) editor in Xtext.
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Listing 1. Language grammar for defining the mission and the swarm configuration.

Listing 2. Language grammar for defining mission objectives.
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mission is measured from the functional behavior of the 
robots. As we identify additional patterns in robot swarm mis-
sions, we plan to add them as additional constructs in SML. 
SML is highly extensible, which allows new pattern constructs  
to be added at a later stage of the development.

Patterns need to be instantiated. Occurence is instantiated 
through the concepts of Reward and Penalty. Condition is another  
construct that plays an important role in the definition of the 
language. We use it to determine the situations under which a 
score is assigned to the swarm that executes the mission. This  
construct can be extended by identifying other situations that 
are relevant in swarm robotics. In the current implementation, a 
score is assigned only through the concept of a region: whether  
a robot, a set of robots, or objects are in a particular part of the 
environment.

Snippet code of the grammar that enables the specifica-
tion of the environment elements is presented in Listing 3. 
We implemented a set of environmental elements that can be 
directly used in missions. At the moment of writing, we have  

implemented four environmental elements: Wall, Light Source, 
Floor Patch and Obstacle. Each of these elements has been  
defined through different attributes. The extensibility of SML 
allows designers to easily add new environmental constructs  
if they need them.

To demonstrate the variability of SML, we defined a set of  
variability points for the different constructs in SML. These  
variability points allow designers to formulate mission concepts 
in a variety of ways. For example, the position of robots, objects, 
and obstacles in the environment can be specified either in a  
deterministic or a stochastic way. In Figure 6, we present a simple 
mission specification. An obstacle is defined in a deterministic  
way with the following statement:

The arena contains the following elements:
An obstacle as a Circle obs with center at point 0.3, 0.5 and  
radius 0.7 m.

An example of obstacle description in a stochastic way is  
presented through the following statement:

Listing 3. Language grammar for defining the environment.
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The arena contains the following elements:

A Circle c1 with center at point 0.5, 0.5 and radius 0.8 m.

There are 4 obstacles distributed with a Gaussian distribution in 
c1.

This aspect of the language provides a rich platform for the 
definition of the various elements in the environment. Region 
is the basic language construct we use to define the various  
elements. In the current implementation of SML, we have three  
variability points on how we specify regions:

•   �through one reference point and set of dimensions  
(Definition1: Figure 9);

•   �only through a set of reference points (Definition2:  
Figure 9);

•   �through the global coordinate system (Definition3:  
Figure 9).

We made the assumption that a global coordinate system exists 
and its origin is positioned in the center of the arena. This 
coordinate system is only used to specify the position of ele-
ments in the environment. It is important to note that robots 
are unable to utilize this coordinate system to position them-
selves or place objects in the arena because usage of a global  
coordinate system to create a certain robot behaviour goes  
against the main principles of swarm robotics.

5.2 Model-to-model transformation from SML to ARGoS 
XML files
ARGoS is a multi-engine simulator for swarm robotics. 
ARGoS has two main components that need to be defined in 
order to specify a mission: the XML configuration file and the  
so-called loop functions. Using the ARGoS XML file, users can 
specify the simulated space. ARGoS provides a way to specify  
several entity types. Each entity type stores information about a  
specific aspect of the simulation. It includes the position and 
the orientation of each object in the environment such as obsta-
cles, light sources, boxes, and robots. The file is highly custom-
izable and extendable—new entity types can be easily added 

and new features of the entities can be easily adapted and  
adjusted.

The loop functions are user-defined functions that are exe-
cuted in strategic points of the simulation loop. Developers 
can customize the initialization and the end of an experiment, 
and add custom functions to be executed before and/or after 
each simulation step. Loop functions allow one to access and  
modify the entire state of the simulation. In particular, loop 
functions are a convenient way for computing relevant  
performance metrics used to measure the success of a mission.

Using model-to-model transformation techniques from the mis-
sion specification defined in SML, we automatically generate 
the XML file that is used by ARGoS to describe the simulation  
space and the loop functions that are used by ARGoS to run  
experiments. The mission models that are used by ARGoS  
are represented in Figure 7.

The Simulated Environment and the Controller are speci-
fied in the .xml file. A fragment of the generated XML  
configuration file is shown in Listing 4. It consists of five parts: 
experiment configuration details, definition of loop functions,  
specification of controllers, specification of the environment 
(the arena) and e-puck specification and distribution in the  
environment.

The loop functions are defined in a C++ file. We describe the 
main loop functions that are generated from the SML speci-
fication (fragment of the generated C++ file is shown in  
Listing 5). Init is a function that is used to instantiate 
all mission elements. We use it to create all mission enti-
ties, including the robots and the environment elements.  
PostStep is a function that is executed after each simula-
tion steps. In this function, we iterate through the robot swarms 
and perform calculations, based on the definition of the  
objective function. In our scenarios, we used the concepts of  
reward and penalty to increase or decrease the value of the  
variable score which is an information on how well the robot 
swarm is performing the mission. GetSwarmPosition() 

Figure 7. ARGoS architectural model.
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Listing 4. A fragment of the generated XML configuration file for Aggregation.

is a function that defines the region where the robots are placed 
at the start of the mission. Here, we position each of the robots 
in the environment using some of the preexisting algorithms for  
placement. We only specify the boundaries of the region that 
is used for initial placement. Reset() is a function that is 

used by Chocolate to reset all variables before initializing  
a new run. PostExperiment() is a function that is executed 
after the mission is over. In our case, this function reports only the 
value of the ObjectiveFunction. GetObjectiveFunction()  
is a function that is used to return the score of an experimental 

Page 15 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023



Listing 5. A fragment of the generated C++ file.
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run for a mission. If the score is high, Chocolate considers  
that the robot swarm performs the mission well.

5.3 Validation of the SML implementation
The internal consistency of SML is critical for a fully  
integrated design process. To validate the internal consistency  
of the language we followed these steps:

1.   �Instantiate a mission that contains all language  
constructs. We created an instance of a mission that 
contains (almost) all language constructs. Furthermore, 
we specified smaller instances that instantiate the ele-
ments that could not be included in a single large instance  
due to exclusion constraints in the language.

2.   �Validate the language in Xtext. We created a set of 
validation rules that each mission instance should com-
ply to. First, we created validation rules that ensure 
the structure of the mission instance. Each instance of 
a mission specification must contain a specification of  
the arena, specification of the environment, specifica-
tion of the robot swarm and the objective that is meas-
ured. If any of these elements are missing, an error to 
the user is reported. Second, each physical element must  
be fully specified in terms of its location. The robot  
swarm, obstacles, lights, patches and all other environ-
ment elements must be located in a region of the arena. 
Third, all environment elements in the environment must 
be unambiguously specified in terms of their dimen-
sions. As SML supports different type of specification 
variations (through a set of vertices, through side size,  
through a combination of a side size and a size of a 
diagonal), we created rules that verify that each specifi-
cation is unambiguous representation of a physical ele-
ment i.e. does not have any missing information (e.g., a 
designer that specifies a circle with a radius, must also 
specify the center of the circle, otherwise the information is  
incomplete.) These rules help the designer to dou-
ble check semantic inconsistencies between different  
environmental elements.

3.   �Check consistency of the generated model files. 
To validate the consistency of the generated files, we  
performed the following analysis:

•   �XML configuration consistency: For each system 
specification, we loaded the generated configura-
tion file in ARGoS to confirm their internal consist-
ency. Each configuration was successfully loaded 
by ARGoS. If there is an error in the configuration  
file, ARGoS is not able to load the file or if it loads it, 
some elements in the visualization will be missing.

•   �Use the Chocolate design process to check for 
coherence and consistency of the loop functions. For 
each generated loop function file, we run Choco-
late to confirm the validity. Chocolate is not 
able to run if the XML configuration is not properly 
specified or if the required functions Init(), PostStep(),  
GetSwarmPosition(), PostExperiment() are not 

instantiated (Figure 7). If the loop functions  
contain a syntactical error, Chocolate throws an  
exception.

6 Demonstration
Setup
To demonstrate the generality of SML, we present three  
different missions for which code was automatically gener-
ated and ported to real robots (see Underlying data53). In the 
demonstration, we use e-puck robots21 equipped with several 
extension boards54, including the range-and-bearing board55. 
We specify three missions in the SML editor. When we save a 
mission specification in the editor, the code generation proc-
ess starts and generates an ARGoS .xml file and a .cpp file that 
contains the loop-functions that measure the performances of the 
swarm on the mission at hand. These files are used as artifacts for  
Chocolate1. Chocolate generates control software for  
the reference model of the e-puck reported in Table 148.

Results
The following examples demonstrate the applicability of 
SML. For each of the three missions, Chocolate is executed  
10 times to obtain 10 instances of control software. Each design  
process relies on a maximum of 200000 simulated runs. The  
simulator adopted in the study is ARGoS3, beta 48. We evalu-
ated each instance of control software obtained by Chocolate  
in simulation. The best one was chosen and evaluated on real  
robots, as well.

In Listing 6, we specify Aggregation on one spot. First, we iden-
tify the shape of the arena, which is a Hexagon with sides of  
1 m. Then, we declare various environmental elements and 
their location in a global coordinate system with an origin at the 
center of the arena. In this context, at line 4, we specify a circular  
black patch placed in the center of the arena with radius of  
25 cm. At line 5, we specify the number and type of robots 
that will be used in the mission. We use 15 e-pucks distrib-
uted across the whole arena. At line 6, we define the details 
of the mission. Here, we explicitly state the mission goal and 
connect it to environmental elements. In this mission, the 
robots must aggregate on the black patch c1. At line 7, we  
specify that the mission completion time is 360 seconds.

At the end, we finish our specification with the definition of 
the objective function (line 9–10)—we state which concepts 
of the mission should be measured: we reward each robot that  
position itself on the black patch c1. Using the aforemen-
tioned mission specification, we generate the control software 
shown in Figure 8(c). The performance of the control  
software is evaluated in simulation—Figure 8(a) and on real  
robots—Figure 8(b).

In Listing 7, we specify a Foraging mission with two sources 
and one nest. The arena is a dodecagon with a side of 0.66 m 
(line 1). We declare 4 environmental elements (line 2 – 6). For 
each environmental element, we specify its position in a glo-
bal coordinate system with origin at the center of the arena. 
We declare a light source with intensity 5.0, two food sources  
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Figure 8. Aggregation on one spot.

Listing 6. Mission specification.

located on b1 and b2 and a nest w1. At line 7, we state that  
20 e-puck robots will be used in the mission. At line 8, we 
state the explicit details about the mission—connecting the  
mission goals (collect food, bring food) with their correspond-
ing environmental elements (Circle b1, Circle b2, Region 
w1). At line 9, we define that the mission completion time is 
270 seconds. At the end, we declare the specific elements of  
the objective function—we quantify when an individual robot 
arrives in one of the black patches b1 or b2 and gets back 
to its nest w1. Using the aforementioned mission specifica-
tion, we generate the control software shown in Figure 9(c).  

The performance of the control software is evaluated in  
simulation—Figure 9(a) and on real robots—Figure 9(b).

In Listing 8, we specify Migration with an obstacle. The arena 
of the this mission is a square with a side of 1.5 m (line 1). We 
declare four environmental elements (line 2 - 6). For each envi-
ronmental element, we specify its position in a global coor-
dinate system with origin at the center of the arena. We declare 
a light source with intensity 3.0, a triangular white patch  
t1—an area to which the swarm must move, a large obstacle r

0 

b in the center of the arena and initial location of the swarm  

Page 18 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023



Figure 9. Foraging.

Listing 7. Mission specification.

r t. At line 7, we state that 10 e-puck robots will be used in 
the mission. At line 8, we state the explicit details about the  
mission—connecting the mission goals (migration to an area) 
with their corresponding environmental elements (Trian-
gle t1). At line 9, we define that the mission completion time 
is 300 seconds. In the end, we declare the specific elements 
of the objective function (line 9–13): we reward the swarm 

if more than 5 robots are at the target location. Moreover,  
every time the swarm receives a reward, we add a small  
penalty for each robot outside the target area. Using the  
aforementioned mission specification, we generate the control  
software shown in Figure 10(c). The performance of the  
control software is evaluated in simulation—Figure 10(a) and  
on real robots—Figure 10(b).
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The generated code, the data collected in simulation and in real-
ity, and the videos of the behavior by the swarm of physical  
robots are available online as supplementary material53,56.

7 Conclusions
We presented a first instance of a fully automatic and inte-
grated process for the design of collective behaviors for robot 

swarms. The novel contribution in this paper is the defini-
tion of a specification language and an automatic approach 
that transforms a formal mission specification into a configura-
tion setup needed to run the design by optimization of control  
software using Chocolate. We introduced SML, a textual 
language to specify a mission that can be accomplished 
by a robot swarm. From the mission specification, we  

Figure 10. Migration with an obstacle.

Listing 8. Mission specification.
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automatically generated code and deployed it on real robots.  
We demonstrated the applicability of SML on three missions.

The current implementation of SML supports the specification 
of missions in which rewards and penalties can be expressed 
with reference to regions: depending on whether robots or  
objects are in a particular part of the environment at a given 
moment in time. Missions like aggregation, foraging and  
collective exploration can be modeled through the concept of 
a region. However, collective decision making or coordinate 
navigation missions discussed in Section 4.1 (e.g., flocking,  
consensus achievement, and task allocation) cannot be  
modeled using the current implementation of SML.

Future work will develop along three lines. First, we will work 
on the language extensibility. We plan to extend the set of  
constructs to support the specification of new classes of missions. 
We will introduce new indicators and patterns to measure  
success of new mission types. Moreover, we plan to enrich the  
language by introducing quality attributes as part of the mission 
specification. Safety, performance, and energy-efficiency are 
just a few important quality attributes that should be modeled 
as separate language constructs in the definition of missions 
for robot swarms. Introducing quality attributes in the mission  
specification process will contribute towards a better defini-
tion of mission objectives. Moreover, we will work on a formal 
language validation. After employing new constructs that 
should support new classes of missions, we plan to perform  
model validation to understand if there are constructs that are  
not covered by the current implementation of SML. We plan to  
create a mission generator and generate a set of mission instances 
that can help us to analyze the coverage of the language. This 
will help us to increase the number of mission classes that  
can be captured by the language implementation.

Second, we plan on developing our contribution towards a  
systematic methodology for designing robot swarms. We are 
focused on a full-fledged linear automatic design process as we 
were making our first steps in closing all the gaps in the fully  
automatic design process: a swarm designer is able to specify  
robot swarm requirements, but also include details about the 
design setup to be used to obtain the desired robot swarm. This 
includes information on which automatic design method use,  
how many simulation runs to perform, and information on the 
target environment. In this contribution, these details were  
manually specified as part of the automatic design method (we 
considered only Chocolate and a fixed design budget of 200K  
simulation runs). Moreover, to obtain a fully systematic inte-
grated design process, swarm designers need to be able to select 
a set of predefined individual behaviours that can be used by 
the automatic design method to generate the control software.  
In this work, six behaviours were considered and they were 
selected as part of the automatic design method. Swarm design-
ers need to be able to specify these details in the early phases 
of the design process, together with the definition of the system 
requirements. After obtaining a full-fledged linear automatic 
design process, we plan to move to an iterative design proc-
ess where there is a feedback loop between design and test-
ing before deployment of the control software in the target  
environment. 

Third, we will focus on the usability of our integrated design 
process by investigating two research directions: i) We will  
perform an extensive user study to investigate SML’s usability.  
To obtain deeper insights on how easily swarm designers can 
use SML for swarm missions, we will define a rigour proto-
col for evaluation based on objective qualitative and quanti-
tative metrics that should demonstrate the usefulness of our  
domain-specific language; ii) We will develop a graphical user 
interface for non-expert users. The aim of the graphical inter-
face is defining a process for non-expert users that is user  
friendly and less prone to input errors.

Data availability
Underlying data
Zenodo: Integrated automatic design process for robot  
swarms. https://zenodo.org/record/518472053.

This project contains the following underlying data:
•   �SML (Swarm Mission Language) related files: (i) speci-

fication files used to create missions; (ii) generated files  
to be used by an optimization method

•   �AutoMoDe related files: (i) the log files running AutoMoDe 
- an optimization method that generates control software  
for different missions; (ii) generated control software

•   �Demonstration: (i) snapshots and videos of running the  
missions on real robots

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).

Software availability
ARGoS3-AutoMoDe for the implementation of AutoMoDe- 
Chocolate

•   �Source code available from: https://github.com/demiurge-
project/ARGoS3-AutoMoDe

•   �Archived source code at time of publication: https://doi.
org/10.5281/zenodo.4849541;

•   �License: MIT license.

Demiurge-epuck-dao for the reference model of the robots  
used by the AutoMoDe design method

•   �Source code available from: https://github.com/demiurge-
project/demiurge-epuck-dao

•   �Archived source code at time of publication: https://doi.
org/10.5281/zenodo.4849535

•   �License: MIT license.

Argos3-epuck for the e-puck robot ARGoS3 plugin
•   �Source code available from: https://github.com/demiurge-

project/argos3-epuck

•   �Archived source code at time of publication: https://doi.
org/10.5281/zenodo.4882714

•   �License: MIT license.
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ARGoS3 for the ARGoS3 simulator
•   �Source code available from: https://github.com/ilpincy/

argos3

•   �Archived source code at time of publication: https://doi.
org/10.5281/zenodo.4889111

•   �License: Creative Commons Attribution 4.0 International 
license (CC-BY 4.0).

Irace for the Iterated F-race algorithm
•   �Software available from: https://cran.r-project.org/

package=irace

•   �Archived source code at time of publication: https://doi.
org/10.5281/zenodo.4888996

•   �License: Creative Commons Attribution 4.0 International 
license (CC-BY 4.0).
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This paper presents work on a textual language (‘SML’) for specification of swarm robot missions, 
and an engine to transform this SML into a form that can be used by the previously published 
‘AutoMoDe-Chocolate’ automatic controller designer. The pipeline from mission specification to 
deployment is demonstrated in three example missions. 
 
The ambitious goal to show a ‘fully integrated design process’ for swarm deployment, using off-
line optimization methods, is met with an initial proof concept. Obviously, much work remains to 
be done on showing that this approach will be successful in ‘real world’ environments, both in 
relation to mission success (relative to alternative approaches, e.g. hand-design of controllers) and 
usability for non-expert users. But it is a useful step in that direction, and the paper therefore is a 
meaningful contribution to the field. 
 
Specific points arising:

Given the focus on swarms and emergent behaviour – e.g. the Introduction “Hence, the 
collective behavior of a robot swarm is a result of the local interactions between the 
individual robot and its neighbors and its environment” – the three missions tested do not 
especially rely on neighbour interactions/emergence, and could equally be tested on a 
single robot? And so the real-world validation is arguably on the boundary of what could 
properly be called swarm robotics, and I look forward to the promised future work on e.g. 
collective decision-making missions. 
 

○

In the Abstract, I would contest the claim that ‘swarm designers need to follow standardised 
automatic design processes…’ I suggest ‘may benefit from following’ rather than ‘need to’. 
 

○

In section 3.1, it is claimed that the ‘approach…enables…non-expert users (non-technical 
end-users) to specify requirements for robot swarms…’. Realistically though, how accessible 
is SML to a non-expert? Would some kind of graphical interface be easier to use and less 
prone to input errors? 
 

○

In section 3.2, the design budget is 200k simulation runs. This seems like a lot. What is the 
run time on what hardware? Why is such a large number necessary? What would be 
possible with e.g. 2k runs? 
 

○

‘Chocolate’ operates on only six low-level behaviours and six conditions. This is fine for lab-
based swarm concepts, but how extensible is this framework into the ‘real world’, e.g. with 
ROS-based robots running with sensors such as LiDARs, depth cameras, etc – robots with 
greater ‘spatial intelligence’ to understand context, performing more complex missions? I 
wonder if BDRML is a relevant approach.1 
 

○

It would be interesting to test missions where the simulation is not quite matching the 
deployed environment; e.g. with the aggregation mission, would it make much difference to 
specify 3 obstacles rather than the actual 5? 
 

○

On Fig. 1, realistically for real-world deployments, will there be a feedback loop between 
step 2 and 3? Take driverless cars as an example, development requires thousands of hours 
of trials and controller refinement. Are you focused on missions where iterative testing and 
design will not be possible? Do you have specific contexts in mind? 
 

○
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I find the large ‘figures’ showing code to be better suited to supplementary information, it 
interrupts the paper flow and makes the page count overlong. 
 

○

Minor points: p.3 ‘alea’ – I am not familiar with this term, please clarify your meaning. p.3 
‘through the concept of region’ – awkward phrasing.

○
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We confirm that we have read this submission and believe that we have an appropriate level 
of expertise to confirm that it is of an acceptable scientific standard.
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We are glad that the reviewer appreciated the work we have performed. In the following, 
we address his comments point by point.

Concerning the idea of creating a graphical interface to facilitate the usage of SML, 
we extended the Conclusions by adding this research direction as a future 
contribution. 
 

○

Concerning the large design budget of 200k simulation runs, we would like to stress ○
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that the decision of adopting such a large design budget  is outside of the specific 
scope of the contribution we are making with this paper. We decided to adopt a large 
design budget, so that the design process has sufficient resources to obtain a 
controller that performs well. The focus here is on the specification of the mission 
and on the automatic process that transforms specifications into the input to be fed 
to Chocolate. 
 
Concerning the fact that the automatic design method Chocolate operates on only six 
low-level behaviours and 6 conditions, we would like to stress that the focus in this 
paper is not Chocolate per se, but rather how to define a fully automatic design 
process (from specifications to the actual execution of the mission). As we already 
mentioned in answer to the other reviewers, this work is only a first step towards an 
integrated automatic design process for robot swarms: a proof of concept 
implementation.  Extending the framework from a lab-based environment to a real-
world environment is definitely an important issue that will be addressed in future 
research work. In the Behaviour-Data Relations Modelling Language (BDRML) [1] 
approach, the authors propose a methodology to represent robot behaviours, data, 
and a set of conditional relations between the different primitives. In contrast, the 
main focus in our work is on establishing an end-to-end automatic approach where 
from a mission specification in natural language, swarm control software can be 
obtained without focusing on the specificities of data structures and behaviours. 
 

○

Concerning the idea of testing the approach on missions where the simulation 
environment does not fully match the deployment environment, we would like to 
point out that our current approach already provides support for it. Many 
environmental features can be described in a probabilistic manner, meaning that the 
automatic design process generates control software that is trained on a 
representative set of environments that are different from the one into which the 
swarm is eventually deployed. We refer to a class of missions (environments) and we 
only make the working hypothesis that all the environments experienced in 
simulation and the real one into which the swarm is deployed are part of the same 
mission class. 
 

○

We agree with the reviewer’s comment that having a feedback loop in the automatic 
design process is an important part of the development of robust and reliable robot 
swarms. Yet, the setting we considered in the paper—that is, the linear life-cycle 
model—is the basic building block to achieve any more complex life-cycle. We feel 
that considering a lifecycle with a feedback loop will be an important future step. In 
this work, we focused on the simplest development model as we are making our first 
steps in closing the gaps in the fully automatic design process: starting from the 
specification of a mission, obtaining a swarm controller in simulation and finally 
deploying it in a real environment. We strongly believe that before we move to an 
iterative design process, we must focus on having a full-fledged linear automatic 
design process and fully master it.

○

We thank the reviewer for his valuable feedback. 
 
  [1] Pitonakova L, Crowder R, Bullock S: Behaviour-Data Relations Modelling Language For 
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Multi-Robot Control Algorithms. 2017 IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS). 2017; 727-732 |  
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Alan Millard   
Department of Computer Science, University of York, York, UK 

This article presents a novel textual language for the specification of robot swarm missions called 
Swarm Mission Language (SML). Model-driven engineering techniques are used to automatically 
transform missions specified in SML into a format compatible with the previously published 
AutoMoDe-Chocolate optimisation-based design method. The authors demonstrate the potential 
of this integrated design process on three different example missions, with validation on physical 
robots. 
 
This work is a valuable contribution to the field, bridging the gap between the high-level 
specification of swarm behaviours and automated design methods that determine the behaviour 
of individual robots. Integration with an established simulation tool (ARGoS) and robot platform 
(e-puck) makes the approach accessible to the research community, and the source code and data 
have been made available to aid reproducibility. 
 
The current implementation of SML is relatively limited - for example, rewards/penalties can only 
be expressed based on the spatial locations of robots (or objects) at a particular time. However, 
the language is designed to be extensible, so this shortcoming can be addressed in future 
development (by the authors, or a third party). 
 
To aid the design process (particularly for non-expert users), future work may wish to consider the 
development of a graphical interface that can automatically generate SML files (e.g. via interactive 
placement of spatial entities), to avoid laborious textual specification directly in Xtext. 
 
Although the end-to-end design integration is validated in this article, there is no empirical 
evaluation of SML's usability, so it is unclear whether this new specification language actually 
makes the process of designing swarm behaviours significantly easier. The contribution would be 
significantly strengthened by conducting a user study like that presented in "An Experiment in 
Automatic Design of Robot Swarms: AutoMoDe-Vanilla, EvoStick, and Human Experts", to 
demonstrate the utility of SML in comparison to other methods like Buzz.1 
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Minor comments: 
 
The figure captions are too brief and not sufficiently descriptive - it should be possible to 
understand what each figure represents in isolation, based on context from the caption. 
 
Figure 11 is excessively long - I suggest that you remove the XML comments, as they simply repeat 
the named tagged sections. Please also modify this example to use relative paths, instead of 
absolute paths specific to the author's personal filesystem. 
 
The code listings are quite difficult to read (especially the C++ code in Figure 12). Please consider 
using a condensed monospace font, reformatting the code, or including additional syntax 
highlighting to improve clarity. They should also be captioned as listings, rather than figures (like 
"Listing 1. Mission specification"). 
 
Page 6 - "Phototaxis" should be italicised like the other items. 
Page 8 - Figure 3: "Perimetar" > "Perimeter" 
Page 10 - Under "Transition": "e.g.a" > "e.g., a" 
Page 11 - "s-boot" > "s-bot". Should this even say s-bot? The grammar presented in Figure 7 
mentions only the e-puck and foot-bot (marXbot). 
Page 17 - "Fist" > "First" 
Page 17 - "xml" > "XML" 
Page 17 - "ARGOS" > "ARGoS" 
 
References 
1. Francesca G, Brambilla M, Brutschy A, Garattoni L, et al.: An Experiment in Automatic Design of 
Robot Swarms AutoMoDe-Vanilla, EvoStick, and Human Experts in ANTS 2014: Ninth International 
Conference on Swarm Intelligence. Springer. 2014. 25-37 
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Reviewer Expertise: Swarm robotics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 04 Aug 2022
Darko Bozhinoski 

We are glad that the reviewer appreciated the work done. In the following, we address the 
comments point by point.

We agree with the reviewer: the current implementation of SML is limited. It is indeed 
intended to be a proof of concept and opens the way to future developments. This is 
reflected also in the title of the article: “Towards an integrated automatic design 
process for robot swarms”.  As the reviewer points out, the language is extensible, 
and can be further developed, possibly by third parties. In this first, proof-of-concept 
implementation we decided to use spatial locations of robots for rewards/penalties 
due to the fact that in our analysis on a set of swarm missions, we noticed that most 
of the swarm missions measure success through an indicator that assesses the 
swarm being in a particular location at a specific time or by a mission objective that 
can be easily converted to this indicator. This definitely does not address all possible 
missions of interest, but covers a good share of them and, in our opinion, provides a 
clear idea of the potential of the proposal. 
 

○

Regarding the idea of developing a graphical interface to aid the design process and 
avoid laborious textual specification, we fully agree with the reviewer and we have 
plans to extend this contribution by introducing a graphical interface for swarm 
designers to design their missions as discussed in our conclusions. Yet, we would like 
to emphasise that the current textual specification of the swarm mission is already a 
significant step ahead with respect to what is described in the literature. Regarding 
the suggestion of conducting a user study to evaluate the SML usability, we would 
like to highlight that an evaluation of this kind is a huge endeavour and really rare in 
the literature. We feel that this deserves to be done as a separate study. We consider 
that an empirical evaluation of SML is an important future contribution that requires 
a definition of a protocol for evaluation based on objective qualitative and 
quantitative metrics that demonstrate the usefulness of our domain-specific 
language. 
 

○

We have reviewed and fixed all the other minor comments and typos highlighted by 
the reviewer.

○

We thank the reviewer for his valuable feedback.  
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© 2022 Schroeder A. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Adam Schroeder   
University of Toledo, Toledo, OH, USA 

The main contribution of this work is the creation of a formal and standardized way to specify the 
requirements for a robot swarm mission and how the performance of a swarm can be 
quantitatively evaluated. Their tool is called swarm mission language (SML).  After the 
requirements for a mission have been specified in SML, existing software tools are used to 
simulate swarm performance, optimize performance, and eventually write a controller for a 
physical robot. Overall, SML in combination with existing software enables an automatic design 
process for robot swarms. 
 
The authors validated their tool and the use of an automatic design process with three example 
missions. 
 
This work fills a current research gap and creates a useful tool for a swarm designer. It is adopting 
automatic design principles that are used in other disciplines to the specific discipline of robot 
swarm design. The authors acknowledge which scenarios are currently supported by their tool 
and that it could be extended to support more. 
 
Communication within a swarm is one important design decision and it would be helpful for the 
authors to explicitly discuss this and how it is addressed with their tool.  
 
In thinking of actual missions I would try to design a swarm for, it would be useful for the authors 
to discuss if and how their tool could handle (i) unknown or partially-known environments, where 
it would not be possible to specify their details in advance, (ii) dynamic objects in an environment, 
(iii) environments with non-discrete objects, e.g. a continuous distribution of food sources instead 
of discrete food sources, (iv) outdoor environments. Of course, even if these elements were 
supported by SML, they also would need to be supported in any simulator used.
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Yes

Are the conclusions drawn adequately supported by the results?
Yes
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Reviewer Expertise: Swarm robotics

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 04 Aug 2022
Darko Bozhinoski 

We are glad that the reviewer appreciated the  work we have done  so far. In the following, 
we will provide details and explanation about the concerns he raised. 
 
Regarding the question on how our work addresses communication  within a swarm, we 
would like to mention that AutoMoDe-Chocolate,  the automatic design method used in this 
work - does not work with  communication behaviours. In other works, we have developed 
 automatic design methods that design control software for robots  described by an 
extended reference model which include the ability to  communicate via light and infra-red 
signals. These design methods (AutoMoDe-Gianduja [1] and  AutoMoDe-TuttiFrutti [2]) are 
similar to AutoMoDe-Chocolate, but include modules that implement communication.The 
SML language can be extended to serve these other design methods.  Concerning the 
question on how SML can handle: (i) unknown or partially-known environments, (ii) dynamic 
objects in an environment, (iii) environments with non-discrete objects and (iv) outdoor 
environments, we would like to clarify that SML supports the specification of a class of 
missions where a probabilistic description of the environment is provided. The robot swarm 
performs the mission in this range of possible environments. In our current setup, SML 
enables specification of semi-structured partially-known environments, environments with 
non-discrete objects (region of food source) and the execution of the mission can happen in 
an indoor or outdoor environment. We thank the reviewer for his valuable feedback. 
 
[1] Hasselmann, Ken, and Mauro Birattari. "Modular automatic design of collective 
behaviors for robots endowed with local communication capabilities." PeerJ Computer 
Science 6 (2020): e291. 
 
[2] Garzón Ramos, David, and Mauro Birattari. "Automatic design of collective behaviors for 
robots that can display and perceive colors." Applied Sciences 10, no. 13 (2020): 4654.  
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