Open Research Europe

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

RESEARCH ARTICLE

W) Check for updates

GED Towards an integrated automatic design process for

robot swarms [version 2; peer review: 3 approved]

Darko Bozhinoski®:', Mauro Birattari

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium

V2 First published: 27 Sep 2021, 1:112
https://doi.org/10.12688/openreseurope.14025.1

Latest published: 04 Nov 2022, 1:112
https://doi.org/10.12688/openreseurope.14025.2

Abstract

Background: The specification of missions to be accomplished by a
robot swarm has been rarely discussed in the literature: designers do
not follow any standardized processes or use any tool to precisely
define a mission that must be accomplished.

Methods: In this paper, we introduce a fully integrated design process
that starts with the specification of a mission to be accomplished and
terminates with the deployment of the robots in the target
environment. We introduce Swarm Mission Language (SML), a textual
language that allows swarm designers to specify missions. Using
model-driven engineering techniques, we define a process that
automatically transforms a mission specified in SML into a
configuration setup for an optimization-based design method. Upon
completion, the output of the optimization-based design method is an
instance of control software that is eventually deployed on real robots.
Results: We demonstrate the fully integrated process we propose on
three different missions.

Conclusions: We aim to show that in order to create reliable,
maintainable and verifiable robot swarms, swarm designers may
benefit from following standardised automatic design processes that
will facilitate the design of control software in all stages of the
development.

Keywords

swarm robotics, integrated automatic design process, optimization-
based design method, model-driven engineering, domain-specific
languages (DSL),

This article is included in the European

Research Council (ERC) gateway.

Open Peer Review

Approval Status v

1 2 3

version 2

. e J
(revision))

view

04 Nov 2022
version 1 w v vy
27 Sep 2021 view view view

1. Adam Schroeder

Toledo, USA

, University of Toledo,

2. Alan Millard "=, University of York, York, UK

3. Edmund Hunt
Bristol, UK

, University of Bristol,

James Ward, University of Bristol, Bristol, UK

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 32

https://open-research-europe.ec.europa.eu/articles/1-112/v2
https://open-research-europe.ec.europa.eu/articles/1-112/v2
https://orcid.org/0000-0002-6853-0310
https://orcid.org/0000-0003-3309-2194
https://doi.org/10.12688/openreseurope.14025.1
https://doi.org/10.12688/openreseurope.14025.2
https://open-research-europe.ec.europa.eu/gateways/erc
https://open-research-europe.ec.europa.eu/gateways/erc
https://open-research-europe.ec.europa.eu/gateways/erc
https://open-research-europe.ec.europa.eu/articles/1-112/v2
https://open-research-europe.ec.europa.eu/articles/1-112/v2#referee-response-30379
https://open-research-europe.ec.europa.eu/articles/1-112/v1
https://open-research-europe.ec.europa.eu/articles/1-112/v2#referee-response-28418
https://open-research-europe.ec.europa.eu/articles/1-112/v2#referee-response-28563
https://open-research-europe.ec.europa.eu/articles/1-112/v2#referee-response-29339
https://orcid.org/0000-0002-4059-5593
https://orcid.org/0000-0002-4424-5953
https://orcid.org/0000-0002-9647-124X
http://crossmark.crossref.org/dialog/?doi=10.12688/openreseurope.14025.2&domain=pdf&date_stamp=2022-11-04

O pen Resea I’Ch EU ro pe Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

This article is included in the Horizon 2020

gateway.

This article is included in the Robotics

collection.

Corresponding authors: Darko Bozhinoski (darko.bozhinoski@ulb.be), Mauro Birattari (Mauro.Birattari@ulb.be)

Author roles: Bozhinoski D: Conceptualization, Data Curation, Formal Analysis, Methodology, Project Administration, Software,
Validation, Visualization, Writing - Original Draft Preparation; Birattari M: Conceptualization, Funding Acquisition, Methodology, Project
Administration, Supervision, Validation, Writing - Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (DEMIURGE Project, grant agreement No [681872]) and from Belgium’s Wallonia-Brussels
Federation through the ARC Advanced Project GbO (Guaranteed by Optimization). DB and MB acknowledge support from the Belgian
Fonds de la Recherche Scientifique (FNRS), of which they are a Postdoctoral Researcher and a Research Director, respectively.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2022 Bozhinoski D and Birattari M. This is an open access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

How to cite this article: Bozhinoski D and Birattari M. Towards an integrated automatic design process for robot swarms [version
2; peer review: 3 approved] Open Research Europe 2022, 1:112 https://doi.org/10.12688/openreseurope.14025.2

First published: 27 Sep 2021, 1:112 https://doi.org/10.12688/openreseurope.14025.1

Page 2 of 32

mailto:darko.bozhinoski@ulb.be
mailto:Mauro.Birattari@ulb.be
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/openreseurope.14025.2
https://doi.org/10.12688/openreseurope.14025.1
https://open-research-europe.ec.europa.eu/gateways/h2020
https://open-research-europe.ec.europa.eu/gateways/h2020
https://open-research-europe.ec.europa.eu/collections/robotics
https://open-research-europe.ec.europa.eu/collections/robotics

[7374979) Amendments from Version 1

The new version is a minor revision which includes
typographic corrections and clarifications based on
reviewers' comments:

- rephrasing and clarification of certain concepts;

- updating the Listings and Figures that demonstrate the
Swarm Mission Language (SML) syntax for better readability;

- extending the Conclusions by adding new research
directions as future work.

Any further responses from the reviewers can be found at
the end of the article

1 Introduction

In this paper, we make two original contributions: 1) we define
a textual language for the specification of missions to be
performed by a robot swarm and 2) we realize an engine that
transforms a mission specification given in the aforementioned
language into an objective function (and other configura-
tion files) needed to automatically perform the design by opti-
mization of a robot swarm that will accomplish the mission.
These two original contributions, combined with an existing
method for the design by optimization of control software for
robot swarms!, enable a fully integrated process that starts
with the specification of a mission to be accomplished and
terminates with the deployment of the robots in the target
environment.

In swarm robotics, a large number of robots perform a
mission that can not be accomplished by a single robot>?. The
collective behavior of the robot swarm is obtained through
individual robots collaboration and cooperation. Hence, the
collective behavior of a robot swarm is a result of the local inter-
actions between the individual robot and its neighbors and its
environment®. In the general case, the complex nature of these
interactions are virtually impossible to trace to the behaviour
of the individual robots, which creates a gap between the col-
lective behaviour that one wishes to obtain and what each of
the individual robots should do. Bridging this gap is one of the
main challenges in swarm robotics and the lack of a general meth-
odology to bridging this gap influences how control software
for robot swarms is designed and realized.

So far, robot swarms have been mostly designed manually:
an individual-level behavior 1is iteratively improved and
tested until a desired collective behavior is obtained. This
non-systematic approach is neither reliable, nor consistent.
The quality of the resulting solution strongly depends on
the experience and intuition of the designer. To avoid, or at
least reduce, the uncertainty induced by the crucial role of
the human designer, automatic and semi-automatic design
approaches have been proposed®™®.

Although a number of automatic approaches have been
proposed in the software and system engineering literature’, they
have not been investigated in the context of swarm robotics. This
is because these approaches, which focus on decoupling and
automatizing the different phases of the robot life-cycle, appear

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

to be inappropriate in swarm robotics. Indeed, they model the
system to be realized at a level of abstraction that is too
high and neglects the complex robot-robot and robot-
environment interactions that characterize the operation of a
robot swarm. For example, these approaches assume that it is
possible to establish a mapping between high-level collective
goals of the swarm and low-level individual behaviors of the
robots comprised therein'®'2. Unfortunately, the swarm robotics
praxis indicates that making such a mapping explicit is not
generally possible??.

For this reason, the most promising approaches that have been
proposed so far for the automatic design of robot swarms are in
the area of design by optimization'®. In design by optimization,
the design problem is re-formulated into an optimization
problem: an optimization algorithm searches a space of candi-
date solutions to maximize an objective function. In the context
of the application of design by optimization to swarm robotics, a
candidate solution is an instance of control software and the
objective function is a mission-dependent metric that measures
the performance of the swarm on the given mission®. Depending
on whether the design phase happens before or after the deploy-
ment of the software on the robots, we can distinguish between
two classes of design methods': off-line and on-line. In
this work, we focus on off-line automatic design'®, although
the proposed ideas could be adapted to on-line design as well.
Within an off-line design process, the performance of candidate
designs are assessed by an optimization algorithm typically via
computer-based simulations. After the optimization algorithm
terminates, the selected design is deployed to the individual
robots and the swarm is placed in its target environment.

In this paper, we present a first instance of a fully automatic
and integrated process for the design of collective behaviors
for robot swarms. The novel contribution that enables this inte-
grated process is the definition of a formal and systematic
approach to the specification of missions to be accomplished
by a robot swarm. This approach is rooted in model-driven
engineering'®: a research direction in software engineering that
aims at simplifying the design, implementation, and realization
of complex software systems by shifting the designer’s attention
from code to models. Recently, model-driven engineering has
been often used in the design of robot systems as it dispenses the
designer from reasoning on complex robot behaviours at the code
level, which is cumbersome and undesirable!’. Indeed, in model-
driven engineering, models are expressed at an appropriately
high level of abstraction using domain-specific languages with
concepts that are close to the problem domain and not directly
bound to the robotic platform at hand. This makes the realiza-
tion of complex systems manageable as models are easier than
code to specify, understand, and maintain'®. Specifically, in
this paper we present and demonstrate an integrated automatic
design process for robot swarms that, starting from require-
ments specified in a textual language, generates code and
deploy it on real robots. We introduce a language that we call
swarm mission language (SML) which allows one to specify
missions to be accomplished by a robot swarm. In the paper,
we present a first implementation of SML that supports the
specification of missions in which rewards and penalties can be
expressed with reference to regions: that is, rewards and penal-
ties are computed according to whether robots (and/or relevant

Page 3 of 32

objects) are in a particular part of the environment at specific
moments in time. Many of the most studied swarm robotics
missions like aggregation, foraging and collective exploration
can be modeled through the concept of a region. Furthermore,
we develop an engine that translates a range of missions specified
in SML into all the resources needed to launch Chocolate!, a
state-of-the-art automatic method for the off-line design of robot
swarms'® that, using simulation performed by ARGoS3%, pro-
duces control software that can be directly ported to e-puck
robots?’. To demonstrate SML and the integrated automatic
design process, we specify three missions and we automatically
generate the control software that allows a swarm of e-puck
robots to accomplish them.

2 Related work

2.1 Automatic off-line design of robot swarms

In swarm robotics, neuro-evolutionary robotics*>?* is the most
studied automatic design approach. In neuro-evolutionary
swarm robotics®, each individual robot control software is
a neural network. The parameters of the neural network are
obtained via an evolutionary algorithm that optimizes a mission-
specific objective function taking sensor readings as an input
and returning actuation commands as an output. A large litera-
ture shows that neuro-evolutionary robotics is able to produce
robot swarms that can perform well in a variety of missions**.
However, the neuro-evolutionary approach does not appear to
be able to scale in complexity for realistic robot swarm applica-
tions. One of the main causes is the difficulty to overcome the
so called reality gap®. The reality gap is the discrepancy between
reality and the simulation models used in the design process®.
Because of the reality gap, the performance of control soft-
ware developed in simulation typically drops when the control
software is ported to the real robots. It has been argued that
this drop in performance is the result of a sort of overfitting of
the obtained solution to the particular conditions encountered
during the design process®".

AutoMoDe’? is an alternative approach that deviates from tra-
ditional neuro-evolutionary robotics. It aims to address one
of the main concerns in neuro-evolutionary robotics and that
is the reality gap due to the excessive representation power
of neural networks. Inspired by the notion of bias-variance
tradeoff”, AutoMoDe produces control software with restricted
representational power. It does so by selecting, combining,
and fine-tuning a set of predefined modules. AutoMoDe is a
general, abstract framework. To define a design method that can
be used to design control software, AutoMoDe must be spe-
cialized to the specific platform at hand, as formally described
by a reference model. Also, a number of elements need to be
defined, including the optimization algorithm to be adopted,
the modules that will be used by the optimization algo-
rithm, and the architecture into which the predefined modules
should be combined. Up to now, AutoMoDe has been special-
ized for a specific version of the e-puck robot; the optimiza-
tion algorithms that have been adopted are F-Race®’?!, Tterated
F-Race®”, and simulation annealing®; and the architecture in
which modules have been combined are probabilistic finite-state
machines'* and behaviour trees®. Chocolate is a state of
the art automatic design method from the AutoMoDe family
that achieves significantly better results in crossing the reality
gap than neuro-evolutionary approaches'. Tt uses Iterated

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

F-Race as an optimization algorithm
finite-state machines as a control architecture.

and probabilistic

An aspect that is rarely discussed in the literature is the
specification of the mission for which the automatic design
method must generate control software’. Designers of robot
swarms do not follow any standardized processes or use any
tool that precisely defines the mission to be accomplished. For
example, the aforementioned ARGoS simulator enables speci-
fying missions through a combination of XML files and loop
functions defined in C++%. It provides a great deal of flexibility
for designers to design missions the way they prefer. Designers
can incorporate a rich variety of elements related to the opera-
tional context or the characteristics of the robots. However, it
is a tedious process to manually specify all elements of a mis-
sion to be performed by a robot swarm without following any
predefined process. This might create situations where design-
ers use environmental elements that are important to obtain
a desired collective behaviour for one application scenario,
while omitting the same elements if they impede the desired
collective behaviour. This ad-hoc mission specification proc-
ess might create confusion between designers that are working
on a same set of missions. Moreover, if requirements are not
defined explicitly, it is impossible to check the consistency
of mission models. It is also impossible to tell whether a robot
swarm eventually performs the mission successfully or not.
To simplify the communication between designers and to
check for possible inconsistencies, all these aspects must be
formally defined and automatized.

2.2 System and software engineering for robotics
System and software engineers have made their contribution
to robotics by providing tools and standardized methodolo-
gies for the specification and the definition of robot systems™®.
In system and software engineering, researchers have addressed
a variety of emerging challenges in the design and develop-
ment of complex systems by providing generic solutions,
often disregarding their specific nature. One of the main
challenges is collecting requirements®. To simplify the require-
ments’ elicitation for complex system, researchers have focused
on defining standard processes and methods that can be fully or
partially automatized.

In requirements engineering, there is a basic assumption that
underlines most of the approaches: if all requirements are
known, it is always possible to decompose any high-level goal
into a sequence of operations that allow the system to attain it.
For example, goal orientation® is a widely recognized process
for eliciting, modeling, specifying and analyzing system require-
ments. Goals are statements of intent organized in AND/OR
structures that can range from high-level strategic concerns to
low-level technical requirements and assumptions on the system
and the environment where it operates. It is generally accepted
that robotic systems are too complex for engineers to obtain
complete requirements on the system and the environment”.
Hence, it is typically assumed that robotic systems are highly
uncertain due to incomplete requirements. However, this is not
a valid assumption to be made in swarm robotics. The uncer-
tainty of a robot swarm is not only the result of incomplete
requirements, but it mostly emerges from the complex inter-
actions between the robots and between the robots and the

Page 4 of 32

environment. This means that the gap between the high-level
swarm goals and the low-level robot behaviours is inevitable.

In a number of works!®"? system and software engineers have
synthesized low-level robot behaviours from high-level mission
descriptions. For example, FLYAQ'' is a tool that allows defining
missions for teams of multi-copters. Starting from a high-level
description of the mission, FLYAQ automatically generates a
detailed flight plan for a team of autonomous multicopters that
can perform the specified mission, while preventing collisions
between multicopters and obstacles. FLYAQ was developed
based on model-driven engineering principles. It uses a family
of domain-specific languages for specifying civilian missions for
multi-robot systems'®. Each language focuses on a certain
aspect of the system:

e Monitoring modeling language: a language that enables
the specification of the mission goals complemented
by the definition of the context in which the mission
will be realized.

e Robot language (RL): a language to specify the type and
the configuration of the robots that will be in charge of
realizing the specified mission.

e Behaviour language (BL): a language that specifies
robot atomic movements and actions.

However, FLYAQ cannot be used in swarm robotics because
the nature of robot swarms does not support the synthesis
of the individual robot behaviour from the collective swarm
behaviour.

To the best of our knowledge, requirements specification for
swarm robotics has not been properly addressed as a research
question. The highest level of abstraction that has been exten-
sively discussed in swarm robotics is the development process.
A work in this direction is Buzz, a scripting language for pro-
gramming heterogeneous robot swarms¥%’. The language
offers primitives to define swarm behaviors, both in a bot-
tom-up and in a top-down fashion. The formal specification of
requirements for robot swarms was partially discussed by
Brambilla er al*' in a work devoted to a top-down design
approach based on prescriptive modeling and model
checking. The approach of Brambilla er al. consists of four
phases to specify, design, realize, and validate a robot swarm.
In the first phase, the developer specifies the requirements
using temporal logic. However, the approach does not provide
a precise process definitionof requirements specification but
rather a set of examples on how designers can use probabilistic
computation tree logic to specify swarm-level requirements.

Collecting requirements about the operational

gcontext and the characteristics of the robots

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

We believe that model-driven engineering can provide
support in gathering explicit and clear requirements for robot
swarms. Model-driven engineering has been explored in the
design of complex systems being an essential factor in reduc-
ing costs and development time. It has been successfully used
in various domains including avionics, automotive, and
telecommunications'®. For example, domain-specific mod-
elling (DSM)* is a powerful methodology in model-driven
engineering, which enables users to model systems using
concepts close to the problem definition.

3 Integrated automatic design process for robot
swarms

We present here the main phases and key activities to design
control software for a robot swarm in a systematic way
(Figure 1). In an automatic off-line design process, we identify
three phases: requirements specification, design by optimization,
and deployment of the control software on the robots.

In requirements specification, the designer identifies and
declares all the characteristics of the robot swarm, the target
environment in which it will operate, the mission that it
should accomplish, the objective that it should fulfil, the pos-
sible constraints, etc. In the current state of the art, no standard
process has been defined for collecting requirements. Typi-
cally, designers specify missions informally and in an ad-hoc
manner, which makes specifications vague and eventually
hinders a final verification of whether the swarm developed
satisfies the requirements or not”. Starting from the require-
ments, the designer defines an objective function to be then
optimized in the second phase. As requirements are specified
informally, this step must be performed manually and is
discretionary, non-repeatable, and error prone. In the second
phase, design by optimization, the control software of the indi-
vidual robots comprised in the swarm is produced by an auto-
matic design method'*". An automatic design method is defined
through: (i) a reference model of the robotic platform for which
it can design control software; (ii) an optimization algorithm;
and (iii)) the space of control software it can possibly
produce. The reference model is an abstraction of the robotic
platform that specifies in formal terms the characteristics and
capabilities of the robots; the optimization algorithm is the
algorithm that drives the optimization process; and the space of
the control software that can be produced is typically expressed
by a parametric architecture and by the set of the possible
values of its parameters.

The last phase is the deployment on the robots. It consists
of all the activities related to the transfer of the control soft-
ware produced to the robots in the target environment. Some

Deploying the robots in
gthe target environment

{ 1. Requirements specification |—| 2. Design by optimization |—| 3. Deployment on robots |

[

Figure 1. Automatic off-line design of robot swarms.

Generating control
software for the swarm

Page 5 of 32

tools exist that are able to generate code that can be directly
ported to the robots. For example, ARGoS?, a multi-engine
simulator for robot swarms, can currently generate code for a
number of platforms including marXbot*, e-puck®, Thymio®,
Kilobot*, and Khepera IV¥. Due to its modular nature, ARGoS
can be extended to generate code for a variety of robotic
platforms.

3.1 Requirements specification for robot swarms

We present an approach that enables experts (control soft-
ware designers) and non-expert users (non-technical end
users) to specify requirements for robot swarms in a standard
and consistent way. Figure 2 depicts the workflow of the auto-
matic design process. The novelty of our approach is the require-
ments specification phase, outlined by the dash-dotted line
in Figure 2.

The user has an informal picture of what the robot swarm
should do and of the environment in which it should operate.
From these informal requirements, a formal model of the
mission goals and the target environment should be defined.
We developed swarm mission language (SML) to allow users
to specify requirements. The output of this phase is an objective
function that will be subsequently optimized by the optimization
process, and a model of the target environment to be used in
the simulations performed within the automatic design proc-
ess. The model of the target environment is specific to the
automatic design method and the tools used. In our work,
we used model-to-model transformation techniques to trans-
late the missions specified in SML into configuration files for
Chocolate.

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

3.2 Design by optimization

In the subsequent automatic design phase, we use Chocolate
with a design budget of 200K simulation runs as an auto-
matic design method to generate control software for the
robot swarm. Chocolate operates on a set of six low-level
behaviors and six conditions'. In this context, a low-level
behavior defines how the robot operates its actuators in response
to the readings of its sensors. On the other hand, a condition is
an event that the robot perceives via its sensors and that deter-
mines whether the robot should transition from one behavior
to another. Conditions contribute to determine which behavior
is executed at any moment in time.

The low-level behaviors on which Chocolate operates are the
following.

Exploration: the robot moves straight forward, if the front of
the robot is clear of obstacles. If an obstacle is perceived via the
front proximity sensors, the robot turns in-place for a random
number of control cycles drawn in {0, ..., 7}, where 7 is an integer
parameter € {0, ..., 100}.

Stop: the robot stops its movement.

Phototaxis: the robot moves towards a light source. The
robot moves forward while avoiding obstacles, if it does not
perceive any light source.

Anti-phototaxis: the robot moves away from a light source.
The robot moves forward while avoiding obstacles, if no light
source is perceived.

e N
/ Requirements
i Specification

informal definition of the target
environment and the goals
that should be fulfilled

environment

2

I Formal
. | Description
Objective
Function

]

Automé\tlic Design

Model of target

=

=

Deployment

Automatic ool -
Design eployment in
trol
Environment

Figure 2. Integrated automatic design process for robot swarms.

Page 6 of 32

Attraction: the robot moves towards its neighboring peers,
following oV, where o € [1, 5] controls the speed of conver-
gence towards the peers. The robot moves straight forward
while avoiding obstacles, if it does not perceive any peer.

Repulsion: the robot moves away from its neighboring
peers, following —aV,, where o € [1, 5] controls the speed of
divergence. The robot moves straight forward while avoiding
obstacles, if it does not perceive any peer in its neighborhood.

The conditions under which a robot switches from a behavior to
another are the following.

Black-floor: true with probability f, if the ground situated below
the robot is perceived as black.

Gray-floor: true with probability S, if the ground situated below
the robot is perceived as gray.

White-floor: true with probability f, if the ground situated below
the robot is perceived as white.

Neighbor-count: true with probability z (n) = (I + ™),
where n is number of detected peers. The parameters 1 € [0,
20] and & € {0, ..., 10} control the steepness and the inflection
point of the function, respectively.

Inverted-neighbor-count: true with probability 1-z (n).
Fixed-probability: true with probability S.

For more details on the low-level behaviours and condi-
tions of Chocolate, we refer the reader to their original
description’.

4 An approach to specifying swarm missions

In this section, we present an approach to specifying swarm
missions. To be able to specify missions, we need to under-
stand the nature of the requirements in swarm robotics. First,
we discuss a classification framework for swarm missions,
then we develop a metamodel that defines the semantics of the
Swarm Modeling Language (SML).

4.1 Classification framework for swarm missions

A classification framework of the main missions studied
in the literature has already been proposed’. Missions have
been classified in different categories: spatially organizing
missions, navigation missions, collective decision-making, and
other swarm missions.

Spatially organizing missions focuses on organizing and
distributing robots and objects in the environment. This category
consists of missions like aggregation (robots group in a
region of the environment), pattern formation (robots position
themselves on a regular lattice), chain formation (robots position
themselves so as to connect two points in the environment),

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

self-assembly and morphogenesis (robots physically connect
to each other following a particular pattern), and object
clustering and assembling (robots position objects in the
environment).

Navigation missions focus on coordinating the movements
of a swarm of robots. The following missions are part of this
category: collective exploration (robots explore an unknown
environment), coordinated motion, also known as flocking
(robots move in formation similarly to schools of fish or flocks
of birds), collective transport (robots cooperate to transport an
object).

Collective decision-making is a set of missions where the
focus is on how robots influence each other when making
choices. Here, we can find missions like consensus achievement
(robots reach a consensus on one choice among different
alternatives) and task allocation (robots dynamically choose
the task to execute in order to maximize performance). The last
category is for missions that are outside the scope of the previous
classes. Here, we can find missions like collective fault detection
(robots autonomously detect failures and faulty behaviors)
and human-swarm interaction. This classification framework
is interesting to understand the different types of collective
behaviours robots can perform. However, one important
aspect that has not been discussed in this framework is how do
we tell whether the swarm accomplishes its mission and how we
quantify the degree to which it is successful. In this work, we
classify missions in terms of the objective function that describes
them. That being said, we propose a different classification
framework based on a measure of success for the mission.
In many of the missions mentioned above, the typical way to
measure success is through the concept of a region. Rewards
and penalties can be naturally given according to whether
robots (and/or relevant objects) are in a specific region at a
certain moment in time, or not.

4.2 SML metamodel

In this section, we describe the SML metamodel on which we
base the Swarm Mission Language. In Figure 3, Figure 4, and
Figure 5, we present the concepts used to design the language.
The proposed abstractions are tailored to the literature in swarm
robotics, as discussed in the previous section. With them,
we intend to provide a way to define missions in a standard
and consistent way. We formally define a mission as follows.

Definition 4.1 (Mission). A mission is a triplet M = (E, S, O)
where:

e FEis the environment where the mission is performed;
e §is the robot swarm that should perform it;

e (O is the objective function to be optimized.
The SML metamodel provides modeling constructs that

enable the specification of the three aspects: the environment, the
robot swarm and the objective function.

Page 7 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

Obstacle Avoidance

+proximity

Environment Arena
+coordinate_system +is placed on +center
+walls
1 4contains
1.
EnvironmentElement Obstacle
+position +height
/ +is placed on
Light Source
+intensity
+color Coordinate
+orientation ——
+X:
Box Floor Patch :Z ::I
+height +material .
] ’ 1.
+consists of
1 Region
+color
+shape Rectangle
+reference_point +orientation
1 +Perimeter()
«enumeration» +Area v\
Color
Red 1 Square
Green +orientation
Yellow
\?\}iictlé Hexagon Circle
Qray +orientation +radius
Figure 3. Constructs to specify the environment.
Robot_ReferenceMode
Swarm ; . Robot +type of +sensors
+size .. |+initial position Fp— +actuators
+placement_distribution *eonsists of | ohot type P
+performed by
MissionClass \
+name >~ Behavior
+description +speed
+duration +control_cycle
Attraction Repulsion - " -
n - - Phototaxis Anti-phototaxis Stop
- Exploration |[+neighbor_robot|| +neighbor_robot|— - - - - -
Aggregation Foraging Migration| +num rotations +dete§t_range +dete(.:t_range +light_intensity | | +light_intensity +ground_color
+source - — +bearing_range || +bearing_angle
+reqi +regionA
region +nest +regionB

Figure 4. Constructs to specify the overall robot swarm, individual robot behaviour, and the mission class.

Page 8 of 32

ObjectiveFunction +composed of

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

Compoundindicator
+num_robots

Indicator

()

+function_type

+condition

Atomiclndicator

Scope
+timeframe

Globally

Universality

Before

After Between

AfterUntil

+upper_bound

+lower_bound +lower_bound

+upper_bound

Transition
I

+lower_bound
+upper_bound

-

1

Fbounded by

+bounded by

1 1.*
AtomicEvent,

/ +entity_id

EntityAtRegion

+region_id
+time_frame
+num_entities

Collision

1/ +bounded by

+bounded by

Pattern

+reward
+penalty

+has happened K

Existence

I

BoundedExistence
+number

Absence

ColorChange

GlobalTick

+entity_id
+velocity

+color_change

+control_cycle

Figure 5. Constructs to specify the assessment of the mission objectives.

The environment where the mission is performed is defined
through the Environment construct. It consists of an Arena that
gives the context of the mission. The EnvironmentElement is
an abstract metaclass that can be implemented through the
classes of the various elements placed in the environment. The
number and type of elements that can be used across missions
might vary. The central concept in SML is the one of Region.
The Region is an abstract class that can be instantiated as a spe-
cific geometric shape referring to coordinates in the environment.
All environment constructs can be found in Figure 3.

The Swarm is a construct that is developed to specify the number
and type of robots performing the mission, their initial posi-
tion, and the set of low-level behaviours they can perform. The
Robot construct represents a specific instance of the reference
model of a robot.

Definition 4.2 (Reference Model). A reference model of a
robot is a tuple R = (T, A, P, V, Z) where:
e Tis aset of actuators and sensors;

e A is a set of attributes;

e P T —A is an assignment function that maps
sensors/actuators 7 to the corresponding attributes A;

e Vis a set of values that can be given to the attributes;

e 7:A —Vis an assignment function for the attributes.
An example of a reference model is shown in Table 1.

The Behaviour is an abstract class that represents a low-level
action that an individual robot can perform. A behaviour can
be instantiated on a different level of abstraction and can be
modular, as in our implementation. The modular structure of
the Behavior construct of the language allows composition of
atomic sub-behaviors into complex behaviours. For example, in
Chocolate' we implemented an Obstacle Avoidance behav-
ior as a sub-behaviour into five low-level behaviors. Behav-
ior is associated with the concept of MissionClass, an abstract
class that presents a set of missions. The association between
the behavior and mission class relates to the correspond-
ing mapping that defines which behaviors are suitable for a
specific mission class to be performed. The MissionClass is
a construct that provides a template for a set of missions that
share similar behavior patterns. In this work, all implemented
behaviors were used to create a swarm controller for each
instantiated mission class. We instantiated three mission classes:
aggregation, foraging and migration.

Page 9 of 32

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

Table 1. Reference model RM 1.14. Sensors and actuators of the

extended version of the e-puck robot.

sensor/actuator variables
proximity prox, with i € {0, ..., 7}
light light, with i € {0, ..., 7}
ground ground, with 1 € {0, ..., 2}
range-and-bearing n

Vd
wheels v,V

The third aspect of the language is the representation of the
objective function that is used to measure the success of the mis-
sion execution (Figure 5). The ObjectiveFunction is a construct
that consists of a set of Indicators. An Indicator is an abstract
class that represents the smallest measurable unit of performance
in a mission. It can take one of the two forms:
e Atomic Indicator: a construct that represents the
smallest measurable unit of performance for an individual
robot;

e Compound Indicator: a construct that represents the
smallest measurable unit of performance for a set of
robots.

The idea of the indicator is taken from Dwyer er al.* and Autili
et al.®. Indicators are defined as a pattern in a scope—i.e., each
indicator is represented through two constructs:
e Pattern: a construct used to measure the degree of
success in a mission;

e Scope: a timeframe within the duration of the mission
during which the pattern is quantified.

We identify the following scopes: GLOBALLY, AFTER the
occurrence of an event, BEFORE the occurrence of an event,
BETWEEN the occurrence of two events, or AFTER the occurrence
of one event, and UNTIL the occurrence of an another one
(AFTER UNTIL). Atomic Event is an abstract class that specifies
the possible events that can happen during a mission. In our
work, we identified four abstract events:

e Color Change: an event that is triggered when there is a

color change in the mission entities;

e [Entity at Region: an event that is triggered when a set
of entities are in a specific region (e.g., robots stay in a
certain region);

e Collision: an event that is triggered when two entities in
the mission collide. For example, it might be a colli-
sion between two robots, a collision between a robot and

values

[0, 1]

[0, 1]

{black, gray, white}

{0, ... 19}

([0, 0.7Im,[0, 2rt] radian)
[-0.12,0.12]ms™!

an obstacle, a collision between a robot and a wall in
the arena etc.;

e Global Tick: an event that is triggered at every step of
the mission execution.

As mentioned before, patterns are mission-agnostic concepts
that are used to quantify the success of a mission. We identify
a set of patterns that quantifies the appearance of a specific
mission concept during execution. In the following, we describe
three patterns of SML:

e Absence: a pattern that quantifies the absence of an
event—e.g., a robot is not in a specific region, a robot
does not perceive light, etc.;

e Existence: a pattern that quantifies the existence of
an event—e.g., a robot is in a specific region, a robot
broadcasts a message, etc.;

e Universality: a pattern that quantifies the universality of
an event—something that should always occur.

e Transition: a pattern that quantifies the transition between
two events—e.g., a robot moves from one region to
another.

Bounded existence is a sub-pattern of an existence which quanti-
fies the existence of an event only in certain bounds (something
should occur at most n times).

These constructs are abstract and need to be instantiated to be
realized in SML. More details about the instantiation of these
constructs is given in Section 5.

5 Implementation of SML as a textual domain
specific language (DSL)

The SML Language conforms to the SML metamodel dis-
cussed in Section 4.2. We implemented SML as a textual domain
specific language (DSL) to enable non-technical end users

Page 10 of 32

(users that do not necessarily have technical knowledge in
swarm robotics) and swarm designers to specify missions
using structured English grammar. The development of SML is
based on the following concepts:

¢ Extensibility:Control software designers should be able
to add new constructs for new classes of missions.
One of the most important goals in the development
of SML was to provide an easy way for designers to
add new language constructs. This enables reusability
of the language across projects, missions, and research
groups.

e Variability: Control software designers should be able
to define missions in a variety of ways. Variability
plays an important role in the definition of swarm mis-
sions. There are many examples in the swarm robotics
literature where the position of the robots and of other
objects in the environment is defined in a probabil-
istic way. There are many other examples where the
position of the objects is provided in a deterministic way.
Providing a rich interface using variability points was the
second most important goal in the design of SML.

e Usability: Non-technical end users (users that do not nec-
essarily have technical knowledge in swarm robotics)
should be able to specify missions.

e Generality: Control software designers should be able
to specify classes of missions that are non-trivial. Hav-
ing constructs that are generic and independent from the
functional behaviour of the robots is extremely relevant
for managing the complexity of the missions to be
performed.

5.1 SML syntax
To implement the language we used Xtext’'. Xtext is a frame-
work for developing domain-specific languages. It provides

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

a full infrastructure, including parser, linker, typechecker,
and compiler. The current implementation of SML is focused
on realizing abstract concepts through a set of elements that
are necessary to define a mission. We will extend the set of these
elements in a future work, which will increase the application
domain of SML. It is important to note that the current imple-
mentation of SML in Xtext includes variable name resolution,
parse error visualisation, and syntax highlighting. A screenshot
of the SML editor is shown in Figure 6.

Snippet code of the grammar that enables mission description
and swarm configuration is presented in Listing 1. In the imple-
mentation, the model of the language is realised through
three high level concepts: Environment specification, Swarm
configuration, and Mission objective specification. The current
implementation of the language supports three different types
of mission: aggregation, foraging, and migration. In aggrega-
tion, the robot swarm must group (Figure 8). In foraging, the
swarm must collect items from the environment and brings
them to the nest (Figure 9); while in migration, the swarm must
move from one initial location to another one (Figure 10). The
current implementation of the language is extensible in the
following directions: (i) it allows new classes of missions to
be defined through the Task construct and (ii) it allows new
types of robots to be defined through the Robot construct.
The current implementation includes support for e-puck®
and s-bot’>. Each of these robots has different sensors and
actuators with different attributes and values.

Snippet code of the grammar that enables the specification
of mission objectives is presented in Listing 2. In the current
implementation of the language, Occurence is the only pattern
that we used to quantify the success of the mission. Through
this pattern, we can specify a variety of missions that are non-
trivial. We satisfy one of the main aspects of our language
mentioned in Section S5—generality. Patterns enable gener-
ality by separating the concepts on how the success of the

=| mission1.sml & |

The arena is a Circle C with center at point 0.0, 0.0 and radius 3.25 m

- The arena contains the following elements:
An obstacle as a Circle obs with

center at point 0.3, 0.5 and radius 0.7 m

A light source emitting a red light with intensity 3.0 is placed at point 1.3, 1.3, 0.4

A Circle cl with center at point 0.5, 0.5 and radius 0.8 m

A Circle c2 with center at point 1.7, 1.7 and radius 0.3 m

A Rectangle d with reference point 2.4, 3.3 and length 0.25 m ,width 0.8 m ,height 0.3 m

There are 4 obstacles distributed with a Gaussian distribution in c1

The robot swarm consists of less than 12 e-puck distributed with a Uniform distribution in C
- The mission of the robots is to aggregate on c2

The total time of the mission is less than 300 seconds
= The performance measure is defined in terms of an objective function to be maximized.

The objective function is computed as follows:

At any point in time, each robot gets a penalty 0.05 if it is on cl
At the end of the mission, each robot gets a reward 30.0 if it is on d

Figure 6. Screenshot of the Swarm Mission Language (SML) editor in Xtext.

Page 11 of 32

https://www.eclipse.org/Xtext/

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

grammar org.xtext.example.sml.Sml with org.eclipse.xtext.common.Terminals
generate sml "http://www.xtext.org/example/sml/Sml"

Model:
(env=Environment) (sw=Swarmconf) (ms=MissionSpecification);

Swarmconf:

'The " 'robet' 'swarm' 'consists' 'of' x=Range r=Robot pr=ProbabilisticDecription;
Robot:
'e-puck' | 'foot-boot';

il MissionSpecification: m=MissionDefinition mt=MissionTime ob=MissionObjective;

s|MissionTime: 'The' 'total' 'time' 'of' 'the' 'mission' 'is' T=Range m=Metric;

MissionDefinition: 'The' 'mission' 'of' ‘the' '‘robots' 'is' ‘to' t=MissionClass;

MissionClass:
Aggregate | Migration | Foraging;

Aggregate:
‘aggregate' ‘'on' r+:[Ragion] (',' r+=[Regiun])*;

Migration:
‘aggregate' 'on' r+=[Region] (',' r+=[Region])* 'while' ‘avoiding' t+=[Region] (',' t+=[
~+ Region])=;

Foraging:
‘collect' "food' 'from' source+=[Region] (', source+=[Region])* ‘'and' 'brimng’' ‘"it'
“+ back' 'to' nest=[Region] (',' source+=[Region])=*;
Time:
x=Range | StartMission | EndMission;
Metric:
‘seconds ' | ‘steps’' | 'm';

Listing 1. Language grammar for defining the mission and the swarm configuration.

w

"
£

MissionObjective:

'The ' 'performance’' 'measure' 'is' 'defined' 'in' 'terms' 'ef' 'an' ‘'objective' '
“+ function' 'to' 'be' Type=('maximized.' | 'minimized.')
'The' 'objective' 'function' 'is' 'computed' ‘'as' 'follows:' (in+=Indicator)s;
Indicator:
sp=Scope oc= (AtomicIndicator | Conpoundlndicatur) H

AtomicIndicator:
'each' 'robot' oc=Pattern ;

CompoundIndicator:
'the ' 'swarm' oc=Pattern ;

Scope:
sp = AnytimePoint | StartMission | EndMission | Condition ;
7| AtomicEvent:

'Walls change color' ;

Pattern:
Reward | Penalty ;

Penalty:

'gets' 'a' 'penalty' k=Double c=Condition;
Reward:

'gets' 'a' 'reward' k=Double c=Condition;

Condition returns String:

{existence_absencel}('if' | 'If') 'it' 'is' inside=('on' | 'outside') r=[Region] |

{existence_absence2}('if' | 'If')'there' 'are' 'more' 'than' n=INT 'robots' inside=('on'
“+ | 'outside') r=[Region] (",")= |

{transition} ('if' | 'If') 'it' 'goes' 'from' r=[Region] 'into' nest=[Regiomn] |

{universality} 'always';

:| StartMission: ('Beginning'|'beginning') 'of' 'the' ‘'mission' (',')=*;
EndMission: ('at'|'At') 'the' 'end' 'of' 'the' 'mission' (',')*;
AnyTimePoint: ('at'|'At') ‘any' 'peint' ‘'in' 'time' (',')=*;

Listing 2. Language grammar for defining mission objectives.

Page 12 of 32

mission is measured from the functional behavior of the
robots. As we identify additional patterns in robot swarm mis-
sions, we plan to add them as additional constructs in SML.
SML is highly extensible, which allows new pattern constructs
to be added at a later stage of the development.

Patterns need to be instantiated. Occurence is instantiated
through the concepts of Reward and Penalty. Condition is another
construct that plays an important role in the definition of the
language. We use it to determine the situations under which a
score is assigned to the swarm that executes the mission. This
construct can be extended by identifying other situations that
are relevant in swarm robotics. In the current implementation, a
score is assigned only through the concept of a region: whether
a robot, a set of robots, or objects are in a particular part of the
environment.

Snippet code of the grammar that enables the specifica-
tion of the environment elements is presented in Listing 3.
We implemented a set of environmental elements that can be
directly used in missions. At the moment of writing, we have

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

implemented four environmental elements: Wall, Light Source,
Floor Patch and Obstacle. Each of these elements has been
defined through different attributes. The extensibility of SML
allows designers to easily add new environmental constructs
if they need them.

To demonstrate the variability of SML, we defined a set of
variability points for the different constructs in SML. These
variability points allow designers to formulate mission concepts
in a variety of ways. For example, the position of robots, objects,
and obstacles in the environment can be specified either in a
deterministic or a stochastic way. In Figure 6, we present a simple
mission specification. An obstacle is defined in a deterministic
way with the following statement:

The arena contains the following elements:
An obstacle as a Circle obs with center at point 0.3, 0.5 and
radius 0.7 m.

An example of obstacle description in a stochastic way is
presented through the following statement:

|Environment:
a=Arena ('The' 'arena' 'contains' 'the' 'following' 'elements' ':')7 (envircnment+=
“+ EnvironmentElements)s=;
Arena:
'The' 'arema' 'is' 'a' s=Region 'surrcunded' 'by' 'walls' '.';
| EnvironmentElements:
EnvironmentElement | ElementDescription ;
EnvironmentElement:
1 Obstacle | Light | Object | Patch | 'A' Regiomn ;

13| ElementDescription:

el='There"' 'are'
15
Element:
1 '‘objects' | 'obstacles' | 'light' 'sources'

15| ProbabilisticDecription:
'distributed' 'with' 'a' dis=Distribution
Distribution:
23 'Uniform' |'Gaussian' | 'Constant' ;
25| Region:
(colors=Color)? (shape2d=S5hape2D) (name=ID)
RegionDefinition:
2 Definitionl | Definition2 | Defimition3;
Definitionl:

('with' referencepoint=Position)? ('and'

Definition2:

‘defined' ‘through' 'the' 'following' 'Vertices' ':' (point+=Position) (';' point+=
«+ Position)= ;
7| Definition3:
'where' ax=Axis 'is' r=Range ;
Dimension:
a1 'radius ' r=Double mi=Metric ('and" 'height * h=Double m2=Metric)? | 'length' 1=Double

— m3=Metric ',width'

“+ s5=Double m6=Metric ;

«:| Range:

Upperbound | Lowerbound |
~+ ConstantSize;

Interval |

x=Range obj=Element r=ProbabilisticDecription;

'distribution

dimensions=Dimension)? ;

w=Double mé=Metric ('

LowerorEqualbound |

| 'patch';

' 'in' k=[Region] ;

regicn=RegionDefinition;

and' ‘'height' h=Double m5=Metric)? | 'side’

UpperorEqualbound |

Listing 3. Language grammar for defining the environment.

Page 13 of 32

The arena contains the following elements:
A Circle cl with center at point 0.5, 0.5 and radius 0.8 m.

There are 4 obstacles distributed with a Gaussian distribution in
cl.

This aspect of the language provides a rich platform for the
definition of the various elements in the environment. Region
is the basic language construct we use to define the various
elements. In the current implementation of SML, we have three
variability points on how we specify regions:
e through one reference point and set of dimensions
(Definitionl1: Figure 9);

e only through a set of reference points (Definition2:
Figure 9);

e through coordinate

Figure 9).

the global system (Definition3:

We made the assumption that a global coordinate system exists
and its origin is positioned in the center of the arena. This
coordinate system is only used to specify the position of ele-
ments in the environment. It is important to note that robots
are unable to utilize this coordinate system to position them-
selves or place objects in the arena because usage of a global
coordinate system to create a certain robot behaviour goes
against the main principles of swarm robotics.

5.2 Model-to-model transformation from SML to ARGoS
XML files

ARGoS is a multi-engine simulator for swarm robotics.
ARGoS has two main components that need to be defined in
order to specify a mission: the XML configuration file and the
so-called loop functions. Using the ARGoS XML file, users can
specify the simulated space. ARGoS provides a way to specify
several entity types. Each entity type stores information about a
specific aspect of the simulation. It includes the position and
the orientation of each object in the environment such as obsta-
cles, light sources, boxes, and robots. The file is highly custom-
izable and extendable—new entity types can be easily added

Simulated Environment

+entities

+user-defined function hooks

Open Research Europe 2022, 1:112 Last updated: 06 MAR 2023

and new features of the entities can be easily adapted and
adjusted.

The loop functions are user-defined functions that are exe-
cuted in strategic points of the simulation loop. Developers
can customize the initialization and the end of an experiment,
and add custom functions to be executed before and/or after
each simulation step. Loop functions allow one to access and
modify the entire state of the simulation. In particular, loop
functions are a convenient way for computing relevant
performance metrics used to measure the success of a mission.

Using model-to-model transformation techniques from the mis-
sion specification defined in SML, we automatically generate
the XML file that is used by ARGoS to describe the simulation
space and the loop functions that are used by ARGoS to run
experiments. The mission models that are used by ARGoS
are represented in Figure 7.

The Simulated Environment and the Controller are speci-
fied in the .xml file. A fragment of the generated XML
configuration file is shown in Listing 4. It consists of five parts:
experiment configuration details, definition of loop functions,
specification of controllers, specification of the environment
(the arena) and e-puck specification and distribution in the
environment.

The loop functions are defined in a C++ file. We describe the
main loop functions that are generated from the SML speci-
fication (fragment of the generated C++ file is shown in
Listing 5). Init is a function that is used to instantiate
all mission elements. We use it to create all mission enti-
ties, including the robots and the environment elements.
PostStep is a function that is executed after each simula-
tion steps. In this function, we iterate through the robot swarms
and perform calculations, based on the definition of the
objective function. In our scenarios, w