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A B S T R A C T   

Population attributable fraction (PAF), probability of causation, burden of disease, and related quantities derived 
from relative risk ratios are widely used in applied epidemiology and health risk analysis to quantify the extent to 
which reducing or eliminating exposures would reduce disease risks. This causal interpretation conflates asso-
ciation with causation. It has sometimes led to demonstrably mistaken predictions and ineffective risk man-
agement recommendations. Causal artificial intelligence (CAI) methods developed at the intersection of many 
scientific disciplines over the past century instead use quantitative high-level descriptions of networks of causal 
mechanisms (typically represented by conditional probability tables or structural equations) to predict the effects 
caused by interventions. We summarize these developments and discuss how CAI methods can be applied to 
realistically imperfect data and knowledge – e.g., with unobserved (latent) variables, missing data, measurement 
errors, interindividual heterogeneity in exposure-response functions, and model uncertainty. We recommend 
that CAI methods can help to improve the conceptual foundations and practical value of epidemiological cal-
culations by replacing association-based attributions of risk to exposures or other risk factors with causal pre-
dictions of the changes in health effects caused by interventions.   

Introduction: the need for better causal methods in applied 
epidemiology 

Applied epidemiology seeks to understand preventable causes of 
diseases and other adverse outcomes in populations, as well as their 
incidence and prevalence rates. However, at present, the field’s core 
methods and concepts focus on statistical associations, with causal in-
terpretations often assigned using untestable assumptions. For example, 
relative risk ratios and quantities derived from them, as presented in 
standard textbooks and applied in countless articles population attrib-
utable fractions (PAFs) [35] and population attributable risks (PARs), 
burdens of disease (BODs), etiological fractions (EFs), probabilities of 
causation (PCs), and other promisingly named quantities are all based 
on associations (specifically, relative risk ratios). None of them provides 
data-driven methods for decisively justifying or refuting causal in-
terpretations. The well-known Bradford Hill considerations and more 
recent weight-of-evidence (WoE) frameworks for supporting judgments 
about whether associations should be interpreted causally do not close 
the logical gap between association and causation [42]. More is needed 
to create criteria that incorporate both traditional and more recent ap-
proaches to causal inference from observational data [15,53,61]. 

Decades of experience have shown that the practical consequences of 
the logical gap between data and methods addressing associations, on 
the one hand, and policy-relevant causal interpretations and recom-
mendations, on the other, can be striking, as illustrated by the following 
examples:  

• An overwhelming statistical association between higher observed 
levels of the vitamins beta carotene and retinol and lower observed 
levels of lung cancer risk at the individual level in large, well- 
conducted epidemiological studies inspired an intervention (the 
CARET trial study) to increase levels of these vitamins in people at 
high risk of lung cancer due to smoking or asbestos. This intervention 
was followed by a prompt and significant increase in lung cancer risk 
instead of reducing it, leading to early cessation of the trial [21]. This 
unanticipated outcome vividly illustrates the distinction between 
epidemiological concepts of causation (e.g., attributable risk, burden 
of disease, probability of causation, and so forth) based on associa-
tions, and the type of causation that is most relevant for risk man-
agers and policymakers: interventional (or manipulative) causation 
[14,42]. Interventional causation describes how outcome probabil-
ities change in response to changes in input conditions – e.g., in this 

DOI of original article: https://doi.org/10.1016/j.gloepi.2021.100062. 
* Corresponding author. 

E-mail address: tcoxdenver@aol.com.  

Contents lists available at ScienceDirect 

Global Epidemiology 

journal homepage: www.sciencedirect.com/journal/global-epidemiology 

https://doi.org/10.1016/j.gloepi.2021.100065 
Received 1 September 2021; Received in revised form 17 October 2021; Accepted 18 October 2021   

mailto:https://doi.org/10.1016/j.gloepi.2021.100062
mailto:tcoxdenver@aol.com
www.sciencedirect.com/science/journal/25901133
https://www.sciencedirect.com/journal/global-epidemiology
https://doi.org/10.1016/j.gloepi.2021.100065
https://doi.org/10.1016/j.gloepi.2021.100065
https://doi.org/10.1016/j.gloepi.2021.100065
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gloepi.2021.100065&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Global Epidemiology 3 (2021) 100065

2

example, how lung cancer risk is changed by increased vitamin 
consumption. The unexpected results of the trial illustrate that the 
signs and magnitudes of such changes in probabilities of adverse 
outcomes may have no relation to the signs and magnitudes of 
observed differences in outcome prevalence or incidence between 
differently exposed groups. It is common practice in much current 
applied epidemiology to refer to changes in risk in a target population 
of interest per unit change in exposure when what is really meant is 
an observed difference in risk across populations with different 
exposure levels per unit difference in exposure [14]. These utterly 
distinct concepts should not be conflated [42].  

• In 2005, the United States Food and Drug Administration (FDA) 
withdrew approval for use of enrofloxacin, a fluoroquinolone (FQ) 
antibiotic used to prevent and treat fatal bacterial diseases in poultry, 
in order to reduce the potential for FQ-resistant bacterial infections 
in human patients [63]. The decision was supported by an epide-
miological risk model that assumed that human cases of FQ-resistant 
Campylobacter jejuni infection per year are proportional to FQ use in 
chickens [6]. After more than a decade, however, it has proved 
difficult to find any impact of agricultural use of these antibiotics on 
their efficacy in treating human infections [60,66]. As predicted by 
risk assessment models that examined the likely causes of resistant 
cases in human patients (primarily, human use of ciprofloxacin) 
[46], the withdrawal of FQ use in animals was followed by a prompt 
reversal of a decades-long trend of decreasing Campylobacter jejuni 
rates [70], and by sustained increases in FQ-resistance in human 
patients [1,25]. These developments highlight the fallacy of 
confusing a fraction of human resistant infections attributed to animal 
use with the fraction of such cases preventable by eliminating animal 
use.  

• Green et al. [22] conducted a case-control analysis in a large UK data 
set (the UK General Practice Research Database cohort of about 6 
million people) to investigate whether oral bisphosphonates taken to 
combat osteoporosis increase the risk of esophageal cancer. They 
reported that the incidence of esophageal cancer was significantly 
increased in people with one or more previous prescriptions for oral 
bisphosphonates compared with those with no such prescriptions. 
But Cardwell et al. [8], examining the same dataset using cohort 
analysis, reported that the use of oral bisphosphonates was not 
significantly associated with increased risk of gastric cancer. These 
opposite conclusions from the same data illustrate the dominant role 
that modeling assumptions and methods can play in conclusions about 
associations. 

• Decades of epidemiological studies have shown clear statistical as-
sociations between estimated levels of particulate air pollution and 
observed mortality rates, at least when common confounders are not 
fully controlled [7], creating a widespread expectation and narrative 
that reducing particulate air pollution reduces mortality rates (e.g., 
[27]). Yet, a recent systematic examination of over three dozen 
intervention studies that reduced ambient air pollution concluded 
that “[I]t was difficult to derive overall conclusions regarding the 
effectiveness of interventions” in improving air quality or health [7]. 
For example, regulatory interventions reduced particulate air 
pollution in Ireland by about 70%, or over 36 mg/m3, yet produced 
no detectable reductions in all-cause mortality rates in large affected 
populations [17,69] despite decades of much-publicized (and 
ongoing) claims to the contrary [10,27]. 

These cases illustrate that, in current practice, epidemiological as-
sociations and models, and quantitative attributions of risk to exposure 
based on them, are not always trustworthy guides to how to improve 
human health. Proposed remedies and improvements such as quantita-
tive bias analysis [29] are often not applied in practice. A more trust-
worthy type of analysis is needed to identify interventions that 
demonstrably improve public health. 

An area of causal artificial intelligence (CAI) has developed at the 

intersection of epidemiology [61], philosophy [33], computer science 
[19], statistics [34,42], econometrics ([23,54, 71], information physics 
[72], artificial intelligence [5,18,38,39], machine learning [37], sys-
tems biology [28], and genetics [20,65]. CAI provides ways to use 
realistically limited and imperfect observational data, together with 
mechanistic knowledge, to address interventional causal questions. CAI 
methods can predict whether and by how much changing exposures 
would change probabilities of adverse health responses while account-
ing for differences in conditions and covariates across studies and 
affected populations. They work only under certain conditions and as-
sumptions, but these can be empirically tested and verified, unlike ap-
proaches to causal inference that rely on untestable assumptions [57]. 
The following sections summarize essential ideas and recent advances in 
CAI and assess their potential to provide useful answers to causal 
questions about epidemiological exposure-response data – especially, 
what fraction of disease cases would be prevented by reducing or 
eliminating exposure. They seek to provide an alternative to association- 
based measures such as PAF, PC, etc. to better represent the implications 
of causal mechanisms – even if only partly elucidated – for understanding 
and predicting how changing exposure changes risks of adverse health 
effects. 

CAI conceptual framework: qualitative structure of causal 
networks of probabilistic causal mechanisms 

This section introduces an approach to interventional causal analysis 
and interpretation of data. Although we call it causal artificial intelli-
gence (CAI), this approach was developed by scientists from many dis-
ciplines over the past century; Table 1 notes some key milestones in this 
development. CAI treats causation as predictable propagation of 
changes (or their probabilities) through networks of random variables. It 
is not restricted to binary events or to deterministic propagation of 
changes. Rather, beginning with path analysis [65] and extending 
through current methods, CAI models causality in terms of propagation of 
changes through networks of directed dependencies between random 
variables. 

Qualitatively, dependencies can be represented by networks. One 
way to do so is as follows.  

• Nodes in a network represent random variables. 
• A link between two nodes represents a statistical dependency be-

tween them, meaning that observing one provides information about 
the other, although the dependency need not be causal. (By Bayes’ 
Rule or the definition of conditional probability, statistical depen-
dence is symmetric: if P(X | Y) differs from P(X), then P(Y | X) differs 
from P(Y), since P(Y | X) = P(X | Y)P(Y)/P(X) and P(X | Y)/P(X) 
differs from 1. In information-theoretic terms, two random variables 
X and Y are dependent if and only if they have positive mutual in-
formation, I(X; Y) > 0, where the mutual information I(X; Y) mea-
sures the expected reduction in uncertainty (entropy) of either 
variable from conditioning on the other: I(X; Y) = H(Y) - H(Y | X) = H 
(X) - H(X| Y), where H(X) = entropy of X [11].)  

• Absence of a link between nodes shows that they are conditionally 
independent of each other, given the values of other variables. For 
example, in the directed acyclic graph (DAG) model X → Y → Z, 
where X = exposure, Y = internal dose, and Z = probability of death, 
Z might be unconditionally dependent on both X and Y (each vari-
able is positively correlated with the other two), but the DAG 
structure shows that Z is conditionally independent of X given Y: 
once Y is known, X provides no further information about Z. In this 
case, Z depends directly on Y but only indirectly on X. Quantitatively, 
in any such chain model X → Y → Z, observing X gives at least as 
much information about its direct effect Y as about its indirect effect 
Z: I(X; Y) ≥ I(X; Z) [11]. 
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• Directed links (represented by arrows) without causal in-
terpretations simply show one way (typically there are many) to 
factor a joint distribution of the variables into products of condi-
tional and marginal distributions. For example, the joint distribution 
for two random variables X and Y can be factored equally well as P(x, 
y) = P(x)P(y | x), corresponding to the DAG X → Y; or as P(x, y) = P 
(y)P(x | y), corresponding to the DAG Y → X.  

• Directed links with causal interpretations show the direction of 
causality: changes propagate from the variable at the tail of an arrow 
to the variable at its head a concept sometimes formalized via the 
closely interrelated concepts of directed information flow, transfer 
entropy, and Granger causation in which information flows from one 
time series variable X to another Y creates positive mutual infor-
mation between the past of X and the future of Y, even after 

conditioning on the past of Y [72, 77]. In a DAG model, if a directed 
link X → Y has a manipulative (interventional) causal interpretation, 
then changing the value (or distribution) of X changes the condi-
tional distribution of Y via the formula P(y) = ΣxP(y | x)P(x). If 
changes propagate from X to Y and not from Y to X, then only X → Y 
has a valid causal interpretation as well as a valid statistical 
interpretation.  

• Undirected links can be used to represent statistical associations 
without clear directions or causal interpretations, creating graphs 
that generalize DAGs. For example, if small cities are much more 
common in the south than in the north of a country, then condi-
tioning on the observation that someone lives in a small city may 
increase the conditional probability that she lives in the southern 
region, and yet we might not want to say that either condition is a 
direct cause of the other.  

• A Bayesian network (BN) is a DAG model in which all links are 
directed. If the directed links all have causal interpretations, then the 
BN is called a causal Bayesian network. If each node has a known 
conditional probability table (CPT), then the BN model is said to be 
fully specified. 

Fig. 1 shows an example of a BN fit to data on air pollution, weather, 
geographic, and elderly cardiovascular-pulmonary disease (CVD60) 
mortality variables [64]. The data set contains nearly 50 million records 
from the United Kingdom, and has adequate power to quantify dozens of 
direct effects, corresponding to the arrows in Fig. 1. The DAG structure 
shows that Month is a common ancestor of ozone (o3) and mortality risk 
(CVD60) and that Region and Year are common parents of fine particu-
late matter (pm2.5) and mortality risk. If this BN structure is correct, 
then the many reported associations between these pollutants and 
mortality risk in studies that do not control for confounders (or common 
ancestors) such as Month, Region, and Year in Fig. 1 require care in causal 
interpretation. For example, the famous Harvard Six Cities study [78] 
concluded that “Although the effects of other, unmeasured risk factors 
cannot be excluded with certainty, these results suggest that fine- 
particulate air pollution, or a more complex pollution mixture associ-
ated with fine particulate matter, contributes to excess mortality in 
certain U.S. cities.” A more cautious interpretation would be that the 
association does not suggest conclusions about what contributes to 
mortality risk, but shows a need to control carefully for differences 
among cities in confounders (analogous to Region, Month, and Year in 
Fig. 1) to discover whether mortality risk depends directly on fine par-
ticulate air pollution, or whether, as in Fig. 1, the association between 
them is explained by confounding. 

Quantitatively, conditional probability tables (CPTs) describe de-
pendencies among random variables. A CPT for a node (variable) tab-
ulates the conditional probability of each of its possible values for each 
combination of values of its parents, i.e., of the variables that point into 
it (its direct causes, if all arrows have causal interpretations). In nota-
tion, denoting the set of parents of X by Pa(X), its CPT is just the set of 
conditional probabilities P(x | Pa(X)) for each possible value x of X and 
each possible set of values for Pa(X). For computational practicality, if 
there are too many possible combinations of parent values to tabulate 
conveniently, or if some of its parents are continuous, then the multi-
variate function P(x | Pa(X)) for node X can be approximated by a 
classification and regression tree (CART) or other function approxima-
tion methods popular in machine learning, such as random forest en-
sembles, deep learning networks, support vector or gradient boosted 
machines, and so forth. We refer to such conditional probability models 
generically as CPTs, although they need not be tables. For an input node 
one with only outward-pointing arrows, i.e., no parents the CPT is 
simply a marginal probability distribution table, P(x), giving the un-
conditional probability of each possible value of the variable. 

CPTs can be recoded as systems of nonparametric structural equa-
tions ([18, 43]). In a causal model, each such equation models a causal 
mechanism by specifying how the probability distribution for the 

Table 1 
Selected milestones in the development of modern causal analysis.  

Milestone Key Ideas 

Path analysis (Wright, 1921) [65] Variations in effects around their mean 
values depend on variations in their 
direct causes. 

Counterfactual causation, potential 
outcomes (Neyman, 1928 [73]; Rubin, 
2005 [57]) 

Differences in causes make their effects 
different from what they otherwise 
would have been. 

Interventional causation in simultaneous 
equation models (Haavelmo, 1943 
[23]) 

Exogenously fixing some variables at 
specified values changes probability 
distributions of variables that depend on 
them. Conditioning differs from fixing 
values [44]. 

Causal ordering of variables in 
simultaneous structural equation 
models (SEMs) (Simon, 1953, 1954 
[54,55]) 

Causes are exogenous to their direct 
effects. Changes in causes create 
changes in their direct effects to restore 
equilibrium. 

Predictive causation (Granger causation) 
in linear time series Wiener, 1956 [74], 
Granger, 1969 [71] 

Past and present changes in causes help 
to explain and predict future changes in 
their effects. The future of an effect is 
not conditionally independent of the 
past of its causes, given its own past. 

Causal loop diagrams (Maruyama, 1963 
75]) 

Dynamic systems adjust until they reach 
equilibrium. The equilibrium is caused 
and explained by a balance of the 
mechanisms that act to change it [38]. 

Quasi-experiments. Internal and external 
validity of causal conclusions 
(Campbell and Stanley, 1963 [76]) 

Differences in effects are explained by 
differences in causes and are not fully 
explained by differences in other 
factors. 

Causal discovery algorithms (Glymour 
and Scheines, 1986; Glymour et al., 
2019 [19, 20]) 

Conditional independence and 
dependence relationships in data 
constrain the set of possible causal 
models for the data-generating process. 

Interventional causation and causal 
ordering (Simon and Iwasaki, 1988 
[56]) 

Exogenously changing causes changes 
the probability distributions of their 
direct effects. 

Causal Bayesian networks, structural 
causal models, nonparametric SEMs, 
and conditional independence and 
dependence (Pearl, 2000 [41]) 

Effects are not conditionally 
independent of their direct causes, given 
the values of other variables. 
Conditioning on common effects 
induces dependence between parents 
that are conditionally independent. 

Transfer entropy [72] and directed 
information 

Information flows from direct causes to 
their effects over time. Transfer entropy 
generalizes Granger causation. 

Functional causal models (Shimuzu et al., 
2006 [58]) 

An effect is often a simple (e.g., 
additive) function of its direct causes 
and random noise. 

Transportability (Lee and Honovar, 2013; 
Bareinboim and Pearl, 2013 [30, 5]) 

Invariance of causal mechanisms 
(represented by CPTs) enables 
generalization of causal findings across 
studies. 

Invariant causal prediction (ICP) (Peters 
et al., 2016; Prosperi et al., 2020 [45, 
47]) 

Causal laws are universal: if levels for all 
of the direct causes of an effect are the 
same, then the conditional probability 
distribution of the effect should be the 
same across settings (e.g., studies) and 
interventions.  
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dependent variable on its left side depends on the values of the inde-
pendent variables on its right side, which correspond to the dependent 
variable’s parents in a graphical representation. The asymmetry of 
causality is captured by the convention that changes flow from the right 
side to the left side: if a right-side variable is changed, then the left-side 
variable adjusts to a new value to restore equality. As a simple deter-
ministic example, the structural equation. P = nRT/V implies that if an 
exogenous intervention doubles V, then P will be reduced to half its 
initial value. The detailed timing of the adjustment process is left un-
specified: interventions that change the right-side variables cause the 
left-side variable to change until the equation is again satisfied, but how 
long this takes and, more generally, the time frame(s) over which 
changes are considered is not given by the structural equation (or the 
corresponding CPT). Dynamic BNs (DBNs) that treat variables in 
different periods as different variables can model change over time to a 
limited extent, but different tools, such as systems of algebraic and or-
dinary differential equations, are needed to simulate dynamic systems in 
more detail. A system of simultaneous structural equations is called a 
structural equation model (SEM). An example of a deterministic SEM is 
the following system of simultaneous equations: 

P = nRT/V. 
F = PA. 
a = F/m. 
(For a physical interpretation, variables P, V, T, F, A, m, and a might 

respectively represent pressure, volume, temperature, force, area, mass, 
and acceleration in a system involving a piston pushing a load, and n and 

R are constants.) A corresponding DAG model is as follows, where we 
subsume constants n and R into the formula (structural equation) 
determining P from V and T:

Equations in an SEM corresponding to a causal DAG model can be 
partially ordered by causality using the principle that effects are deter-
mined by their causes [18]. In this DAG, T is shown as a direct cause of P 
and an indirect cause of F and a, implying that exogenously changing T 
will change P, which in turn will change F and a (other things, such as V, 
A and m, being held equal). But exogenously changing F (e.g., by 
pushing on the piston head) will not change P or T, if this DAG structure 
correctly describes the system. In a probabilistic SEM, the right sides of 
structural equations may contain random and latent (unmeasured) 
variables, so that observed values of right-side variables only determine 
the probability distributions of left-side variables. Such probabilistic 
SEMs are equivalent to BNs, with the structural equations playing the 
roles of CPTs [18]. The equations represent causal mechanisms by 
describing how probability distributions for the dependent variables on 
the left respond to changes in their direct causes on the right. 

Fig. 1. A Bayesian network (BN) structure for air pollutants (pm2.5 = fine particulate matter, pm10 = coarse particulate matter, o3 = ozone, so2 = sulfur dioxide, 
no2 = nitrogen dioxide, co = carbon monoxide); cardiovascular-pulmonary disease mortality for people over age 60 (CVD60); and related weather and geographic 
variables (e.g., wd = wind direction, t2m = 2 m temperature, ws = wind speed, etc.). Source: [64]. 
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Practical algorithms for quantitative causal inference and 
prediction with realistically imperfect data 

This section summarizes major developments in practical algorithms 
for quantitative probabilistic inference using BNs and more general 
probabilistic models. The following classes of algorithms draw useful 
quantitative conclusions and recommendations from fully specified BNs 
and observations.  

• Inference algorithms implement Bayes’ Rule for fully specified BNs 
[48]. They compute the posterior distributions of all unobserved 
variables in a BN (and their joint posterior distribution) given any 
feasible set of observed or assumed values of other variables. These 
algorithms are useful for probabilistic expert systems and fault 
diagnosis, predictive maintenance, medical diagnosis and prognosis, 
and similar applications where probabilistic inferences are needed 
about unobserved variables from observed ones. 

• Interventional causal prediction algorithms [32] predict how in-
terventions that set one or more variables to specified values will 
change the probability distributions of other variables that depend 
on them. Pioneered in the 1940s in econometrics [23], interventional 
causation has been further developed in the influential do-calculus of 
Pearl and co-workers. The do-calculus denotes by do(x) the operation 
of intervening to set variable X to a specific value, x e.g., setting 
exposure to zero, or to a reduced value. It determines which inter-
ventional causal effects can be estimated from observational data in a 
BN, and provides constructive algorithms to estimate them, essen-
tially by “surgery” on DAGs that disconnects exogenously manipu-
lated variables from their up-stream causes while allowing their 
exogenously set values to affect variables that depend on them via 
CPTs [59]. 

• BN learning and causal discovery algorithms [20] use (a) condi-
tional independence and dependence constraints identified in the 
data, together with (b) scoring methods (similar to traditional model- 
selection methods such as the Bayesian information criterion (BIC) 
scores based on the likelihood of the data penalized for model 
complexity) and (c) knowledge-based constraints (e.g., that high 
temperature might cause elderly mortality, but elderly mortality 
cannot cause high temperature) to identify BN structures and CPT 
estimates that are most consistent with available knowledge and 
data. These “BN learning” algorithms address the practical question 
of how to estimate fully specified BNs from data. If arrow directions 
reflecting causality cannot be uniquely determined from available 
knowledge and data, then ensembles of multiple plausible BN models 
can still be used to support quantitative inferences despite model 
uncertainty [31,34].  

• Causal effect estimation algorithms [62] analyze the DAG structures 
of BNs to automatically identify subsets of variables to condition on, 
called adjustment sets, to obtain unbiased estimates of the direct or 
total causal effect of one variable (such as exposure) on another (such 
as mortality rate), taking into account the values of other variables 
(e.g., co-exposures, co-morbidities, or other covariates that also 
affect mortality risk). These algorithms generalize the idea that it is 
necessary to condition on common parents or ancestors of exposure 
and response to control for confounding, but it is necessary to not 
condition on common children or descendants in order to avoid 
inducing collider bias. Large BNs often have several possible 
adjustment sets for the same causal effect. These can be used to check 
the internal consistency of the BN structure by testing whether the 
different adjustments sets lead to estimates for causal effects that do 
not differ significantly from each other [2]. Visualizations of how one 
variable (e.g., mortality risk) depends on another (e.g., exposure) 
while conditioning on observed levels of variables in an adjustment 
set and averaging over the empirical conditional distributions of the 
remaining variables can be obtained via accumulated local effects 
(ALE) plots [3].  

• Explanation algorithms. BN inference algorithms can be modified to 
identify the most probable values of unobserved variables, given 
observed or assumed values of other variables. These and closely 
related concepts (most probable explanations, most relevant expla-
nations, and maximum a posteriori probability explanations) can be 
applied to causal Bayesian networks both to help diagnose and 
explain observed conditions and to identify how hypothesized future 
conditions (e.g., failures of complex systems or attaining desired 
target states) might be caused, prevented, or delayed by current in-
terventions [67].  

• Decision optimization and probabilistic planning algorithms. BN 
inference algorithms can be modified to solve for values of decision 
variables to maximize the expected utility of consequences in BNs 
augmented with decision variables and value nodes, called influence 
diagrams [51,52]. Multiperiod decision optimization algorithms also 
allow for planning and decision optimization over time under 
probabilistic uncertainty [24]. These developments can help manage 
uncertain risks over time in settings where it is necessary to learn 
from experience how effective interventions are (e.g., how well mask 
mandates or vaccines reduce risk of COVID-19 spread), or in which 
their effectiveness changes randomly over time. 

These algorithms are now widely available, e.g., as free R packages in 
the CRAN repository, https://cran.r-project.org/. They provide 
computationally practical methods and software for applying fully 
specified BNs to draw inferences from observations, predict the effects of 
interventions, and optimize sequences of interventions. Each class of 
algorithms has also been extended beyond the DAG framework, as 
simultaneous equations or underlying dynamic models (e.g., ordinary 
differential equations) with directed cycles in dependency relationships 
among variables are often more natural models than DAGs for repre-
senting systems with simultaneous causation, feedback, or undirected 
statistical associations [20,23,38]. 

Fully specified BNs and more general probabilistic models provide 
constructive solutions to several important technical statistical chal-
lenges in applied epidemiology and health risk assessment with realis-
tically imperfect data and knowledge, as follows.  

• Unmeasured (latent) variables. BN inference algorithms enable the 
calculation of joint posterior probabilities for unobserved (latent) 
quantities by conditioning on the values of observed quantities. 
Latent variables pose no substantial challenge for inference in a 
completely specified BN, since BN algorithms automatically calcu-
late their contributions to observations. For example, if X → Y → Z, 
where X = exposure, Y = internal dose, and Z = mortality risk, and if 
Y is not measured but X is, then the conditional probability distri-
bution for Z based on the observed exposure X = x is simply P(z | x) 
= ΣyP(z | y)P(y | x). This sum models the unobserved contribution of 
Y by weighing each of its possible values by its conditional proba-
bility given observations (“marginalizing out” the unobserved vari-
able). By contrast, if Y is observed to have value y*, then the 
probability distribution for Z becomes P(z | y*), and the observed 
value of X is irrelevant. If Y is not measured but diagnosis of a co- 
morbidity (e.g., chronic obstructive pulmonary disease, COPD) 
caused by Y is available for each subject, indicated by W = 1 for a 
positive diagnosis and W = 0 otherwise, then the BN would be 
extended as follows:  

X → Y → Z
↓
W  

The probability distribution of mortality risk Z would now be 
conditioned on both observed variables, X and W. In short, BN 
inference algorithms condition on whatever observations are avail-
able (e.g., X and W in this example) to obtain predictive posterior 
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distributions for all unobserved quantities, including latent variables 
(such as Y in this example). If a fully specified BN is not known, 
however, and must be estimated from data, then latent variables can 
complicate the estimation process. Unique estimates may be 
achievable only in special cases, such as for linear models with 
normally distributed errors [9], and ensembles of possible BNs must 
be used otherwise [31,34]. 

• Missing data. Missing data values can be handled in the BN frame-
work by imputing (sampling) their uncertain values from their 
conditional distributions given observed values. Adaptations of 
standard missing data techniques such as the expectation- 
maximization (EM) algorithm have proved effective for BN 
learning with incomplete data [37,39].  

• Errors in variables. Measurement errors can be treated as a special 
case of latent variables. For example, suppose that individual expo-
sures are not known, but are estimated by spatial smoothing of 
measurements at monitoring stations or satellite data for pollutant 
data, or from job-exposure matrices for occupational exposures. 
Then instead of the measurement error-free model X → Z, where X =
exposure and Z = mortality risk, a BN with measurement error would 
be M ← X → Z, where M is the estimated or measured exposure and X 
is the unobserved (latent) true exposure. Given observed values of M, 
the corresponding conditional probability distributions for X and Z 
can be quantified by standard BN inference algorithms.  

• Model specification errors. The use of flexible non-parametric 
methods such as random forest to quantify CPTs minimizes the po-
tential for model specification error, e.g., omitting relevant variables 
or interaction terms, using incorrect functional forms, or mis-
specifying error distributions. In regression models, these mistakes 
can create statistically significant coefficients for variables that have 
no causal relevance, but that reduce the mean squared prediction 
error for the dependent variable arising from model specification 
errors [13]. Nonparametric BN estimation methods avoid these 
parametric modeling challenges.  

• Model uncertainty. If causal discovery algorithms identify several 
possible BN models, then uncertainty about which one is correct (or 
best describes the data-generating process) can also be treated via 
latent variables by making the identity of that model the latent 
variable of interest. An exposure-response model with model un-
certainty can be represented as X → Z ← D, where X = exposure, Z =
mortality risk, and D = indicator of the correct model. Treating D as a 
latent variable, predictive distributions for Z with model uncertainty 
are derived by weighing members of the ensemble of possible models 
by their probabilities: P(z | x) = ΣdP(z | x, d)P(d) where d indexes 
possible models and P(d) is the conditional probability of model 
d given observations. If the number of possible models is very large 
and/or prior probabilities for models are unknown, then model- 
averaging techniques that discard relatively low-likelihood models 
using Bayes factors can be used to improve computational efficiency 
[31,34]. 

• Interindividual heterogeneity. If different individuals in a popula-
tion have different individual exposure-response functions, e.g., due 
to phenotypic variations in biochemistry, then no single aggregate 
exposure-response relationship can adequately represent their het-
erogeneous responses to an exogenous change in exposures. 
Observed sources of heterogeneity, such as differences in age, in-
come, smoking, or health status, can be modeled by causal random 
forests and generalized random forests [4]. Unobserved sources of 
interindividual heterogeneity can be modeled as a composite latent 
variable (the individual’s “type”), allowing them to be treated as 
another special case of latent variables. For example,the model X → 
Z ← H, where X = exposure, Z = mortality risk, and H = individual 
type (unobserved) leads to P(z | x) = ΣhP(z | x, h)P(h) where h in-
dexes possible types; these serve as the components of this finite 
mixture distribution model.  

• Internal validity of causal conclusions. Internal validity addresses 
whether estimated causal effects in a study correctly describe 
causation in the study (Campbell and Stanley, 1963 [76]). To 
establish the internal validity of causal effects estimates, it is 
necessary to refute rival (non-causal) explanations for the data and to 
condition on appropriate adjustment sets of other variables. For BNs, 
causal effect estimation algorithms allow adjustment sets to be 
computed from BN DAG structures [62]. Comparing causal effect 
estimates for multiple adjustment sets (if there are several) reveals 
whether they are internally consistent.  

• External validity of causal predictions. If a causal BN model is 
learned (i.e., both its structure and its CPTs are estimated) from data 
for one or more populations, will its causal conclusions and pre-
dictions, e.g., about how mortality risk depends on exposure, prove 
accurate for a different population? This question of external validity 
of causal conclusions has challenged generations of epidemiologists 
and risk assessors (Campbell and Stanley, 1963 [76, 50]). It has been 
solved relatively recently for causal BNs by using the do-calculus to 
establish necessary and sufficient conditions for “transportability” (i. 
e., generalization) of causal relationships, modeled by causal CPTs, 
from one population to another [5,30]. A key idea is that, while 
statistical CPTs may differ across populations with different com-
positions of heterogeneous (non-exchangeable) individuals, a causal 
CPT with all of its direct causes included should be invariant across 
populations and interventions [45,47]. This invariant causal predic-
tion property (ICP) for causal CPTs [45], formalizing the intuition that 
fully stated causal laws are universal, can be tested empirically by 
testing whether responses are conditionally independent of the study 
or population from which data come, given the values of the 
variables.  

• Generalization to new conditions. Causal CPTs satisfying the ICP 
property can be used to predict exposure-response relationships in 
target populations with conditions different from those for which 
data have been collected. This is accomplished by applying the ICP 
CPTs to the joint distribution of conditions in the target population. 
What is generalized from past experience is the ICP CPTs. Their 
implications for observable population exposure-response relation-
ships will depend on the joint distribution of conditions that affect 
responses. For example, if Z is a risk indicator with a value of 1 for 
someone who is diagnosed with a certain disease before dying and a 
value of 0 otherwise, and if P(z | Pa(Z)) is the ICP CPT for Z, with 
exposure being one of the parents of Z, then an exposure-response 
curve relating exposure to probability of harm by marginalizing 
out all other parents (i.e., summing or integrating P(z | Pa(Z)) over all 
their possible joint values weighted by their respective conditional 
probabilities or probability densities given the observed level of 
exposure) may be quite different in different populations. Thus, if Z 
has two parents, X = exposure and A = age, each scaled to run from 
0 to 1, where 1 denotes the maximum value in the population, and if 
for any specific exposure x and age z the risk is given by the CPT 
model E(Z | Pa(Z) = (x, a)) = P(Z = 1 | Pa(Z) = (x, a)) = xa, then the 
exposure-response function in a population of young people with a =
0.2 would be E(Z | x) = 0.2x, but the exposure-response function in 
an elderly population with a = 0.9 would be E(Z | x) = 0.9x. 
Invariance (ICP) generalizes the Bradford-Hill consideration of 
“consistency” in exposure-response associations by recognizing that 
populations with different distributions of covariates (e.g., age) may 
have different marginal exposure-response curves for the same 
(invariant) causal CPT. In this example, the invariant CPT model E(Z 
| Pa(Z) = (x, a)) = xa allows the result E(Z | x) = 0.2x for the first 
population to be transported to the prediction E(Z | x) = 0.9x for the 
second population. 

These technical developments address the most common challenges 
for data analysis with realistically incomplete and imperfect data and 
knowledge. They offer data-driven options for dealing with data and 
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model uncertainties and for testing whether causal conclusions from 
past studies hold across diverse study conditions and can confidently be 
generalized to new situations with new combinations of conditions. 
However, our main interest is in the new light these advances shed on 
how to better answer the questions traditionally addressed by attribut-
able risk, PAF, PC, and related epidemiological calculations using 
associational data without causal mechanisms. 

Implications of CAI for calculating and interpreting preventable 
fractions 

Seeing is not doing 

The distinction between inference algorithms and causal prediction 
algorithms emphasizes a crucial philosophical point: contrary to implicit 
assumptions commonly made in calculating and interpreting PAF, PC, 
and other variations on relative risk ratios and absolute risk differences, 
observational data on exposure and response levels do not provide mecha-
nistic information that may be essential to predict correctly how setting 
exposure to zero, or to a reduced level, would change responses in a popu-
lation. Fig. 2 illustrates the problem. It shows 8 data points, one for each 
of 8 individuals. We interpret x as exposure and y as a health outcome, 
such as length of life or annual survival probability (scaled to the axes 
shown). Now, consider an intervention that reduces the value of x for 
each individual to 0. How will their y values change in response? 
Standard epidemiological practice uses regression models to estimate 
the answer, assuming that each dot would slide along an appropriate 
regression line or curve to a new position with x = 0. 

This procedure substitutes the answer to an easy but irrelevant sta-
tistical question (what is the y value associated with x = 0 in a regression 
model fit to the observed data?) for the answer to a hard but relevant 
causal question: how would reducing x to 0 change each y value? The 
answer to the latter question is not, even in principle, revealed by the 
data points alone. Assumptions can be made to help answer it – such as 
that the observed differences in y values are explained (and caused) 
solely by differences in corresponding x values, but the validity of 
resulting predictions and conclusions is then contingent on the validity 
of the assumptions used in deriving them, which may be uncertain. 

Fig. 2 seeks to illustrate this basic distinction between statistical and 
causal questions [42] by showing data for which it is unclear whether it 
is more plausible to expect that the dots would slide leftward and 
downward along their local (upward-sloping, solid) regression lines as x 
is reduced; or that they would slide leftward and upward along the 
global (downward, sloping, dashed) line. The more fundamental point is 
that there is no basis in observed exposure-response data for making either 
prediction, or some other one (e.g., that the y values of all dots would stay 
unchanged as x decreases, or that the dots on the right would travel 

down their local line (red) until x crossed a threshold, perhaps at x = 5, 
where their y values would jump up to the higher (blue) local line, 
possibly reflecting that some biological process or resource is no longer 
saturated or depleted at x values below 5). The responses of y to changes 
in x simply cannot be predicted correctly with confidence from the data, 
as the responses depend on causal mechanisms that are not represented 
in the data. The data show observed levels of x and y, but are silent about 
the causal mechanisms (e.g., described by CPTs or structural equations) 
that predict how and whether changing x would change y. As empha-
sized by Pearl [42] and by econometricians in earlier decades [23,54], 
seeing is not doing: observational data together with regression equa-
tions describing associations among variables do not address causal 
questions about how taking action to set some variables to new levels 
will change others. In fairness to current epidemiology practice, it 
should be noted that observations are often supplemented by assump-
tions for purposes of causal inference (e.g., assumptions of exchange-
ability or no hidden confounders), but such assumptions are often 
untested (and perhaps untestable) or are left implicit, and causal con-
clusions based on them are too often presented without characterizing 
the extent to which they depend on uncertain assumptions, as best 
practice recommends [29]. 

Ambiguity of counterfactuals for PAFs 

The population attributable fraction (PAF) is traditionally defined as 
the ratio (O -E)/O, where O = observed number of cases and E = ex-
pected number of cases under no exposure. The PAF ratio is widely 
interpreted as an estimate of both (a) the fraction of all cases in a pop-
ulation attributable to exposure; and (b) the fraction of all cases that 
would not have occurred had there been no exposure (e.g., [35,36]). The 
CAI framework suggests that these concepts involve crucial ambiguities 
and that PAF = (O -E)/O has no valid but-for or interventional causal 
interpretations, as it does not address causal mechanisms. First, the 
phrase “expected number of cases under no exposure” is ambiguous: it 
does not distinguish between exposures that are observed to be 0 and 
exposures that are set to be 0. In general, these give different expected 
numbers of cases [23,44]. Why exposure is 0 whether because of exog-
enous interventions or by chance under the conditions that have 
generated data so far may matter greatly for predicting E. But the (O -E)/ 
O formula does not specify which (if either) is meant. 

Second, the expected number of cases with exposure set to any 
specific level such as 0 depends in general on levels of other covariates 
that also affect numbers of cases (other parents of risk in a causal BN 
model), such as age, co-exposures, co-morbidities, region, year, etc. The 
(O -E)/O formula does not specify how other variables change when 
exposure is set to 0. It may be physically unrealistic to assume that other 
variables are left unchanged by an intervention that reduces exposure. 
For example, reducing one pollutant may change levels of other pol-
lutants (Fig. 1), of weather variables such as precipitation and temper-
ature, of probabilities of comorbidities that in turn affect expected 
numbers of cases, and so forth. Holding other variables fixed at their pre- 
intervention values would then be an unrealistic, irrelevant counter-
factual scenario. On the other hand, if other variables are set to esti-
mated realistic post-intervention values, then the resulting predicted 
value of E will reflect not only the direct effect of reduced exposure but 
also the effects of changes in the values of other parents of E following 
the change in exposure. To obtain mutually consistent, realistic esti-
mates of how an intervention affects all other variables that affect 
response it is necessary to engage in CAI causal network modeling or 
something much like it (e.g., causal simulation modeling). If no explicit 
decision is made about how to model changes in other (non-exposure) 
variables caused by an intervention, a common alternative is to use a 
regression model to estimate E with exposure equals zero. But regression 
modeling conflates the value of E caused by setting exposure to 0 with the 
predicted value of E if exposure is observed to be 0 under the pre- 
intervention conditions that generated the data for the regression 

Fig. 2. Seeing vs. doing. How y values of the individual data points would 
change if their x values were reduced by a stated amount cannot be determined 
from the data. Source: https://en.wikipedia.org/wiki/Simpson%27s_paradox 
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model. In addition, the estimated coefficient of exposure in an empirical 
regression model typically reflects contributions from non-causal factors 
such as model specification errors, attribution of interaction effects, 
ignored measurement errors, contributions from correlated variables, 
and so forth, rather than a purely causal effect of exposure [13]. The 
value of E predicted by an empirical regression model under the con-
ditions for which data were collected typically has no valid interven-
tional causal interpretation [42] and may not apply for conditions 
following an intervention that changes exposure levels. CAI methods 
address this challenge by analyzing the transportability of estimated 
causal effects to new conditions. Something very similar is needed for 
any process that uses pre-intervention data to predict post-intervention 
case numbers, E. 

There is not a right or wrong answer to what should be assumed 
about how other variables change when exposure changes: this is a 
matter of defining what we mean to calculate. But if E is estimated from 
a regression model, rather than from a causal model of how variables 
change in response to an intervention, then it is not clear what the ratio 
(O -E)/O represents. Contrary to widespread teaching and usage in 
epidemiology, it is usually clear that it does not represent the fraction of 
all cases that would not have occurred had exposure been set to zero. To 
make this methodological point, we consider an extreme case in which 
each of five pollutants is either present or absent. We denote by 1 the 
level of a pollutant when present and by 0 its level when absent. Suppose 
that the causal DAG structure is Z ← X1 → X2 → X3 → X4 → X5 where Z 
indicates an adverse health response (1 = present, 0 = absent) and X1… 
X5 indicate the levels of pollutants 1–5. That is, X1 is a direct cause of Z 
and also of X2; X2 is a direct cause of X3, and so on. Quantitatively, 
suppose that X1 is currently 1 and that the CPTs specify that, in the 
absence of exogenous interventions, each variable is 1 if its parent is 1, 
else it is 0. (Recall that an intervention that exogenously sets a variable 
equal to a new level disconnects it from its parents.) Under these con-
ditions, considering X5 as the pollutant of interest, a regression model of 
past observed Z values against corresponding X5 values would yield O =
1, E = 0, and PAFX5 = 1 as the PAF for pollutant X5. Symmetrically, 
PAFX4 = 1, PAFX3 = 1, and PAFX2 = 1. What these calculations do not 
reveal is that setting any of these variables equal to 0 would have no 
effect on Z: only X1 is a cause of Z. The PAF ratios for the other variables 
are irrelevant for predicting how or whether Z would change if exoge-
nous interventions set the other exposures to zero. The same applies to 
probability of causation and burden of disease calculations: PC values of 
1 for variables X2 through X5 do not imply that reducing these exposures 
would have any effect on case numbers. 

CAI algorithms make it straightforward to calculate causally mean-
ingful PAFs from a fully specified causal BN model: simply calculate the 
expected number of cases predicted by the causal BN under present (pre- 
intervention) and new (post-intervention) conditions. Call the first O 
and the second E, and apply the PAF = (O -E)/O formula to these values. 
In the present example, setting X5 to 1 or to 0 leaves Z unchanged, so O 
= E and the causal PAF for an intervention that changes X5 from 1 to 0 is 
PAFX5 = 0. Symmetrically, PAFX4 = 0, PAFX3 = 0, and PAFX2 = 0; but 
PAFX1 = 1. Note that PAFs are now not attached to exposures or other 
risk factors, but to interventions that change levels of exposures (and 
possibly other variables). That is, instead of attributing some fraction of 
cases to a pollutant a proposition that makes no testable or falsifiable 
predictions, and in this sense is devoid of scientific content these 
intervention-specific causal PAFs predict the fraction of current cases that 
would be prevented by interventions that change current conditions, 
thereby altering the data-generating process. Arguably, this is the in-
formation that PAFs should provide to have value to policy-makers 
choosing among various possible interventions. Calculating prevent-
able fractions for interventions also avoids the tendency of PAFs and PCs 
for risk factors to sum to more than 100% – e.g., the PAFs (and PCs) for 
pollutants X1 through X5 in the above example to sum to 5. The causal 
PAF for any (single or combined) intervention is always between 0 and 
1. 

Discussion and conclusions: toward pragmatic causal PAF 
calculations 

Causal artificial intelligence (CAI) suggests the following perspec-
tives and advice on how to better calculate and interpret epidemiolog-
ical and health risk assessment concepts such as population attributable 
fraction (PAF) and similar concepts to be more useful to risk manage-
ment decision-makers: 

1. Calculate PAFs for interventions. To inform practical risk man-
agement decisions, PAFs should be calculated for interventions 
rather than for exposures or risk factors. The PAF for an intervention 
is defined by the familiar formula PAF = (O -E)/O, but with O and E 
reinterpreted as causal predictions for the relevant incidence rates or 
risk measures, e.g., expected number of cases per year for population 
risks or expected cases per person-year for individual risks, without 
the intervention and with it, respectively. We refer to predicting O, 
rather than simply recording its observed value, because true inci-
dence rates are seldom perfectly observable, but must be predicted 
from data with realistic data uncertainties and model uncertainties 
and limitations (e.g., latent variables, missing data, measurement 
errors, model specification uncertainty, and interindividual 
heterogeneity).  

2. Use causal models to make causal predictions of O and E. Causal 
predictions of O and E can be obtained from a fully specified causal 
BN model if one is known. Valid causal predictions of O and E usually 
cannot be obtained from regression models or other associational 
models fit to pre-intervention data without modeling relevant causal 
mechanisms (represented in CAI by causal CPTs or structural causal 
model equations) [41]. If an appropriate causal model for predicting 
O and E is not known, then the technical methods and algorithms we 
have discussed (e.g., ensembles of non-parametric estimates of 
causal BN structures and CPTs) can be used to estimate uncertainty 
distributions of O, E, and PAF based on realistically imperfect data 
and knowledge. 

3. Interpret resulting PAF estimates, PAF ¼ (O -E)/O, as the pre-
ventable fractions of cases for interventions, i.e., (O -E)/O is the 
fraction of cases that is predicted to be prevented by an intervention 
that is predicted to replace O with E. 

In this view, attributing cases (or of a fraction of cases) to specific 
exposures, factors or interventions is unnecessary and adds no value to 
preventable fraction calculations. Attributing cases to causes does not 
make testable or falsifiable predictions or empirically verifiable or 
refutable claims. Preventable fraction calculations do. But an interven-
tion that is predicted to reduce population or individual risks (for at least 
some individuals) may well do so by changing several variables, e.g., 
levels or conditional probability distributions of multiple pollutants and 
weather variables that depend on them. The accounting challenge of 
allocating or attributing credit or blame for results to the multiple 
changes that jointly produce them may be intellectually interesting, but 
it does not change anything observable in the world. There is no need or 
value for such attribution in any rational decision-making process that is 
driven by changes in observable results, such as the fractional decrease 
in case incidence caused by an intervention. Likewise, causal determi-
nation exercises that seek to determine whether specific exposures 
should be called causes (or likely causes, possible causes, etc.) of specific 
health outcomes, are exercises in terminology without empirical con-
tent: they are not needed or useful for predicting the consequences of 
interventions using CAI methods. 

From this perspective, what matters for risk management decision- 
making is how alternative feasible interventions change outcomes (or 
their probabilities). This cannot in general be answered from associa-
tions between observations in past (pre-intervention) data; nor by any 
other analysis of pre-intervention data that does not model relevant 
causal mechanisms. But it can be answered straightforwardly by CAI 

L.A. Cox Jr                                                                                                                                                                                                                                       



Global Epidemiology 3 (2021) 100065

9

methods that describe relevant mechanistic knowledge via CPTs or 
structural equations. Making qualitative causal determinations and 
calculating attributable fractions (and PCs, PARs, BODs, and related 
differences and ratios) for exposures and other risk factors based on 
regression models or other associational analyses of pre-intervention 
data, without predicting post-intervention changes in outcomes or 
their probability distributions using models of causal mechanisms, 
should be viewed as purely definitional exercises without empirical 
content. Students and practitioners can safely skip them without 
impairing ability to identify decisions that make preferred outcomes 
more probable. On the other hand, epidemiologists who wish to predict 
how alternative interventions would affect public or occupational health 
should use CAI methods to estimate O and predict E from available data 
and from estimated causal CPTs or nonparametric structural causal 
models representing high-level summaries of causal mechanisms. These 
tools allow calculation of preventable fractions and related quantities, 
such as uncertainty distributions for absolute numbers of cases per year 
or per person-year, before and after interventions. Ultimately, infor-
mation about changes in outcome probability distributions caused by 
interventions, not attribution of fractions of cases to risk factors, is 
needed to guide more causally effective risk management decision- 
making that more reliably causes desired results. 
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