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Introduced in 1983, Bland-Altman methods is now considered the standard approach for assessment of
agreement between two methods of measurement. The method is widely used by researchers in various
disciplines so that the Bland-Altman 1986 Lancet paper has been named as the 29th mostly highly cited
paper ever, over all fields. However, two papers by Hopkins (2004) and Krouwer (2007) questioned the
validity of the Bland-Altman analysis. We review the points of critical papers and provide responses to
them. The discussions in the critical papers of the Bland-Altman method are scientifically delusive. Hop-
kins misused the Bland-Altman methodology for research question of model validation and also incor-
rectly used least-square regression when there is measurement error in the predictor. The problem
with Krouwers' paper is making sweeping generalisation of a very narrow and somewhat unrealistic
situation. The method proposed by Bland and Altman should be used when the research question is
method comparison.

© 2020 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

What is the purpose of a Bland-Altman plot? What research question is it
designed to answer?

The first paper introducing the Bland-Altman plot appears in
1983 in The Statistician [1]. The paper introduces the topic of wanting
‘to compare two methods of measuring some quantity, such as blood
pressure, gestational age, or cardiac stroke volume’. Immediately,
before defining the research question, the authors state one situation
which they do not intend to address: that of ‘calibration’, namely
comparing a simple and approximate method of measurement
with a very precise one giving the true values. Instead they focus
on the situation where both methods have measurement error. The
question they cite as not having been answered by current methods
is this: ‘Do the two methods of measurement agree sufficiently
closely?
rch Institute, Iran University of
. Box: 1449614535, Iran.
pour).

en access article under the CC BY-NC
What methods have been put forward for addressing this research ques-
tion? What are their strengths and weaknesses?

Correlation is often erroneously used as part of an assessment as to
whether two measures agree. The correlation coefficient measures the
strength of linear association between two variables. If two methods
of measurement are to be considered to be in agreement, it will be nec-
essary for them to have a high degree of correlation (‘high’ being a mat-
ter of judgement as to what is acceptable). However this is not
sufficient; Pearson's correlation, looking for a linear association, mea-
sures how well the linear form Y = a + bX between variables X and Y
fits the data. It does not specify the values a and b must take; for the
measures to agree, a would need to be 0 and b, 1. So if as in the example
given by Bland and Altman [2] we analyzed measurements of subcuta-
neous fat using calipers and half-calipers, we would get a high agree-
ment but a slope (b) near to 2. The values on the two measures would
not be interchangeable, but our correlation coefficient would not tell
us this. Similarly if we measured weights on two sets of scales and one
were incorrectly zeroed, consistently adding 50 g to all measurements,
the correlation coefficient may well show strong association between
scales without picking up on this consistent disagreement. Whilst it is
notwrong to report a correlation, and indeed can be helpful, it is not suf-
ficient for describing how well two measures agree.
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Regression is closely linked to correlation, and gives complementary
information. In addition to strength of association (reported as r2, where
r is Pearson's correlation coefficient), it also estimates the values of a
and b which provide the best straight line approximation of the rela-
tionship between Y and X.

There are two problems with using linear regression for analysis of
measurement agreement. The first is that least squares regression, the
methodmost commonly used, assumes nomeasurement error in the in-
dependent variable of the equation (X). Thismaybefine if Xwere the ab-
solute, known, true values but in the case where both Y and X are
approximations to the true value this assumption does not hold. The
knock-on effect of the independent measurement errors is that the
slope of the line Y=a+bX is always lower than the true slope of the re-
lationship would be if we could havemeasured both Y and X accurately:

The simple linear regression model is Yi = a + bXi + εi, but when
there is a measurement error in X another term needs to be added to
the model: Yi = a + b(Xi + δi) + εi, where δi is the random measure-
ment error in X. Let the population variance of X be denoted by σX

2

and the variance of measurement errors δi by σδ
2. If we fit the model

using ordinary least squares, the expected value of the slope whose
true value (unknown) is b is.

E bOLS
� �

¼ b

1þ σ2
δ

.
σ2

X

� � < b ð1Þ

[[1], p. 315]
One way to explain this is as follows. Measurement errors in X may

result in twomeasured X values, X1 and X2 being recorded as near, fur-
ther, or the same distance from, each other than the true values are. If
they cross over so that X1 > X2 but the true value of X1 is smaller
than that of X2, this reverses the direction of a line Y = a + bX since
the direction of X1-X2 is changed. If the two are simply brought nearer
together without crossing, the slope would be expected to increase; if
they are brought further apart, the slope would decrease (the mean
value of Y does not change because X has been incorrectly measured).
If errors are centred around zero, the expectation is that half the time
points are brought further apart, and half the time are either closer to-
gether or crossed over. This means that less than half the time points
are closer without crossing; as this is the only situation in which the
slope increases and it decreases in all others, on average the slope can
be expected to decrease.

Another way to think of it is that the largest measured values ob-
served are more likely to be overestimates than underestimates, since
if they were underestimates the true values would be even further dis-
tanced from themain body of the data. Similarly the smallest values are
more likely to be underestimates. On average, the Y values from under-
estimates will be larger than the true regression line would predict, be-
cause we should slide up the line to the true value, and smaller from
overestimates. Hence we expect points at the extreme left of a graph
to be above the true regression line and points at the extreme right to
be below the line. This pulls the slope of the line closer to zero.

This problem of underestimation of the slope (and overestimation of
the intercept) in the presence of X errors can be averted by using a form
of regression which allows for errors in both Y and X (for example
Deming regression [3]). However even then, regression has not fully an-
swered the question of how well the measures agree which is the sec-
ond problem. It is one thing to be able to report a slope and intercept
close to 1 and 0 respectively, and a high r2 value. But in any real exper-
iment the data will not lie perfectly along the regression line. How can
we convert the r2, slope and intercept into useful information on how
well the measures agree?

Bland-Altman analysis
Themethod proposed by Bland andAltman [2] provides an interpre-

tation ofmeasurement agreementwhich is easy to translate into clinical
2

relevance, namely a reference range within which 95% of all differences
betweenmeasurements using the twomethods are likely to lie. It can be
summarized in several steps:

1. Is there an association between measurement error and the true
value?

2. If no to (1), calculate the mean and standard deviation of the differ-
ence between methods

3. Use these figures to calculate

I. The bias (=mean difference)
II. A 95% reference range for difference between values for the two

methods measuring the same true quantity (‘Limits of Agree-
ment’): bias +/− 1.96 X standard deviation of differences [4].

4. Bias and limits of agreement may be superimposed on a Bland-
Altman plot for visual presentation of the data.

5. Use the limits of agreement to assess whether differences are clini-
cally acceptable

The Bland-Altman plot of difference vs. mean of the two methods is
introduced in order to evaluate the question of agreement. It is worth
noting that the plot itself is only a part of the method to answer this
question; it is intended as a visual check on the data and as a helpful
way to display the results. If we have two variablemethods of measure-
ment to compare, often the true value is unknown and so we use the
mean of the two methods as our best estimator for the true value. Like-
wisewithout knowing the true valuewe do not know themeasurement
error itself, but the difference between methods is solely due to that
error, and in fact difference, or how closely the methods agree, is the
quantity we are interested in to answer the research question.

Note that if the Bland-Altman plot shows an association (if yes to
step 1), steps 2 to 5 should not be applied. If the differences are corre-
lated with the true value, bias and limits of agreement for the study
sample will depend on the range of true values used in the study and
hence are not generalizable to future use. Also assuming the variability
in differences is positively correlated with the true values,
superimposing the limits on the plot as in step 4 would instantly show
that the limits are wider than they need to be for small true values
and narrower than they need to be for large true values. One simple so-
lution may be to log-transform the measurements and see if the differ-
ences and means of the log measurements are uncorrelated; if so, steps
1–5 can be carried out on the log scale and bias/limits of agreement
translated back at the end (limits of agreement then being multiplica-
tive rather than additive and should be interpreted as ratio). If transla-
tion to the log scale does not help matters, the standard Bland-Altman
methods mentioned above may not be appropriate but a regression-
based generalisation can be used [2]. There are also other solutions
which have been described elsewhere [5–7].

We should note that as we are unable to measure the true value
(step 1), we use the mean of the two measurements as our best guess
[2]. Therefore, if we see a correlation in the Bland-Altman plot we
should consider two things: first, whether this relationship is because
the mean of the two measures is a poor surrogate for the true value,
or second, whether there really is a relationship between difference
and true value. The first is not always considered [8], but in fact if this
is the only reason for the correlation, it may still be appropriate to
apply the rest of the Bland-Altman method.

In what circumstances would we expect correlation in a Bland-
Altman plot?

Let Y and X be the two measurements by two different methods. As
noted in [8], the correlation between the difference and mean of the
measurements is



Table 1
Correlation between mean and difference, assuming a correlation between the two measures of 0.7.

Variance ratio 1 1.1 1.2 1.5 1.8 2 3 4 5 10 15 20 50

Correlation 0.00 0.07 0.13 0.27 0.39 0.44 0.63 0.72 0.78 0.89 0.93 0.95 0.98
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Corr X−Y ,
X þ Y
2

� �
¼ σ2

X−σ2
Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
X þ σ2

Y

� �2−4ρ2σ2
Xσ

2
Y
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where σX
2 and σY

2 are the variances of X and Y over thewhole study pop-
ulation (not just the measurement error) (e.g. see P. 2338 [7]), and ρ is
the correlation between X and Y. It is easy to see that this will be zero
when the variances of X and Y are equal.

Using the formula above, if Var(X) = k Var(Y) and the correlation
between X and Y isρ, correlation between (X-Y) and (X + Y)/2 is

r ¼ k−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 1ð Þ2−4kρ2

q ð3Þ

regardless of the variances. Table 1 gives values of this correlation for
several variance ratios assuming a correlation between X and Y of 0.7;
as shown in Fig. 1, the correlation in the Bland-Altman plot is larger as
the magnitude of the correlation between X and Y increases.

If the ratio of variances X and Y is far from 1 (e.g. 1.5 or more), a
moderate-large correlation will be observed in the Bland-Altman plot
regardless of any other factors. This correlation varies with the correla-
tion between the two methods of measurement, but is ≥0.2 in magni-
tude in all cases where the ratio is greater than 1.5 (or less than 0.67),
and ≥ 0.5 if the ratio is 3 or more.

Before deciding this is unacceptable and rejecting the Bland-Altman
analysis, recall that the estimate of the ratio of interest is between the
variance of X and variance of Y over all subjects in the sample. In most
method comparison studies it is desirable to test the methods over a
wide range of subjects, and hence there will be wide variability in true
measurements between subjects. Therefore even if the within-subject
variance due solely to measurement error is many times higher for X
than for Y, it is rare for the variance of the measurement error to be
large in comparison to the population variance, and hence the ratio k
is rarely far from 1. For example in a study of gentamicin [9], measuring
bacteria by two methods X and Y twice each, the ratio of X:Y within-
subject (i.e. measurement error) variances is 4.24, but the ratio of total
Fig. 1. Observed correlation between mean and difference of two methods, by c

3

variances is no more than 1.30 (taking a single measurement by each
method).

What does correlation in a Bland-Altman plot imply?

In the case of unequal variances, the Bland-Altman plot shows a re-
lationship between the mean and the difference of single measures on
the two methods, but it does not necessarily imply a relationship be-
tween the true value and the difference. Positive correlation suggests
that the larger themean of the twomeasurements, the larger the differ-
ence will be. Specifically, the difference is in a particular direction, with
measure X likely to be larger thanmeasure Y by a bigger difference, the
larger the mean of the two measurements.

Suppose X is more variable than Y. Most of the big differences ob-
served between X and Y will occur when X is at one of the extremes
of its range, since it is far less likely for Y to take a nearby value. If
there is a large (positive) difference between X and Y, it is likely to be
because there is a value for X near the top of the range. In this instance,
X will be much larger than Y and hence dominate the average. If, on the
other hand, X takes a value near the bottom of the range, again the dif-
ference will be large (but negative) and themeanwill also be low. If we
plot the difference as Xminus Y this leads to a predominance of extreme
values in the top right and bottom left quartiles of the graph. Thus the
mean and difference are indeed correlated if there is a big difference be-
tween variability of the two measures.

Note, however, that if the plot shows correlation but it is only with
the mean and not necessarily with the true measurement value, the
subsequent methods (calculating bias i.e. mean difference, and limits
of agreement) are not invalid. It is merely that ordering the differences
by average of the twomethods is not as helpful as itwould otherwise be.
In a simulated data set it is possible to re-plot differences against true
value instead of againstmean; this shows that an association can appear
of mean and difference whilst there is none between mean and true
value (Fig. 2). In real experiments it is somewhat harder to tell the
cause of the association in the Bland-Altman plot.

The alternative is, of course, that there is correlation in the Bland-
Altman plot because there genuinely is a proportional bias in the data,
orrelation between the methods and ratio of variances of the two methods.



Fig. 2. Bland-Altman plot and plot of differences against true values from simulation of twomeasurement methods, Y1 and Y2, with known true values. Data were constructed using the
following Normal distributions N(mean, variance): True~N(20,52),measurement error of Y1~N(0,0.252)andmeasurement error of Y2~N(0,52).

M.A. Mansournia, R. Waters, M. Nazemipour et al. Global Epidemiology 3 (2021) 100045
with larger values subject to a larger measurement error. In this case
calculating limits of agreement without first finding a suitable transfor-
mation of the data would not be appropriate.
What is an appropriate method when one measure is expected to be more
variable than the other?

As noted above, the correlation in the plot does not necessarily inval-
idate the estimates of bias and limits of agreement, nor does it make it
possible to assess whether proportional bias is present in either
measure.

However to avoid false interpretation of the result, it may be prefer-
able to determine the variance ratio of X:Y before using the Bland-
Altman plot (and, if possible, before getting too far into the experiment).
In this situation instead of taking unweighted mean and difference of
single measures by eachmethod, it would be necessary to takemultiple
readings on the more variable method and use the average of these in
place of a single measure. Suppose now that var.(Y) = k Var(X),
where k is an integer. Now the plot which we would expect to show
no correlation is Ῡ-X vs. (Ῡ + X)/2, where Ῡ is averaged over k mea-
surements. This can be extended to the situation where the variance
ratio k is a fraction by taking different numbers of repeats on both X
and Y and averaging these accordingly, e.g. for Var(X) = 3/2 Var
(Y) take 3 measurements of Y and 2 of X, then plot Ῡ-Xbar vs.
(Ῡ+Xbar)/2. Thismethodwould show a plot with little or no expected
correlation; the interpretation then of a large correlation seenwould re-
ally be that differences become larger as the true value becomes larger.

Whilst it is admittedly undesirable to have to find out the variance
ratio a priori, the use of the weighted average at least has a sensible in-
terpretation.When calculating limits of agreement, the limits stated are
for the average of the more variable method in comparison to a single
measurement by the less variable method (or another average, if both
measures are repeated). If a new measure genuinely is more variable
than the old, it is unlikely to be considered for common use unless it
has big advantages in other areas (for example, if it is less invasive, or
much cheaper). In these circumstances if it is possible to repeat the
measure several times, it is clear that the estimate obtained will be
much improved, and repeating the measure several times may be rec-
ommended in common usage. If a new measure is less variable than
the old, repeats of the old are only required during themethod compar-
ison study itself.
4

The research problem: responses to the criticisms of the Bland-
Altman methodology

Two recent papers have come to our attention, each citing specific
areas within method comparison in which they believe a Bland-
Altman analysis to be flawed in some way [10,11]. The objective of
this paper is to review the points of the two papers and provide re-
sponses to them. In particular, we will address the following questions
for each paper:

I. What is the research question being addressed?
II. What are the problems specific to this research situation?
III. What are the methodological assumptions of the paper?
IV. What are the limitations the paper attributes to the Bland-

Altman plot in answering this question? What conclusions are
drawn from this?

V. What is the alternativemethod the authors propose to overcome
these limitations?

VI. What are the limitations in the alternative method? Have these
been considered by the authors?

VII. Are the claims and conclusions of the paper justified?
VIII. What methods would be appropriate to answer the research

question outlined?

Bias in Bland-Altman but not regression validity analyses [10]

The paperwas published in Sportscience, which happens to have the
author as its editor. A citation search (30 March 2020, Google Scholar)
lists 114 citations.

What is the research question being addressed?

The research question of the article is not clearly stated. In the first
paragraph of the main text he applies his results to the broad area of
‘comparing measures’. However the scenario illustrated and referred
to throughout the text is limited to a single question. The research prob-
lemused is this: there are twomeasures to be compared, each related to
a latent unmeasurable quantity. One of the measures is on a different
scale to the other, and so both must be translated to the same scale be-
fore they can be compared. The research scenario envisaged appears to
be that least-squares regression has already been used to find an equa-
tion to translate measure X onto the same scale as measure Y. Now the



Table 2
Data specification for Hopkins' simulations (as used in spreadsheet).

Sample size 400

Distribution of true values T Normally distributed: Mean = 50; SD = 13
Relationship between Yobs

and T
Yobs = 0 + 1*T + eY

Distribution of eY
(measurement errors in Yobs)

Normally distributed: Mean = 0; SD = 3

Relationship between X and
T

X = 100 + 30*T+ eX

Distribution of eX
(measurement errors in X)

Normally distributed: Mean = 0; SD = 200

Derivation of Ypred Using equation from least-squares regression of
Yobs on X

True equation relating Yobs

and X
X = 100 + 30*Yobs + (eX - 30*eY)
Yobs = −10/3 + 1/30*X+ (eY-1/30*eX)
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researchers are repeating the experiment to ‘validate’ or ‘re-calibrate’
the equation to a subsample of patients in a new study. Note that this
is not the research question that the Bland-Altman analysis was origi-
nally intended to address.

The terminology used in the paper is hard to follow, so in the follow-
ing commentary the values measured by instrument Y will be denoted
by Yobs, and the values on the same scale calculated from X measure-
ments and the regression equation, Ypred. The true valuewhich themea-
surements aim to represent is denoted T. To the author's credit, a
spreadsheet linked to the paper allows readers to re-create the calcula-
tions and analyses shown in the paper and to vary some assumptions. It
is not explicitwhat data have been used for the simulations in thepaper,
butwe assumed that the parameters stored in the spreadsheet are those
used to generate data for the paper. The data specification is listed in
Table 2.

What are the problems specific to this research situation?

The problem specific to calibration is deriving the initial equation to
translate X onto the same scale as Y. In some cases this will have been
done already using a separate data set and in others, this will need to
be doneusing the data to hand. As already discussed, using least squares
regression to derive this equation carries the implicit assumption that
there is no measurement error in the X variable. This is generally not
the case and, as such, we suspect that this is not the method used in
‘proper‘calibration.

There is another problem in the specific example used byHopkins, in
that one instrument (X) has considerably larger measurement errors
than the other, even after translating to the same scale. We are not
aware that this is a typical ofmethod comparison studies using different
scales, at least not in a clinical context. However this problemdoes affect
the results illustrated from the data set in this paper and, for that reason,
generalisations to all calibration studies must be viewed with caution.

What are the methodological assumptions of this paper? Are they valid?
How far are they generalizable?

There are several assumptions to address, which are not explicitly
stated in the paper as assumptions, nor is their generalisability or valid-
ity discussed. In this paper it is assumed that Y is measured on the same
scale as the underlying true quantity and X is not. Not unreasonable in
Limits of Agreement method, though it is also possible in these prob-
lems that neither measure is on the same scale as the true values, de-
pending on what it is that methods are being used to measure. The
situation where both measures are on the same scale is not discussed
in this paper, though this is the most common situation and is the one
addressed by Bland and Altman. The paper needed to recognise this is
the situation it is restricted to, in order not to extrapolate beyond the
scope of the data.
5

Themethod used in this paper to translate X onto the same scale as Y
is least squares regression of Y onX. An equation isfitted to the data, and
this equation used to generate predicted values on the Y scale from X
measurements (Ypred). The choice of this method is not discussed and
there is a pivotal assumption in this paper that this has not introduced
bias into the data. However, as discussed earlier, least squares regres-
sion underestimates the slope of the relationship between X and Y: in
the example of Hopkins the slope estimate is 0.026 but the true value
is 1/30 = 0.033 Hence (1) there is less variability in Ypred than Yobs

and (2) there is proportional bias in Ypred. Thismeans that for lowvalues
of T, Ypred is more likely to overestimate T, and for high values,
underestimate.

The assumption that least squares regression is appropriate for
translating X onto the same scale as Y is only valid in the situation
where there is nomeasurement error in X. This is not true in themajor-
ity of such real-life problems; nor is it true for the simulation spread-
sheet used to illustrate the paper. We could change the values in the
simulation sheet to remove X errors, but this is not the data set gener-
ated and evaluated within the paper. However, the Bland-Altman plot
will show positive correlation (r = 0.11) even though the correlation
would be less than that when there is measurement error in X (r =
0.28). The reason for correlation in Bland-Altman plot even in the ab-
sence of measurement error in X is that Yobs = Ypred + eY and so var.
(Yobs) > var.(Ypred).

The paper talks a lot about ‘error', however it is not always clear
what value is being referred to. There are three components to the var-
iation in measurements in this situation:

(1). population variance of T
(2). Variance of measurement errors in X
(3). Variance of measurement errors in Y

Moving from the context of simulation to real-data studies, variance
ofmeasurement errors can be considered aswithin-subject variance, for
data where the quantity T does not change between repeats. Population
variance of T is the between-subject variance. The simulation spread-
sheet uses a population variance for T of 169, measurement error vari-
ances of 9 for Y and 40,000 for X, with a true equation relating X to Y
of Y = X/30–10/3 (plus measurement error terms of course). If the
method for obtaining Ypred had not introduced bias, we would expect
Ypred to have a measurement error variance of 40,000/900 = 400/9
(44.44); as it is, Ypred will have slightly smaller variance. So Ypred has
nearly 5 times the measurement error variance of Yobs, and measure-
ment error variance for Ypred is more than a quarter of the population
variance in T. Whilst T has a population variance of 169, Yobs has a
total variance (taking into account T's population variance and mea-
surement error variance) of 178 andYpred has an expected total variance
of 134. This leads to a population variance of Yobs 1.3 times that of Ypred.
The paper states that all the ‘constants and errors’ in the simulations
used are arbitrary choices; and also that ‘the conclusions about bias
that I amabout tomake are independent of these choices.’ In fact, the re-
lationships between the three variance components listed above have a
considerable effect on the correlation shown in a Bland-Altman plot.

What are the limitations ascribed to the Bland-Altman analysis? Are they
correct? What conclusions are drawn from this?

The Bland-Altman plot is used by Hopkins for the comparison of
Ypred to Yobs in the second (calibration) sample of the data, but the
rest of the Bland-Altman analysis is not used. A trend line, presumably
least-squares regression, is fitted to the Bland-Altman plot to show
that there is a non-zero slope. This is interpreted as indicating propor-
tional bias, and would lead researchers to conclude the instrument
had not been calibrated correctly or that the sample was drawn from
a different population to the original sample. There is indeed propor-
tional bias in the data. However, Hopkins then asserts that there is
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nothing wrong with the instrument or subjects, but with the Bland-
Altman plot. In fact the opposite is true; the Bland-Altman plot shows
bias because there is bias. The problem is with the misuse of Bland-
Altman analysis which should not be used for the assessment of
model validity. Another problem is with the equation used to derive
Ypred. Hopkins also extrapolates from this correlation in theplot that cal-
culating limits of agreement is not a validmethod in this situation. There
is no justification given for this leap.

He does not focus explicitly on the problemas being related to differ-
ent measurement error variances between his twomeasures. However,
this is a problem in the simulated data he uses to illustrate the paper,
and it is not necessarily typical of all calibration studies. The variances
due to measurement error used in Hopkins' example simulations are
very different for Ypred and Yobs; making them the same greatly reduces
the correlation in the Bland-Altman plot. Correlation in a Bland-Altman
plot can be caused by proportional bias and/or by differential total var-
iances for the twomethods of measurement; Hopkins has picked a sce-
nariowhere both problems are present, whichmakes it harder to assess
howmuch the correlation is due to each problem individually.

On P. 45, Hopkins asserts that the reader will not know how much
‘bias’ is artifactual and how much is real. This is incorrect, as shown in
Fig. 1, if the expected variance ratio and expected correlation between
measures are known then the expected correlation can also be calcu-
lated. This will at least give an idea of whether to worry about propor-
tional bias in addition to the artifactual correlation.

What is the alternative method the authors propose to overcome these
limitations?

The alternative method proposed in Hopkins' paper starts from the
same initial calibration equation derived by least-squares regression,
and hence the data contain the same proportional bias present in the
previous analysis. However the author does not recognise this. The au-
thor proposes least-squares regression to ‘validate’ the initial calibration
equation in a second sample. Ypred is calculated from the initial equation,
and then Yobs is regressed on Ypred. The hope is that the data will show
Yobs = 0+ 1* Ypred, and furthermore that if the slope and intercept dif-
fer from this, the equation can be used to fine-tune the initial equation
to the second sample.

What are the limitations in this alternative method? Have these been
recognised by the author?

The limitations of least-squares regression have been explained in
an earlier section, namely that the method ignores any measurement
error in Ypred (which is a consequence of measurement error in X),
and hence the slope is underestimated and the intercept overestimated.
This has beenmentioned by the author, but dismissed because his sim-
ulations do produce data with an average slope of 1 and average inter-
cept of 0. Why does this happen when our theory says the slope
should be underestimated and the intercept overestimated? The reason
is that least squares regression has been used twice. So in the initial
sample, the regression equation derived had a shallower slope than it
should have due to the measurement error in X. This shallower slope
leads to a reduced variance of Ypred. Plotting Yobs against Ypred then,
the slope should be greater than 1 because the equation for Ypred does
not differentiate between the points sufficiently. But then due to mea-
surement error carried through into Ypred, the slope (greater than 1) is
underestimated and becomes approximately 1. The two errors
cancel out.

Does this mean there is no problem with the method? No, it does
not. All the second regression equation Yobs = 0 + 1*Ypred shows is
that the sample is drawn from the same population as the first sample
(which is forced in the simulations Hopkins runs), and the expected
values of the equation would have been the same derived from either.
This does not prove anything about bias; indeed, Hopkins'
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interpretation of the method is that it shows no bias, but the Bland-
Altman does show bias and we know from the way Ypred has been de-
rived that there should be bias. In this sense, the regression analysis
leads to a false assurance that nothing is wrong.

One further issue with the method proposed by Hopkins is that he
intends to adjust the initial equation so that it fits the second set of
data perfectly.

Even if the expected values for the intercept and slope for the
regressing Yobs on Ypred are 0 and 1 respectively, these values will vary
considerably about the expected values for each given set of data. This
second equation gives the same result as ignoring the initial equation
and starting all over again regressing Y on X in the second sample.

Suppose that in our first sample the least-squares regression found
that Y = 2 + 4*X.

Nowusing this equation to defineYpred=2+4× in the second sam-
ple, observed Y in the second sample is related to Ypred by least-squares
again: Yobs = 0.5+ 1.1Ypred. Adjusting to fit the second set of data then,
we now have the equation for Yobs in terms of X: Yobs = 0.5 + 1.1*
(2+ 4*X) or Yobs= 2.7+ 4.4*X. As Ypred is only a linear transformation
of X, this is the very same resultwewould have got by simply regressing
Y on X in the second sample and ignoring the equation derived in the
first sample.

This equation should not be re-calculated on every sample on which
the data is used; otherwise there is no fixed relationship to be utilised
across studies for obtaining a measurement on the y scale from X.
Therefore the quantity obtained and called ‘Ypred’ in different studies
would not be the same quantity, and the only benefit of the first sample
would be to have something to check against. Whether or not the equa-
tion is re-calculated, it is not clear what conclusion should be drawn if
the slope and intercept are not precisely 1 and 0; there is no obvious
way to decide how big a difference from these values would lead an in-
vestigator to decide the equation needs re-calibrating.

To what extent are the claims and conclusions of the paper justified?

The paper's conclusions are scattered throughout since the text is
not organised into subsections. Conclusive remarks include:

1. Artifactual bias arises in a Bland-Altman plot of any measures with
substantial random error [abstract].

2. ‘The Bland-Altman analysis of validity should therefore be aban-
doned in favour of regression’ [abstract].

3. ‘Measurement error must be analyzed with regression’ [end].
4. ‘[Bland-Altman] plots can lead to an incorrect conclusion about the

validity of a measure’ [P. 1].
5. ‘What's needed for a comparison of two or more measures is a ge-

neric approachmore powerful even than regression to model the re-
lationship and error structure of each measure with a latent variable
representing the true value.’ [final paragraph].
We provide the following responses to the Hopkins conclusions:

1. This is only partially true, though it has not been demonstrated by
the paper and has never been denied by Bland and Altman. It is not
true that for anymeasures with substantial random error an artifac-
tual bias arises; this is only the case when the total (population &
measurement error) variance for the one measure is several times
larger than the other. It is not a problem if the variance of the mea-
surement errors is similar for both measures, or if they are small in
relation to the population variance of the true value. However if the
ratio of total variances for the two measures is far from one, the
plot will show a correlation between mean and difference. Even in
this case, the term ‘bias’ is not particularly accurate; all it describes
is that there is an association in the Bland-Altman plot.

2. What this paper has shown conclusively, if not very clearly, is that va-
lidity studies as outlined by Hopkins should not be approached using
regression since the results first introduce, and then conceal, bias.
The Bland-Altman analysis is not designed to derive the equation in
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the first place but, once two measures on the same scale have been
obtained, there is no reason why Bland-Altman analysis should not
be used to assess agreement, subject of course to the pre-requisite
check on association between differences and mean.

3. While regression can be sometimes used for correcting themeasure-
ment error in X (e.g. regression calibration when a gold standard is
available on the validation sub-study) [12], there is no justification
for generalising this (false) conclusion about the inadequacy of
Bland-Altman plots to all measurement agreement problems. As il-
lustrated in this paper and many others by Bland and Altman, there
are problems in regression analysis for assessment of agreement
and the Bland-Altman analysis is intended to be an improvement
on this. The incorrect claims on Hopkins' paper do not alter these
facts.

4. It has rather been shown that the Bland-Altman analysis leads to the
correct conclusion, even if the conclusion is not what the researcher
expects, and in fact it is the regression analysis that leads to incorrect
conclusions.

5. These methods are well-known in the SEM literature e.g. latent class
analysis can be used for measurement error correction in one latent
variablewhen there are severalmeasured indicators for that variable.
What is the best method depends on the context and the research
question.

What is an appropriate method for comparing measures when the two
measures are made on different scales (i.e. regression required to translate
between them)?

Depending on the research objective, it may be necessary to trans-
late the measures to the same scale in order to use them. Methods for
this are beyond the remit of this paper, but lessons from paper [10] sug-
gest least squares regression is not a suitable method. Other regression
methods such as Deming regressionwhich allow for error in both X and
Y may produce a more accurate translation. As stated above, once two
measures on the same scale have been obtained, there is no reason
why Bland-Altman analysis should not be used to assess agreement,
subject of course to the pre-requisite check on association between dif-
ferences and mean.

An alternative method for analysing data on different scales would
be to standardise both to a common scale, not by regression but by
subtracting the mean of the measure and dividing by its standard devi-
ation, to obtain values expressed in relation to the standard normal dis-
tribution with mean 0 and variance 1. These standardised X and Y
measures can then be subjected to a Bland-Altman analysis. The
resulting plot will, by design, not show any fixed bias (the mean of
each variable is constrained to be zero); however, neither is it possible
to show fixed bias when obtaining an initial equation to translate X
and Y onto the same scale by regression. Instead, the analysis will
show the extent to which an individual measurement, relative to the
rest of the sample, is similarly located in that sample on both scales.
For example, if a person has high blood glucose by onemeasure relative
to the rest of the sample, is their blood glucose level also high by the
other measure, compared to the rest of the sample? Any important ref-
erence standards, for example ‘upper limit of Normal’ for blood param-
eters, can be translated by ensuring that a value yielding the same
centile of theNormal distribution is used in the alternativemeasure. Ap-
propriate caution should be used in taking results or reference values
into samples drawn from a different population to those in whom the
measurement agreement study was derived.

Why Bland-Altman plots should use X, not (Y + X)/2 when X is a
reference method [11]

This article was presented as a letter to the editor of Statistics in
Medicine. A citation search (30 March 2020, Google Scholar) lists 277
citations.
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What is the research question being addressed?

As with Hopkins' [10], the article is not split into sections or clearly
structured; the research question being addressed is not explicitly
stated. The intention appears to be to corroborate or refute the conclu-
sion of Bland and Altman [8] that differences between two methods
should be plotted against the mean of the two methods, specifically fo-
cusing on the situation when one method is a reference method. The
work is heavily related to 2 formulae in the paper by Bland and Altman,
although these are not reproduced by Krouwer. They are reproduced
here for ease of reading; consider two methods of measurement Y (a
field method) and X (a reference method), with population variances
σY
2 and σX

2 respectively, and correlation ρbetween Y and X. Then the ex-
pected correlations of differences with the mean or with the reference
method are:

Corr Y−X,
Y þ X
2

� �
¼ σ2

Y−σ2
Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
Y þ σ2

X

� �2−4ρ2σ2
Yσ

2
X

q ð4Þ

and

Corr Y−X,Xð Þ ¼ ρσY−σXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

Y þ σ2
X−2ρσYσX

q ð5Þ

What are the problems specific to this research situation?

Calibration studies may select samples for measurement systemati-
cally, picking samples with ‘known’ values spanning the range of plau-
sible measurements, rather than taking a random sample from a
population. This ensures that the accuracy ofmeasurements throughout
the range is explored. People may ascribe properties to the reference
method such as high reproducibility, high precision, or lack of bias.
However it is not necessarily always the case that a method held as a
‘gold standard’ or ‘reference’method is of a high quality (nor reproduc-
ible); they may be used as the reference due to convention or because
they are the simplest/cheapest method available. The reference result
may be based on more replicates, although this is not always the case;
evenwhen it is, it is not a given that thiswill lead to lowermeasurement
error than the test method.

What are the methodological assumptions of this paper? Are they valid?
How far are they generalizable?

Although not explicit in the letter, the simulation shows that the
sample selected for making measurements is not a random sample,
but is systematic; 100 values evenly spaced throughout the range of
the assay are selected as the known, true values (all integers from 101
to 200 in the case illustrated by Krouwer). This does not pose a problem
for Bland-Altman analysis, which requires measurement errors to be
normally distributed in order to calculate limits of agreement, but be-
sides requiring that difference and mean are not correlated, there is no
requirement for the sample of measurements to be from a particular
distribution.

The situation addressed in the article makes the assumption that the
reference method has considerably smaller ‘imprecision’, or measure-
ment error, than the ‘commercial’ method. It also assumes that neither
method contains bias; this may not always be the case, although it is a
reasonable condition to impose for an initial exploration of the
methodology.

Because there are three variableswhich can influence the correlation
of Y, X or their average with their difference (σY

2, σX
2, andρ), Krouwer

combines σY
2 and σX

2 into a single variable VarDiff = σY
2−σX

2 to simplify
the problem. However the difference between two variances is not
scale-invariant and [Eq. (4)] and [Eq. (5)] cannot be expressed solely
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in terms of VarDiff [‘V'] and ρ, but are also dependent on the value of one
or other of the variances:

Corr Y−X,
Y þ X
2

� �
¼ Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V2 þ 4σ2
X 1−ρ2ð Þ Vþ σ2

X

� �	 
�r ð6Þ

Corr Y−X,Xð Þ ¼
ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V þ σ2

X

q
−σXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V þ 2σ2
X−2ρσX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V þ σ2

X

qr ð7Þ

Hence the illustrative example presented in the letter is not widely
generalizable, and the plots presented rely on a fixed value of one or
other variance (which is not stated). A far better transformation to use

would have been the ratio of the variances k ¼ σ2
Y

σ2
X
, since both [Eq. (4)]

and [Eq. (5)] are independent of variances of Y and X given k and ρ:

Corr Y−X,
Y þ X
2

� �
¼ k−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ 1ð Þ2−4kρ2
q ð8Þ

Corr Y−X,Xð Þ ¼ ρ
ffiffiffi
k

p
−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ 1−2ρ
ffiffiffi
k

pq ð9Þ

Results are drawn from simulations using a single (fictitious) sce-
nario assuming the range measurements of a sodium assay (100 to
200 mmol/L), no bias in measurements, and measurement errors with
standard deviation ranging from 0.5mmol/L to 10mmol/L (which is ac-
knowledged to be implausibly high for a sodium assay). Eight situations
are explored, with varying combinations of X and Y measurement er-
rors: in four situations X is held as the reference method (SD =
0.5 mmol/L) while Y has varying errors; in the other four, X and Y are
constrained to have the same SD of measurement errors but that SD
varies. The true values ofmeasurements are uniformly, rather than Nor-
mally, distributed along the range of the assay and are not randomly
sampled.

The other assumptionmade by the author is that his results are gen-
eralizable in the situation of comparing to a ‘gold standard’/reference
method. These results are expressed in the plots, and show that
(a) the correlation between test and reference methods is between
0.94 and 0.98, and (b) the difference between variances is between 0
and 100 when comparing a field to a reference method or between 0
and ~13 when comparing two field methods. These assumptions were
arrived at by simulating data from a single situation, acknowledged
not to be completely true to life, rather than from real-life data. The
plausibility and generalisability of assumption (a) can be tested perhaps
by looking at some real-life data sets; (b), while it can be tested, is not a
helpful assumption due to lack of scale-invariance of VarDiff mentioned
above. A difference in variances from 60cm2 to 80cm2 is between 0 and
100 when measured in cm, but not when measured in mm. Instead, it
would be more appropriate to express the results in terms of the vari-
ance ratio, and examine plausible values for this quantity from real-
life data.

What are the limitations ascribed to the Bland-Altman analysis? Are they
correct? What conclusions are drawn from this?

Note that it is never disputed that Bland-Altman is the most appro-
priate analysis whenmeasurement error variances are similar. The lim-
itations are solely ascribed to the situation when one method is more
variable than the other. The example used is a simulation, supposedly
based on the range of a sodium assay although themeasurement errors
suggested are acknowledged as too large for a sodium assay. Inputs to
simulation are stated as standard deviations for measurement error
for X and Y; and a range for measurements (100 to 200) from which
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consecutive integer true values are used. Outputswere overall variances
for X andY and their correlation, togetherwith correlations of difference
with mean (‘BA’) and difference with X (‘No BA’). It is likely that simu-
lated correlations, rather than expected values from [Eq. (4)] and
[Eq. (5)], are presented in Table 1 and Fig. 1 of the paper.

The examples simulated usemeasurement errors of 0.5mmol/L for a
reference method and between 2 and 10 mmol/L for a test method.
Whilst the paper is not clear, the spreadsheet gives more detail and
these numbers appear to be standard deviations for the errors, which
are taken to be normally distributed with zeromean (X and Y being un-
biased). The method used for simulate is as follows.

1) Generate 100 ‘true’ values (wewill call this T), by non-random selec-
tion from a uniform distribution with range as defined by sodium
assay (101 to 200)

2) For each T generate a measurement of X and Y, which are unbiased
for T but have measurement error with standard deviation listed as
‘error' in Table 1

3) Repeat 40 times for each of the 8 parameter sets (varying combina-
tions of standard deviations for X and Y)

4) For each of the 8 × 40 = 320 samples:

a) Correlate Y-X with X (‘No BA’)
b) Correlate Y-X with (X + Y)/2 (‘BA’)
c) Correlate Y with X (‘r')
d) Find the variance of the X and Ymeasurements respectively, and cal-

culate their difference Var(Y)-Var(X) (‘VarDiff’)

For each of the statistics mentioned in step 4, a single value is re-
ported for each parameter set. Whilst it is not stated, this is most likely
to be the mean over 40 repeats.

Krouwer then uses these results to select a ‘typical’ range for corre-
lations of X and Y, and for VarDiff, then plots ‘BA’ and ‘No BA’ correla-
tions against both these sets of parameters. It is not clear whether the
values plotted are from the simulations or the ‘expected’ values from
the equations although the irregularities in the lines, and the fact that
a value for variance of X or Y is also required as input to the equations,
suggest that simulations were used. Again based on these simulations,
he superimposes ellipses on the plots to indicate the typical range of
correlations ‘R' and variances differences ‘VarDiff’ that can be expected.
It is not clear how precise boundaries of the ellipses have been
calculated.

Limitations in the methodology include the following:

1. Standard deviations for measurement error are unrealistically large
(10) for some of the parameter sets.

2. Ellipses represent values from simulations of a single assay (i.e. with
fixed range 100 to 200 and hence fairly constant variances). VarDiff is
not scale invariant, and so the ‘typical’ VarDiffs that can be expected
in a calibration experiment cannot be answered by this single sce-
nario. For example, simply imagine that rather than measuring in
mmol/L we divide all measurements by 10 (to measure incmol/L).
Whilst the correlations are not much affected, the [mean] variance
differences are all between −0.2 and +0.5, rather than being from
0 to 100. Not only is the ellipsed now in the wrong place on the
graphs presented, the contour graphs against VarDiff prepared for
the original situation could no longer be used as the relationship
has changed (being reliant as it is on the variance of either X or Y
in addition to VarDiff and R).

3. Results reported appear to be means over 40 simulations, yet these
are then regarded as the limits of a ‘typical’ range. In fact the range
over 40 simulations is more relevant to individual calibration stud-
ies; this gives a much wider area of possible results than the means
alone.
In order to further explore Krouwer's results, the simulations have

been re-created in Stata, using a different seed but following the steps



Table 3
Simulation results from Stata. Table mirrors Krouwer's, but includes range as well as mean values, and variance ratio.

‘Error’ No BA BA r VarDiff VarRatio

Measurement error
SD

Correlation between difference
and X

Correlation between difference and
mean

Correlation between X
and Y

Difference between
Variances

Ratio of variance Y to
variance X

X = 0.5, Y = 2 −0.0157 (−0.1995, 0.1500) 0.0196 (−0.1658, 0.1848) 0.9975 (0.9965, 0.9982) 2.3 (−19.3, 22.4) 1.00 (0.98, 1.03)
X = 0.5, Y = 5 0.0180 (−0.1278, 0.2020) 0.1030 (−0.0386, 0.2780) 0.9856 (0.9812, 0.9896) 30.0 (−11.6, 82.0) 1.04 (0.99, 1.10)
X = 0.5, Y = 7 −0.0123 (−0.2392, 0.1491) 0.1028 (−0.1026, 0.2614) 0.9705 (0.9598, 0.9769) 43.1 (−47.2, 113.1) 1.05 (0.94, 1.13)
X = 0.5, Y = 10 0.0114 (−0.1425, 0.1674) 0.1789 (0.0316, 0.3431) 0.9465 (0.9314, 0.9620) 105.7 (15.7, 232.4) 1.13 (1.02, 1.28)

X = 2, Y = 2 −0.0577 (−0.1911, 0.1115) −0.0101 (−0.1505, 0.1541) 0.9954 (0.9942, 0.9967) −1.7 (−21.8, 22.4) 1.00 (0.97, 1.03)
X = 5, Y = 5 −0.1212 (−0.3300, 0.1166) −0.0008 (−0.2045, 0.2219) 0.9706 (0.9571, 0.9792) −0.8 (−96.7, 84.0) 1.00 (0.90, 1.10)
X = 7, Y = 7 −0.1506 (−0.3326, 0.0507) 0.0142 (−0.1788, 0.2261) 0.9451 (0.9214, 0.9596) 9.3 (−104.0, 137.6) 1.01 (0.89, 1.17)
X = 10, Y = 10 −0.2389 (−0.3986, −0.1013) −0.0038 (−0.1858, 0.1345) 0.8896 (0.8647, 0.9217) −4.2 (−162.6, 119.9) 1.00 (0.85, 1.15)
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as outlined above. Variance ratio, aswell as variance difference, is calcu-
lated. The results from these simulations (Table 3) show:

1) Correlations ‘r' are very closely matched to Krouwer's results; the
ranges are fairly narrow.

2) Mean values for ‘BA’ and ‘no BA’ are close to Krouwer's results when
the values are far from 0, with some variation around 0 (as expected
by chance). The ranges are reasonablywide, as can be expectedwith
a sample size of 100.

3) VarDiff is quite variable. While differences are reasonably re-
constructible by taking average across all simulations, there are
wide ranges for single sampleswithin each parameter set. For exam-
ple, with SD ofmeasurement errors 5 for X and 5 for Y, themean dif-
ference in variances is−0.8 but the range is from−96.7 to 84.0. This
is considerably wider than the range of VarDiff 0 to 100 which
Krouwer asserts in his pictures as the ‘likely’ range for calibration
studies (presumably, erroneously, based on the means over 40
samples).

4) Even in the (implausible) case 4 when the ratio of measurement
error variances is 100/0.25 = 400, the ratio of variances for X and
Y as population values is still not far from 1 (mean 1.13, range 1.02
to 1.28).

We have re-created the graphs of Krouwer using expected values
from the formulae rather than simulation results (Fig. 3). In order to
do this an assumption regarding the variance of X in the population
has been made: this is assumed to be 842, which is approximately
what the simulations show with a SD of measurement errors of
Fig. 3. Contour plots of expected correlations ‘No BA’ and ‘BA’ respecti
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0.5 mmol/L. The lines have fewer irregularities, but the contours are in
the same place, indicating the general method is the same.

Repeating these plots using the ratio of the variances rather than
their difference (Fig. 4), which requires no assumptions about variance
of X, may be more useful in generalising results from the single sodium
example to a wider range of calibration studies. From (Table 3), the var-
iance ratios in the scenarios with one measurement more precise than
the other range from 0.94 to 1.28 (means from 1.00 to 1.13), with corre-
lations between 0.93 and 0.998 (means 0.95 to 0.998). Lower correla-
tions tended to occur with higher variance ratios. This would suggest
likely correlations in a Bland-Altman plot as shown in the blue shaded
areas of (Fig. 4) [we have ignored values generated using an error SD
of 10 since this is acknowledged by Krouwer to be implausible]; while
neither plot shows zero going through the centre of this area, the
Bland-Altman plot shows likelihood of a correlation with magnitude
greater than 0.2 (particularly since variance ratios further from 1 are
less plausible with high correlations R).
What is the alternative method the authors propose to overcome these
limitations?

Plotting difference against the reference method, X, rather than
against the mean of X and Y, as demonstrated in graphics above. No in-
dication is given as to how to proceed once the plot has been drawn;
should limits of agreement be drawn up? If so, would this be different
in any way to the method of Bland and Altman?
vely, with varying variance difference and correlation of X and Y.



Fig. 4. Contour plots of expected correlations ‘No BA’ and ‘BA’ respectively, with varying variance ratio and correlation of X and Y.
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What are the limitations in this alternative method? Have these been
recognised by the author?

The plot is only a method for displaying the data and not a method
for analysis. This point is not discussed.

From the graphs using variance ratio above, it seems that the
method against X is not in fact any less likely than the Bland-Altman
plot to show correlation, and indeed that the Bland-Altman plot correla-
tion is always within acceptable bounds. Hence the new method se-
lected is not superior to the Bland-Altman method and should not
be used.

To what extent are the claims and conclusions of the paper justified?

The conclusions of the Krouwers' paper can be summarized as
follow:

1. ‘These results support the use of plotting differences against X when
X is a reference method’

2. ’and plotting differences against (X + Y)/2 when both methods are
fields methods'

3. ‘These [calibration problem] method comparison studies conducted
bymanufacturers make up a significant portion of publishedmethod
comparison studies.’
Here are the responses to the papers' statements mentioned above.

1. This has been demonstrated in a single example, with assumptions
acknowledged to be implausible, and artificial data, using a plot
which does not have themost appropriate axes. Themethod is dem-
onstrated to be slightly better using average values, but not over the
range. This example does not support the conclusion.

2. This conclusion is in concordance with the Bland and Altman papers
[e.g. [1]], and justified by them. The justification by Krouwer is that
because these methods are expected to have similar variances, with
a difference of approximately zero. It would be more accurate to at-
tribute this reason to the variance ratio being approximately one,
which will happen when the difference is zero (but how ‘close’ to
zero it needs to be is not scale invariant, whereas how ‘close’ to one
the ratio need be, is).

3. Thismaywell be true, but is neither supported by datawithin the let-
ter, nor by any citation e.g. a reviewof publishedmethod comparison
studies. Instead it simply follows from the assertion that manufac-
turers do perform ‘calibration’ studies.
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What is an appropriate method for the problem addressed?

Bland-Altman analysis. In the case of correlation in Bland-Altman
plot one needs to consider transformation or the generalized form of
Bland-Altman analysis using the regression-based approach [13].This
letter gives no convincing argument as to why this should not be used.

Conclusions

The discussions in the critical papers of the Bland-Altman method
are scientifically unjustified. Hopkins misused the Bland-Altman meth-
odology for research question of model validation and also incorrectly
used least-square regression when there is measurement error in the
predictor. The problem with Krouwers' paper is making sweeping gen-
eralisation of a very narrow and somewhat unrealistic situation. The
Bland-Altman analysis is themethod of choicewhen the research ques-
tion of interest is method comparison.
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