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ABSTRACT
Antibodies are one of the predominant treatment modalities for various diseases. To improve the 
characteristics of a lead antibody, such as antigen-binding affinity and stability, we conducted compre
hensive substitutions and exhaustively explored their sequence space. However, it is practically unfea
sible to evaluate all possible combinations of mutations owing to combinatorial explosion when multiple 
amino acid residues are incorporated. It was recently reported that a machine-learning guided protein 
engineering approach such as Thompson sampling (TS) has been used to efficiently explore sequence 
space in the framework of Bayesian optimization. For TS, over-exploration occurs when the initial data are 
biasedly distributed in the vicinity of the lead antibody. We handle a large-scale virtual library that 
includes numerous mutations. When the number of experiments is limited, this over-exploration causes 
a serious issue. Thus, we conducted Monte Carlo Thompson sampling (MTS) to balance the exploration- 
exploitation trade-off by defining the posterior distribution via the Monte Carlo method and compared its 
performance with TS in antibody engineering. Our results demonstrated that MTS largely outperforms TS 
in discovering desirable candidates at an earlier round when over-exploration occurs on TS. Thus, the MTS 
method is a powerful technique for efficiently discovering antibodies with desired characteristics when 
the number of rounds is limited.
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Introduction

Antibody engineering is a modification technology applied to 
therapeutic antibodies to improve their efficacy, safety, and 
convenience for patients and caregivers. Recently, antibodies 
with higher functionality, such as pH-dependent antigen- 
binding antibodies, have been actively developed.1–4 To 
acquire the desired activity and pharmaceutical characteristics, 
a comprehensive mutagenesis approach was implemented, 
followed by extensive combinations of effective amino acid 
substitutions.3,4 However, because the number of possible 
combinations is usually large, it is unfeasible to experimentally 
evaluate all mutation combinations. Therefore, it would be 
extremely valuable if more efficient antibody engineering 
could be achieved using computational methods such as 
machine learning (ML). In this study, we investigated the 
optimization of pH-dependent antigen binding of an antibody 
using Bayesian optimization (BO) as an example of engineer
ing highly functional antibodies.

pH-dependent antigen-binding antibodies have been 
demonstrated to extend the plasma half-life of antibodies, 
which were engineered to bind strongly to their antigens 
under neutral pH (blood circulation) and rapidly release 
them under acidic pH (acidic endosomes).2 A simple method 
to generate a pH-dependent antigen-binding antibody is to 
conduct histidine scanning on the antigen-binding region of 
the antibody to identify effective histidine substitutions that 
confer pH dependency.2,5 In addition, many pioneering 

studies using three-dimensional structures in antibody design 
have been reported.6–8 However, if the affinity of the lead 
antibody is insufficient, complex engineering is sometimes 
required to enhance binding under neutral conditions while 
maintaining or increasing pH dependency. In this case, it is 
preferable to efficiently explore the sequence space using ML, 
such as BO.

Thus far, several pioneering studies on the ML-based opti
mization of protein have been reported.9–11 As we usually 
evaluate multiple samples in each round, Thompson sampling 
(TS) can be a good choice, as reported earlier.10,11 However, TS 
requires initial data evenly covers search space to work well 
and this does not generally hold, because initial data biasedly 
distributes in the vicinity of the template sequence. Therefore, 
when exploring a vast sequence space that includes many 
mutations, TS does not necessarily work well due to over- 
exploration.12 Especially in protein experiments, where the 
round of experiments is limited, this over-exploration causes 
loss of efficiency in exploring.

To manage this practically important problem, we pro
posed Monte Carlo Thompson sampling (MTS) that controls 
an exploration-exploitation trade-off by defining the posterior 
distribution using the Monte Carlo method. In MTS, we can 
balance exploration-exploitation via the Monte Carlo approx
imation of the acquisition function instead of using the poster
ior distribution as is. Thus, MTS is a natural extension of TS. 
We evaluated our method for engineering pH-dependent 
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antigen binding of a lead antibody for the neutralization of 
antigen X as a model case. Our results showed that MTS 
outperforms TS on discovering the desirable candidates over
all. Especially, MTS works much better at earlier round that an 
over-exploration occurs on TS. Thus, our proposed method 
can be a useful technique to design a protein when the number 
of rounds is limited.

Results

Overall workflow

The workflow of this study is shown in Figure 1. It aims to 
improve the antigen-binding properties of an antibody over 
several rounds. We started with a lead antibody that required 
improvement of its antigen X-binding property as a template. 
We prepared an initial dataset consisting of the sequences of 
the lead antibody and its variants with a single amino acid 
substitution. Thereafter, we generated a virtual library for 
screening by combining single amino acid substitutions. We 
trained the predictive model using an initial training dataset. 
Gaussian process (GP) regression was used as a regression 
model for BO.13 Thereafter, candidates were selected to be 
evaluated in the next round through the BO from the virtual 
library. Following surface plasmon resonance (SPR) analysis, 
the antigen-binding properties of the candidates were added to 
the training data. This process was repeated until an antibody 
with desirable properties was discovered. In this study, we 
propose MTS instead of TS as a BO method, considering TS 
as the baseline model for this method.

Binding ability of lead antibody and its variants with 
single mutations

The affinity of the lead antibody (template) to antigen X was 
measured with SPR at pH 7.4 and pH 6.0. The calculated 
affinities at pH 7.4 and pH 6.0 were KD = (2.1 ± 0.015) × 10−8 

and KD = (8.8 ± 1.5) × 10−6, respectively. The template anti
body had a pH-dependent antigen-binding property, as the 
KD ratio at pH 6.0/pH 7.4 was 421. However, considering that 
the plasma concentration of antigen X was high (>300 nM), 
the antigen-binding affinity of the lead antibody was insuffi
cient to completely neutralize the antigen at a realistic dose. 
Therefore, to create a recycling antibody that binds more 
strongly under neutral conditions and rapidly dissociates 
under acidic conditions, we performed comprehensive substi
tution (COSMO).3 In this process, all amino acid residues in 

the complementarity-determining regions (CDRs) and some 
key residues in the framework regions (FRs) were substituted 
with a different natural amino acid, except cysteine. Thus, 702 
heavy-chain variants (substituted at 39 positions of the VH) 
and 596 light-chain variants (substituted at 33 positions of the 
VL) were generated. The pH-dependent antigen binding of 
these antibodies was analyzed using SPR. In general, the anti
gen-binding activity of neutralizing antibodies is evaluated by 
the association rate constant (ka [M−1 min−1]), dissociation 
rate constant (kd [min−1]), and equilibrium dissociation con
stant (KD [M]) values at neutral pH, while that of recycling 
antibodies should be evaluated by two factors: strong binding 
under neutral pH and rapid dissociation under acidic pH. 
Therefore, we introduced a single score (pH-dependent bind
ing score) calculated from SPR analysis as an indicator of 
antigen binding to easily rank antibody variants and identify 
those with desired antigen-binding characteristics. The distri
bution of the pH-dependent binding scores for all variants is 
shown in Figure S1. The single mutation with the highest score 
was VL_S26F (COSMO-1), with a pH-dependent binding 
score of 0.852, which was improved from the template score 
of 0.451. However, the affinity of COSMO-1 was KD = (5.5 ±  
0.023) × 10−9 at pH 7.4, and KD = (1.4 ± 0.035) × 10−7 at pH 
6.0. Given that these kinetic parameters could be insufficient to 
completely neutralize antigen X and work as an efficient recy
cling antibody, further improvement of antigen binding at 
neutral pH and pH dependency is required.

Monte Carlo Thompson sampling

MTS balances the exploration-exploitation trade-off by 
defining a posterior distribution through the Monte Carlo 
method to relax the over-exploration issue in TS. We illus
trate how MTS and TS explore the feature space in Figure 2. 
As shown in Figure 2, MTS attempts to explore the neigh
borhood of the training data and immediately discover 
a local optimum with limited rounds. Alternatively, TS 
explores distant locations from the training data and the 
neighborhood. Therefore, an over-exploration issue automa
tically arises in TS. The derivation of the MTS is described 
in the Methods section. To demonstrate the effectiveness of 
our proposed method, we evaluated the performance of 
MTS on synthetic data for simple and cumulative regret 
(Methods). Simple regret measures how fast a method 
finds the global optimum, and cumulative regret measures 
how well the samples are obtained on average. It is desirable 
to achieve good performance on both performance metrics 

Figure 1. Overall workflow of the machine learning-guided antibody optimization.
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in our problem setting. For MTS, we set the number of 
samples T to 100. From the results on synthetic data, we 
confirmed that MTS works better than TS regarding cumu
lative regret and is competitive with TS for simple regret 
(Figure S2ABC).

Initial training data and generating the virtual library

We defined 703 sequences as initial training data with 
a single mutation from the template sequence. Twenty-four 
representative mutations that had better pH-dependent 
binding scores compared to template sequences were 
selected as seed sequences for generating virtual sequences 
(Table S1). These seed sequences contained 21 different 
mutated positions from the template sequence. First, 
7,077,184 sequences were generated using all possible com
binations from the seed sequences. To reduce the size of the 
virtual library, we limited 163,331 sequences to include two 
to six mutations. We defined them as virtual libraries for 
exploration in this study. Table 1 lists the sequence numbers 
generated for each mutation. As shown in Table 1, more 
sequences were generated as the number of mutations 
increased. This means that most generated sequences con
sisted of five or six mutated sequences.

Learning a predictive model for pH-dependent binding 
score

As we aimed to find an antibody that strongly binds to an 
antigen under neutral conditions and dissociates under acidic 
conditions, we defined the pH-dependent binding score to 
quantitatively capture this characteristic from the Biacore sen
sorgram (Methods). GP regression was used to train 
a predictive model using the initial training data (Methods). 
To incorporate amino acid properties from a large-scale 

protein sequence, doc2vec was used to embed antibody 
sequences in a vector space of 512 dimensions (Methods).

Sequential optimization with MTS

We explored the sequence space thrice using Bayesian opti
mization. Subsequently, in the fourth round, the most pro
mising candidates were selected according to predicted 
values from a learned GP regression model. The number 
of sampling for MTS was set to 100,000. To evaluate the 
difference in performance between MTS and TS, the pH- 
dependent binding scores of 47 sequences were evaluated 
for each round and method. Figure 3A shows the pH- 
dependent binding scores evaluated using SPR. To quanti
tatively evaluate the difference in the distribution of the pH- 
dependent binding score between MTS and TS, we show the 
maximum pH-dependent binding score, the median value, 
and the minimum value in Table 2. Figure 3A and Table 2 
show that MTS outperformed TS. In particular, in rounds 1 
and 2, MTS performs better than TS by a large margin. For 
MTS, the distribution of the pH-dependent binding scores 
steadily increased. Alternatively, for TS, the pH-binding 
scores were low in rounds 1 and 2, and increased substan
tially in round 3.

In addition to the exploration ability described above; it is 
also important to obtain better sequences during each round in 
our problem setting because the number of antibodies evalu
ated experimentally is usually limited. To evaluate the perfor
mance from the perspective of exploitation capability, we also 
showed the expected regret for MTS and TS (Figure 3B). 
Expected regret is defined as follows: 

E R½ � ¼
1
nt

Xnt

i¼1
f � xð Þ � f xið Þ

where f � xð Þ is the global optimum, f xið Þ is the value obtained 
at round t, and nt is the number of sequences in round t.

As shown in Figure 3B, MTS works better than TS. 
Therefore, MTS can pick better sequences during exploration 
of the sequence space. In summary, these results indicated that 
MTS works better than TS regarding both exploration and 
exploitation abilities.

In addition to the binding properties, the number of 
expressed antibodies was also evaluated (Table S2 and 

Figure 2. Illustration of how MTS and TS work. (A) MTS. (B) TS. Black triangles represent the initial training data. White circles represent candidate samples at next 
round.

Table 1. The number of generated sequences at each mutation.

mutation number sequence number

2 273
3 1958
4 9936
5 37944
6 113220
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Figure 4ABCD). Table S2 shows that MTS proposed more 
expressed antibodies compared to TS in all rounds. In 
particular, MTS markedly outperforms TS from round 1 
to round 3 in the exploration phase. However, MTS and 
TS are comparable in round 4, which is an exploitation 
phase. To investigate the proposed sequences in more 
detail, we show the mutation numbers that were selected 
at each round for MTS and TS (Figure 4AB). From 
Figure 4AB, we can see that MTS picks fewer mutated 
sequences compared to TS. This indicated that TS explores 
far from the training sequences and MTS explores around 
the training sequence space. Figure 4CD represents the 
mutation numbers expressed in each round for MTS and 
TS. From Figure 4AC, we can see that the distributions of 
mutation numbers did not change between the proposed 
and expressed sequences. In contrast, Figure 4BD shows 

that the distributions of mutation numbers are different 
between the proposed and expressed sequences in TS. 
Therefore, antibodies with numerous mutations tend not 
to be expressed in TS.

Discussion

Trajectory in sequence space explored during Bayesian 
optimization

To discuss the difference in sequence spaces between MTS and 
TS, we projected doc2vec embedded vectors for training 
sequences and proposed sequences into two dimensions 
using PCA (Figure 5A). We show the maximum Euclidean 
distance from the nearest sequence, median and minimum 
value in Table 3. From Figure 5A, we can see that MTS 

Figure 3. Performance comparison between MTS and TS. (A) Ph-binding score distributions proposed by MTS and TS. Redish boxplots indicate the Ph-dependent 
binding scores of MTS from round 1 to round 4, respectively. Bluish ones indicate the results of TS. The distributions of TS and MTS were evaluated by the Mann- 
Whitney U test. The P-values were 0.0347 for round 1, 4.91e-7 for round 2, 0.239 for round 3 and 4.98e-5 for round 4, respectively. (B) Expected cumulated regret for 
MTS and TS from round 1 to round 4.

Table 2. Maximum, minimum and median values of Ph-dependent binding scores at 
each round for MTS and TS.

method round max min median

MTS 1 1.089 0.410 0.828
2 1.116 0.647 0.878
3 1.147 0.602 0.881
4 1.107 0.727 0.933

TS 1 1.014 0.298 0.753
2 1.032 0.302 0.714
3 1.128 0.383 0.869
4 1.062 0.651 0.874

Figure 4. Stacked bar graph representation of mutation number included in candidate sequences at each round. (A) all sequences in MTS. (B) all sequences in TS. (C) 
expressed sequences in MTS. (D) expressed sequences in TS.
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gradually explores from around the training sequences to 
a place far from them. TS explores a more diverse sequence 
space. This result showed that MTS works as intended, as 
shown in Figure 2A. To investigate sequence spaces quantita
tively, distributions of the Euclidean distance from the nearest 
training sequences on the doc2vec embedded space were also 
shown (Figure 5B). Figure 5B clearly shows that MTS selects 
candidates in the vicinity of the training sequences and TS 
picks them far from the training sequences.

These results explain the characteristics of MTS that explore 
training sequences. Alternatively, TS tends to over-explore 
because it requires the search space to be homogeneously 
distributed to work well. However, in our problem setting, 
this assumption does not hold and most search spaces consist 
of more mutated sequences, as shown in Table 1. Thus, when 
exploring samples far from the training data and the number 
of trials is limited, it is crucial to balance exploration and 
exploitation. As MTS can control exploration and exploitation 

Figure 5. Characteristics of sequence space explored during Bayesian optimization. (A) Visualization of embedding sequence space via PCA. Green points represent 
initial training data. Redish points are the sequences of MTS. Bluish points are the sequences of TS. (B) Comparison of Euclid distance in embedding space from the 
nearest sequence in the training data at each round. Redish boxplot represent the distribution of Euclid distance at each round on MTS. Bluish boxplot represent the 
distribution of Euclid distance at each round on TS.

Table 3. Maximum, minimum and median values of Euclid distance in embedding 
space from the nearest sequence in the training data at each round for MTS and TS.

method round max min median

MTS 1 0.352 0.150 0.249
2 0.317 0.178 0.248
3 0.317 0.156 0.240
4 0.220 0.148 0.172

TS 1 0.389 0.234 0.340
2 0.366 0.223 0.319
3 0.362 0.239 0.303
4 0.318 0.165 0.269

Table 4. Summary of combinatorial mutation effects. (A) Ph-dependent binding scores and amino acid residues of the template sequence and top 10 sequences 
proposed by MTS. (B) Ph-dependent binding score and amino acid residue for best single mutations at each position included in the initial training data.

sequence name

amino acid residues

pH-dependent binding scoreVH30 VH54 VH55 VL26 VL52 VL54 VL95

template S S G S S L S 0.451
MTS-1 S K G S K R I 1.147
MTS-2 S K K F K R I 1.143
MTS-3 S K K F K L I 1.116
MTS-4 R S G S K R I 1.107
MTS-5 S S K S K R I 1.100
MTS-6 S K K F S R I 1.091
MTS-7 S K G S K L I 1.089
MTS-8 S K K F K R S 1.075
MTS-9 R K G S K R I 1.073
MTS-10 S K K F S L I 1.057

amino acid residue

VH30 VH54 VH55 VL26 VL52 VL54 VL95

Single best AA R K K F K R I
pH-dependent binding score 0.706 0.628 0.770 0.852 0.516 0.597 0.651
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balance through the number of sampling to approximate the 
posterior distribution function, it can be an effective technique 
in our setting that needs to weigh exploitation.

Combinatorial mutation effects navigated with MTS

To discuss the effect of amino acids at each position in more 
detail, amino acid residues were identified in descending order 
of the pH-dependent binding score (Table 4A) and the best 
single amino acids (Table 4B). From Table 4AB, we can see 
that the pH-binding scores of these top 10 scored sequences 
were higher than those of the single best amino acids. 
Therefore, we successfully identified desirable combinations 
of mutations that were not found in a single mutation. 
Notably, the top 10 scored sequences did not necessarily 
include all single best mutations. For example, MTS-1 does 
not include the best single mutations at VH30, VH55, or VL26. 
Thus, the best combination of amino acids did not result from 
the best single mutations. Therefore, a Bayesian optimization 
method, such as MTS, is indispensable for exploring the com
binatorial mutation space.

Detailed evaluation of the ML-guided antibodies

In this study, a newly defined pH-dependent binding score 
was used to measure the complex antigen-binding activity 

that requires both strong affinity under neutral pH and 
prompt dissociation under acidic pH. To confirm whether 
the increased pH-dependent binding score has improved the 
desired binding properties as a recycling antibody, the 
kinetics of the three antibodies, the template antibody, 
COSMO-1, and MTS-1, whose pH-dependent binding 
score was the best among single-substitution variants, were 
analyzed with SPR (Table 5). Each sensorgram is shown in 
Figure 6. The KD value of MTS-1 at pH 7.4 was 1.8 ± 0.038  
nM, an approximately three-fold higher affinity than that of 
COSMO-1. The KD ratio (pH 6.0/pH7.4) of MTS-1, an index 
of pH-dependent binding, was 37, whereas that of COSMO- 
1 was 26, indicating that the pH dependency of MTS-1 was 
also enhanced. Whether MTS-1 has sufficient neutralizing 
activity and a prolonged half-life should be verified sepa
rately. Igawa et al. reported that a pH-dependent anti-IL-6 R 
antibody with a KD value of 1.8 nM at pH 7.4 and a KD ratio 
pH 6.0/pH 7.4 of 22.1-fold achieved a significant half-life 
extension in cynomolgus monkeys.2 Although the optimal 
affinity and degree of pH dependency vary depending on the 
antigen and mechanism of action, the MTS-1 antibody with 
a similar level of antigen-binding properties is expected to 
exhibit an improved pharmacokinetic profile. The protona
tion of histidine residues at approximately pH 6 is consid
ered to play an important role in the pH-dependent 
interaction between the antigen and the antibody. 

Table 5. The results of Biacore sensorgram among the sequence with top Ph-binding score on MTS, the best with single mutation, and the template sequence.

sequence 
name

pH 7.4 pH 6.0 KD ratio (pH 6.0/pH 
7.4)ka (M − 1s − 1) kd (s − 1) KD (M) ka (M − 1s − 1) kd (s − 1) KD (M)

template (1.0 ± 0.015) ×105 (2.2 ± 0.015) ×10−3 (2.1 ± 0.015) ×10−8 (7.4 ± 4.3) ×103 (6.1 ± 2.3) ×10−2 (8.8 ± 1.5) ×10−6 421
COSMO-1 (1.1 ± 0.0058) ×105 (6.2 ± 0.025) ×10−4 (5.5 ± 0.023) ×10−9 (8.9 ± 0.10) ×104 (1.3 ± 0.015) ×10−2 (1.4 ± 0.035) ×10−7 26
MTS-1 (1.6 ± 0.029) ×105 (2.9 ± 0.017) ×10−4 (1.8 ± 0.038) ×10−9 (1.0 ± 0.046) ×105 (6.5 ± 0.067) ×10−3 (6.5 ± 0.22) ×10−8 37

Figure 6. Comparison of Biacore sensorgrams among the sequence with top Ph-binding score on MTS, the best sequence with single mutation and the template 
sequence.
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According to the previous reports, while histidine is com
monly used to confer pH dependency, basic residues (lysine, 
arginine) are involved in pH dependency on different kinds 
of antigens such as C5, Her2 and human FC.3,14,15 Notably, 
the sequence proposed by ML contained several basic lysine 
and arginine residues, which resulted in an increase in pH 
dependency. Although this study demonstrated an example 
of application to the optimization of pH-dependent antibo
dies, it is expected that similar learning methods will be used 
for other complex biologics optimization by proposing opti
mal sequences that have not previously been (or are difficult 
to be) identified by humans, thereby contributing to the 
acceleration of therapeutic development.

Related works

From the perspective of applying Bayesian optimization to 
protein design, there are two pioneering studies. Romero 
et al.9 applied GP-UCB to identify mutations that improve 
the thermostability of cytochrome P450. They successfully 
improved the thermostability of P450, but the GP-UCB algo
rithm was not used for batch Bayesian optimization, which we 
have addressed in this study. In the second method, Saito et al. 
applied TS to find mutations in green fluorescent protein 
(GFP) so that it fluoresced green to yellow.10,11 They showed 
that TS was effective in exploring desirable mutations. Our 
study is closely related to their work in that both studies used 
batch Bayesian optimization. However, they selected the posi
tions to be mutated based on previous studies on GFP and 
yellow fluorescence protein. Therefore, they handled 
a relatively limited virtual sequence library with a maximum 
of four mutations. In contrast, we focused on exploring a much 
more diverse sequence library that includes numerous muta
tions compared to their study. As TS requires that the initial 
training data evenly cover the search space, it does not work 
well in our problem setting because of the over-exploration of 
TS. Instead, this was the motivation for our study. 
Consequently, the focus of our study is completely different 
from that of the previous studies. Several studies concerning 
batch Bayesian optimization have been conducted and these 
are based on a deterministic approach, not on stochastic 
approaches, such as TS. Nevertheless, there are related studies 
from the perspective of acquisition function. In particular, the 
Monte Carlo acquisition functions for Bayesian optimization 
are related to our study.13,16 They optimized the Monte Carlo 
acquisition function for batch Bayesian optimization through 
a reparameterization trick that can optimize the expectation of 
the objective function using auto-differentiation to compute 
the gradient. They approximated an acquisition function using 
posterior samples as follows: 

αMC xð Þ ¼
1
N

XN

i¼1
αi x; Dð Þ

where αi x; Dð Þ is the i-th realization from the posterior dis
tribution and Nis the number of samplings. As described in the 
Methods section, the MTS also approximates a posterior dis
tribution using the Monte Carlo method. Therefore, MTS and 
Monte Carlo acquisition functions are common, in that both 

methods utilize the Monte Carlo method. However, because 
MTS is based on TS, MTS approximates a posterior distribu
tion instead of an acquisition function. This is different from 
the Monte Carlo Bayesian optimization. This difference is 
derived from the fact that TS requires a probability distribu
tion for the posterior distribution to be approximated. For 
example, the beta distribution is usually used in the Bernoulli 
bandit problem. In this study, we formulated the problem to 
probabilistically select samples if they are top-ranked sampled 
from GP in the context of the Bernoulli bandit. Therefore, we 
used the beta distribution as a posterior distribution to be 
approximated.

Key study conclusions

In this study, to manage the issue of over-exploration of TS in 
exploring the antibody sequence space, we proposed an MTS 
that balances exploration and exploitation through the Monte 
Carlo approximation of the posterior distribution. We pre
pared an antibody library that consisted of single mutations 
as the initial data and evaluated the performance of MTS and 
TS in the process of identifying an antibody that strongly binds 
under neutral conditions and rapidly dissociates under acidic 
conditions. Our results showed that MTS can efficiently dis
cover more desirable antibodies than TS can. When applying 
Bayesian optimization to protein design, over-exploration pro
blems often occur because of the vast sequence space that 
includes numerous mutations. Although we applied MTS to 
antibody optimization in this study, our method can be applic
able and useful for optimizing various types of protein 
functions.

Although we focused on a single property in this study, we 
generally need to optimize a template antibody in terms of 
multiple properties in the process of lead optimization. 
Therefore, we will consider expanding our method to multi- 
objective optimization in future work.

Materials and methods

Antibody preparation

To generate a dataset of antibodies with comprehensive 
single mutations, the COSMO approach was performed.3 

Briefly, all residues in the CDRs and some FRs were sub
stituted with different natural amino acids, except cysteine, 
which produced 18 variants from each of the residues (19 
variants if the original amino acid was cysteine). For the 
heavy chain, 702 variants derived from 39 original posi
tions were expressed. For the light chain, 596 variants 
derived from 33 original positions (two residues where 
the original residues were cysteine) were transiently 
expressed. To prepare the antibody with multiple muta
tions proposed by the ML model, we produced polymerase 
chain reaction (PCR) products, each containing an anti
body-expression cassette with the proposed mutations, by 
PCR assembly of multiple DNA fragments. To express 
antibody variants with a single or multiple mutations, 
Expi293F cells (Thermo Fisher Scientific) were transfected 
with the PCR products for heavy or light chain variants 
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and plasmids for the chain with no mutation. Antibody 
variants expressed by transfected cells were purified using 
MonoSpin ProA(GL Science) in a 96-well plate format, if 
necessary.

Surface plasmon resonance

The pH-dependent binding of the prepared antibodies to 
antigen X was assessed at pH 7.4 and pH 5.8 or pH 6.0 at 
37°C using a Biacore 4000 or Biacore T200 instrument 
(Cytiva). Each antibody was captured onto Protein 
L (Cytiva) that was immobilized on a CM4 sensor chip 
(Cytiva), after which the antigen was injected into flow 
cells. Antibodies and analytes were diluted into their respec
tive running buffers (ACES pH 7.4 and pH 5.8 or pH 6.0 (20  
mM ACES, 150 mM NaCl, 1.2 mM CaCl2, 1 mg/mL bovine 
serum albumin, 1 mg/mL carboxymethyldextran, 0.05% 
Tween 20, 0.005% NaN3 [if necessary]). The analyte (antigen 
X) was diluted to 100 nM for screening and prepared by two- 
fold serial dilution starting from 200 nM at pH 7.4, and from 
800 nM at pH 6.0, for kinetic analysis. The surface of the 
sensor chip was regenerated using 3 M MgCl2. Kinetic para
meters were determined by fitting the sensorgrams with a 1:1 
binding model using BIACORE 4000 Evaluation software or 
Biacore T200 Evaluation software (Cytiva). In the screening 
process, the pH-dependent binding property of each anti
body was evaluated using a modified Biacore assay, in which 
an additional dissociation phase at pH 5.8 was integrated 
immediately after the dissociation phase at pH 7.4. In this 
evaluation, a pH of 5.8 was used for the additional dissocia
tion phase instead of pH 6.0, to rank the dissociation rate of 
antibodies more clearly from the antibody and antigen com
plex under acidic conditions. To rank the antibody variants 
with a single score that considers both aspects of binding 
under neutral pH and rapid dissociation under acidic pH, 
the pH-dependent binding score (details are described in the 
following method), calculated from the report point of the 
SPR sensorgram, was defined and used as an index of eva
luation. To obtain the report points of the sensorgram for 
calculation, custom report points were defined at equal 
intervals of seconds, in which 4 points for 120 s association 
at pH7.4, 6 points for 180 s dissociation at pH7.4, and 6 
points for 180 s dissociation at pH5.8 were defined. In 
addition to predefined report points, each custom report 
point was named as binding 1–4, dispH7–1–6, and 
dispH5–1–6, respectively. In the evaluation of SPR, if the 
capture amount of antibody (Target 200 RU) was < 50 RU 
or > 500 RU at an antigen concentration of 0 nM, the data 
were excluded to omit samples with too low antibody 
expression or samples for which data were not correctly 
obtained because of analytical noise. As a result, 703 binding 
data of antibodies with a single substitution were used for 
the initial input data.

Ph-dependent binding score

To consider both binding ability under neutral conditions 
and dissociation under acidic conditions, we introduced 
a pH-dependent binding score that quantifies how 

strongly an antibody binds to an antigen under neutral 
pH and how quickly it dissociates under acidic conditions. 
The pH-dependent binding score is defined as follows: 

y ¼ s h1ð Þ � α� t h1; h2ð Þ � β� u h2; h3; h4; h5ð Þ

s h1ð Þ ¼ 1þ
h1
P

h1 

t h1; h2ð Þ ¼ 1 �
h2

max h1;0:1
� �

u h2; h3; h4; h5ð Þ ¼ max
h3 þ h4 þ h5

max 3� h2;0:1
� � ; 0:5

 !

where s h1ð Þ, t h1; h2ð Þ; and u h2; h3; h4; h5ð Þ represent the binding 
ability under neutral conditions, binding stability under neutral 
conditions, and dissociation under acidic conditions, respectively. 
h1, h2, h3, h4, and h5 are binding captures normalized by one of 
the lead antibodies under each condition (Figure S4) and were 
obtained from the Biacore sensorgram. From these definitions, 
s h1ð Þ is large when the antibody strongly binds to an antigen 
under neutral conditions; t h1; h2ð Þ is small when the antibody 
stably binds under neutral conditions; and u h2; h3; h4; h5ð Þ is 
small when the antibody immediately dissociates under acidic 
conditions. To balance binding ability under neutral conditions 
and dissociation under acidic conditions, α ranged from 0.7 to 2 
and β ranged from 0.7 to 1.7 with 0.1 increments. Lastly, we set 
αto 1.3 and βto 0.9, such that the pH-dependent binding score 
fulfills our purpose. The significance of the pH-dependent bind
ing score is that it also provides accurate data on antibody 
variants that bind too weakly or strongly under a single SPR 
assay condition. When evaluating a large number of antibody 
variants, it is not practical to set the antigen concentration for 
each antibody affinity, thus a certain screening condition is 
applied. However, it is often observed that general kinetic para
meters such as ka, kd, and KD are inaccurate due to poor fitting, 
especially for antibodies that bind too weakly or strongly. We set 
the score to allow a realistic comparison of all antibody variants 
on the same scale.

Monte Carlo Thompson sampling

TS is a popular algorithm for the multi-armed bandit problem 
and Bayesian optimization, to balance exploration and 
exploitation.7 Particularly, in protein engineering through 
ML-based evolution, multiple samples have to be explored in 
each round.9,10 Thus, TS is suitable because it can naturally 
handle batch selection. The main idea of TS is to randomly 
draw samples according to its optimal posterior distribution. 
TS requires initial data to be evenly distributed in the search 
space to work well. However, this does not hold true in real- 
world applications. Specifically, when we handle a large-scale 
virtual protein sequence library, it is common for the search 
space to be differently distributed with training data because of 
the bias of available training data. In such cases, TS tends to be 
over-explored in a vast sequence space, and it is difficult to 
identify promising sequences within limited trials.
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To address this issue, we proposed MTS to balance the 
exploration-exploitation trade-offs by redefining a posterior 
distribution using the Monte Carlo method.

We began with the original TS to derive the MTS algorithm. 
Suppose that D ¼ xn; ynð Þf g

N
n¼1, where xn 2 R and 

yn ¼ f xnð Þ þ ε. First, TS randomly samples according to the 
posterior distribution p f xð ÞjDð Þ. 

αTS x; Dð Þep f xð ÞjDð Þ

Thereafter, the optimal candidate was selected based on the 
randomly sampled realization, where xtest is the candidate set. 

x 2 argmaxxtest2XαTS xtestjDð Þ

We can interpret the sampled realization αTS x; Dð Þ as an 
acquisition function for TS. In other words, TS selects the 
optimal sample for a randomly sampled objective function.

To control the exploration-exploitation trade-off, we con
sider a method to control the uncertainty of the posterior 
distribution through the Monte Carlo method. If we write 
the sampled t-th realization from the posterior distribution 
as αt

TS x; Dð Þ, we can write the redefined posterior distribution 
as follows: 

pMC f xð ÞjDð Þ ¼ g α1
TS x; Dð Þ; � � � ; αT

TS x; Dð Þ
� �

where T is the number of random samplings, and g is the 
function to define the posterior distribution. Thereafter, we 
randomly sampled according to the redefined posterior dis
tribution pMC f xð ÞjDð Þ. 

αMTSepMC f xð ÞjDð Þ

Finally, we select the optimal candidate based on a randomly 
sampled realization based on the acquisition function for 
the MTS. 

x 2 argmaxxtest2XαMTS xtestjDð Þ

In the batch Bayesian optimization setting, we selected samples 
with top-ranked values for the acquisition function. Note that 
pMC f xð ÞjDð Þ is the same as p f xð ÞjDð Þ when T is equal to 1, and 
the function of the redefined posterior distribution g xð Þ is x. 
This means that p f xð ÞjDð Þ is a special case of pMC f xð ÞjDð Þ and 
MTS is a natural expansion of TS. From this definition, when 
T is small, pMC f xð ÞjDð Þ has large uncertainty. Alternatively, 
when T is large, pMC f xð ÞjDð Þ becomes more stable. Thus, we 
control the over-exploration for TS through the number of 
samplings T in the MTS. Figure S3 shows the generic pseudo
code of MTS.

In this study, because we aimed to choose multiple candi
dates in each round, we set the redefined posterior distribution 
g xð Þ as the beta distribution. When we set Sn as the success 
counter, i.e., the top-ranked number sampled from GP, and Fn 
as the failure counter, i.e., T � Sn in the beta distribution, the 
approximate posterior distribution is as follows: 

pMC f xð ÞjDð ÞeBeta Sn þ α; Fn þ βð Þ

where α and β are prior parameters, and we set the non- 
informative prior as α ¼ β ¼ 1 in this study. This formulation 
intuitively means that we probabilistically select samples in 

terms of being top-ranked sampled from GP based on the 
Bernoulli bandit.17

Gaussian processes and feature vectors for antibody 
sequence

GP regression16 was used to train a predictive model for the 
pH-dependent binding score because an acquisition function 
was sampled for TS from a learned GP model. GP is an 
extension of the multivariate Gaussian distribution to an infi
nite dimension distribution, in which any distribution combi
nation of dimensions is a Gaussian distribution. Suppose that 
D ¼ xn; ynð Þf g

N
n¼1, where xn 2 Rd and yn ¼ f xnð Þ þ ε, a GP is 

a distribution over functions specified by its mean function 
μ xð Þ and covariance function, that is, kernel function k x; x0ð Þ. 

f xð ÞeGP μ xð Þ; k xð Þð Þ

Note that this function is used as the posterior distribution when 
sampling the TS. To train a GP regression model, we used the 
Matern kernel with ν = 2.5 as a kernel function in this study. 

k x; x0ð Þ ¼ 21� ν

Γ νð Þ

� �
rνBν rð Þ; r ¼

ffiffiffiffi
2ν
p

l jjx � x0jj

The doc2vec18 was used to take advantage of large-scale pro
tein sequences to embed antibody sequences in a learned 
embedding vector space. The doc2vec model was pre-trained 
using the UniProt database19 with lengths between 50 and 999 
amino acids, according to a previous study.20 We obtained 
embedded representations from both VH and VL sequences, 
and concatenated these two vectors. Hyperparameters were set 
for doc2vec, i.e., k-mer k 2 1; 2; 3; 4; 5f g, window size 
w 2 1; 2; 3; 4; 5f g and dimension for embedding 
d 2 32; 64; 128; 256f g, and determined k = 3, w = 2, and d =  
256 through five-fold cross-validation to minimize the mean 
squared error in the initial training data set. We used the 
Gensim library to train and infer doc2vec.21

Experimental setup on synthetic data

We used the five-well potential function, which has a two- 
dimensional potential with five local minima,22 to compare the 
performance. The landscape of the five-well potential 
function (Figure S2A). To mimic an over-exploration 
scenario that we focus on in this study, we sampled the initial 
data for training from a specific region, that is, 

x; y : � 15 � x � � 10; � 5 � y � 5f g (Rectangle region in 
Figure S2A). We set the number of initial data to three and the 
number of batch-sampled data to three at each round and 
compared the performance of MTS, TS, exploration only, and 
random sampling in terms of simple regret and cumulative regret 
until 15 rounds. We set the number of sampling to 1000 for the 
MTS. Simple and cumulative regret are defined as follows: 

Rsimple ¼ f � xð Þ � max
t

f xtð Þ

Rcum ¼
XT

t¼1
f � xð Þ � f xtð Þ
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where f � xð Þ is the global optimum and f xtð Þ is the value 
obtained in round. We averaged them more than 10 times in 
each round (Figure S2BC).
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