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ABSTRACT Identification and analysis of clinically relevant strains of bacteria increasingly
relies on whole-genome sequencing. The downstream bioinformatics steps necessary for
calling variants from short-read sequences are well-established but seldom validated against
haploid genomes. We devised an in silico workflow to introduce single nucleotide polymor-
phisms (SNP) and indels into bacterial reference genomes, and computationally generate
sequencing reads based on the mutated genomes. We then applied the method to
Mycobacterium tuberculosis H37Rv, Staphylococcus aureus NCTC 8325, and Klebsiella
pneumoniae HS11286, and used the synthetic reads as truth sets for evaluating several
popular variant callers. Insertions proved especially challenging for most variant callers
to correctly identify, relative to deletions and single nucleotide polymorphisms. With
adequate read depth, however, variant callers that use high quality soft-clipped reads
and base mismatches to perform local realignment consistently had the highest precision
and recall in identifying insertions and deletions ranging from1 to 50 bp. The remaining
variant callers had lower recall values associated with identification of insertions greater
than 20 bp.
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Whole-genome sequencing and identification of bacteria can be immensely useful
in tracking the transmission and evolution of pathogens during outbreaks, as well

as in predicting clinically relevant phenotypes such as antimicrobial resistance. Clinical bioin-
formatics pipelines typically take advantage of known reference genomes that are medically
important and rely on the accuracy of variant calling algorithms to identify pathogenic spe-
cies and strains or to detect clinically relevant genotypes. Therefore, the accuracy of variant
calling is critical in informing clinical decisions; however, the performance of many variant
callers used in clinical microbiology workflows have primarily been developed for and eval-
uated against human reference genomes. Truth sets of bacterial species variants are limited
(1). In addition, the conclusions of variant caller validation against linear and diploid reference
genomes do not always apply to variant calling in haploid and circular bacterial genomes. For
example, genotyping alleles relies on setting the appropriate minimum threshold for variant
allele frequencies (VAF), and the VAF threshold for genotyping homozygous versus heterozy-
gous alleles in diploid genomes necessarily differs from the minimum threshold for identifying
alternate alleles in haploid genomes; variant callers that do not account for this may not be
appropriate for bacterial variant calling.

Given these issues, various efforts to develop recommendations for benchmarking
variant caller performance against bacterial reference genomes have been made, although
these analyses have focused on the identification of single nucleotide variants exclusively
(1–3). Bush et al. (1) evaluated bacterial single nucleotide polymorphisms (SNP)-calling
pipelines using real and simulated reads of several species of Enterobacteriaceae and found
that reference genome selection significantly impacts the performance of variant-calling
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pipelines, especially for highly recombinogenic bacterial species. This corresponds to the
findings by Pightling et al. (4), which concluded that selection of both reference genomes
and short read aligners affect variant calling in the clonal Listeria monocytogenes species.

One reason benchmarking analyses are restricted to evaluating SNP calls is the diversity
of indel-calling algorithms (1), which prohibits direct performance comparisons. Indel-con-
taining reads are challenging to map to unique genomic locations; both insertions and dele-
tions can generate alternative haplotypes that correspond to multiple loci on reference hap-
lotypes (5). Independent mapping of individual fragments by read mappers is also more
likely to tolerate mismatches than gapped alignments (5). Therefore, in addition to align-
ment-based methods, other algorithms have been developed specifically for indel-calling,
including split-read mapping, paired-end read mapping, and haplotype-based methods (6).
Alignment-based indel callers rely on different models to distinguish true indels from align-
ment errors. Meanwhile, both split-read and paired-end read mapping methods use paired
reads to identify discordant pairs for de novo assembly, and compare expected to actual
mapped distance between pairs, respectively (6). Finally, haplotype-based methods identify
active regions with evidence of indels relative to a reference sequence, followed by reassem-
bly of the active regions to generate possible haplotypes from the reads; indels are then
called based on the posterior probabilities of reads realigned to the possible haplotypes.

We expand on previous efforts to validate bacterial variant-calling by developing a toolkit
for introducing synthetic variants into a reference genome and measuring the precision and
recall of different callers in identifying not only SNPs, but also insertions and deletions. This
validation is motivated by an effort to develop a clinical assay to detect antimicrobial resist-
ance-associated mutations inM. tuberculosis. To determine the generalizability of our methods,
we further extended the validation of these tools to other bacterial species of varying genome
sizes and GC content: Mycobacterium tuberculosis H37Rv (4.4 Mbp, GC% 65.6), Klebsiella pneu-
moniae HS11286 (5.3 Mbp, GC% 57.5), and Staphylococcus aureus NCTC 8325 (2.8 Mbp, GC%
32.9). We then used the in silico altered genomes to test the performance of eight variant call-
ers: bcftools, DeepVariant, DiscoSNP, FreeBayes, GATK HaplotypeCaller, Lancet, Octopus, and
VarDict (Java implementation). We chose these variant callers because they are widely used,
have good documentation, and appear to be actively maintained within the last 5 years, all
of which are important criteria for software deployed in clinical pipelines.

Algorithms for identifying sequence variants from short reads can be broadly categorized
into reference-based methods that rely on mapping reads onto a curated reference genome,
and newer reference-free methods that construct deBruijn graphs of k-mers; some methods
are a hybrid of both. Because variants of clinical significance are typically annotated relative to
a reference strain, all the variant callers we tested are reference-based methods, or in the case
of DiscoSNP, implemented in reference-based mode (Table 1).

MATERIALS ANDMETHODS
Variant simulation. A locally developed Python script, variants.py v1.0, was used to introduce SNPs,

insertions, and/or deletions into the whole-genome sequences of M. tuberculosis H37Rv (GenBank accession

TABLE 1 Summary of tools

Variant callers

Methods

ReferencePloidy5 1?
bcftools v1.13 Allele frequency estimation based on mapped reads Yes 21, 22
DeepVariant v1.2.0, 1.3.0 Convolutional neural network model trained on mapped reads No 24
DiscoSNP v2.2.10 DeBruijn graph from k-mers of raw reads No 33
FreeBayes v1.3.5 Haplotype inference based on mapped reads Yes 23
GATK HaplotypeCaller v4.0.11.0 Local reassembly of mapped reads to generate potential haplotypes, followed by

reads realignment to candidate haplotypes.
Yes 25–27

Lancet v1.1.0 Mapped reads decomposed into deBruijn graph of k-mers No 32
Octopus v0.7.4 User choice of combination of read pileups, local reassembly of mapped reads,

realignment of misaligned repeat regions, and/or user-specified alleles, to
identify candidate haplotypes.

Yes 31

VarDict-Java v1.8.2 Mapped reads with different local realignment strategies for short vs longer indels,
and for complex variants comprising multiple indels.

No 30
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NC_000962.3), K. pneumoniae HS11286 (GenBank accession NC_016845.1), and S. aureus NCTC 8325 (GenBank
accession NC_007795.1) to generate novel variant genomes in silico. variants.py adds mutations to a reference
genome based on user-provided parameters for proportion of SNPs to insertions and deletions, minimum and
maximum indel lengths, and mutation density. We set variants.py to evenly distribute mutations in all our sim-
ulations; this setting can be edited to produce a normal distribution of mutations instead.

We generated multiple replicates of synthetic variant genomes comprising SNPs only, insertions only, or
deletions only to test the performance of variant callers on each type of mutation. In order to obtain adequate
numbers of mutations for statistical inference with a low probability of introducing adjacent mutations, we per-
formed 60 replicates with a mutation density of 1 mutation every 200 bases. This mutation density was inten-
tionally selected to ensure a minimum of 1 mutation per read, as a way to stress-test the variant callers.
Because M. tuberculosis has a genome size of 4,411,532 bp, this gave us approximately 20,000 mutations per
variant genome. With a genome size of 5,333,942 bp, mutated K. pneumoniae genomes had approximately
26,000 mutations each, while approximately 14,000 mutations were introduced in each S. aureus variant genome
(2,821,361 bp). Indel length was allowed to range between 1 and 50 bases, resulting in median indel length of 25
bases (mean 25.5, SD 14.4).

We also generated synthetic variant genomes from the M. tuberculosis reference strain that com-
prised SNPs only, insertions only, or deletions only, this time at a mutation density of 1 every 1,000 bases
(approximately 4,000 mutations per mutated M. tuberculosis genome) to model genetic distance in the
same order of magnitude as those between M. tuberculosis complex (MTBC) strains, which have average
nucleotide identities of greater than 99% (7).

Validation of introduced mutations was done by aligning reference and selected variant genomes
(one mutated genome per mutation type per species) in Mauve v2015-02-25 (8), followed by manually
inspecting the sequences at 10 of the mutated coordinates, resulting in 90 mutations examined.

Read simulation, processing, and mapping. Synthetic paired-end reads were generated from the
H37Rv reference genome and simulated variant genomes with ART v2016-06-05, with read lengths set
at 150 bp (mean fragment length was 200 bp, SD 10 bp). The average read coverage for the replicate
data sets with density of 1 mutation/200 bases was set to 50�, while reads generated for the data sets
with 1 mutation/1,000 bases had average coverage of 100�. The latter data sets were then subsampled
to average coverages of 90�, 80�, 70�, 60�, 50�, 40�, 30�, 20�, 15�, 10�, and 5� to investigate the effect
of read depth on variant calling. Instead of the default base quality profile model, we provided our own, based
on in-house sequencing of M. marinum, K. pneumoniae, and S. aureus. The synthetic reads were trimmed with
cutadapt v1.15 (34), retaining those with minimum read quality of 5 and minimum length of 20 bp. We also
used cutadapt to detect and trim Illumina adaptor sequences.

Preprocessed reads were then mapped to the H37Rv reference genome with the “bwa mem” v0.7.13
(35) algorithm. The resulting BAM files were coordinate-sorted and indexed with samtools v1.2 (18, 19).
Duplicated reads and poorly mapping reads (MAPQ , 10) were removed using GATK MarkDuplicates
(Picard) v4.0.11.0 and “samtools view,” respectively.

Variant calling. The final BAM files were used as input for seven different variant callers: bcftools,
DeepVariant, FreeBayes, GATK HaplotypeCaller, Lancet, Octopus, and VarDict. We also tested an eighth variant
caller, DiscoSNP, which is a reference-free method that does not use BAM files as input; instead, DiscoSNP uses
raw read sets in kmer-based deBruijn graph analysis to identify variants. While the somatic variant caller Lancet
also uses kmer-based deBruijn graphs, Lancet decomposes mapped reads from BAM files. In order to take advant-
age of Lancet’s joint analysis of tumor and normal samples, we simulated and mapped reads from the H37Rv ref-
erence genome to use as the normal reference reads; see Read Simulation, Processing, and Mapping above.

Where the options were available, ploidy was set to one (bcftools, FreeBayes, GATK, Octopus), and mini-
mum alternate allele fraction set to 0.2 (FreeBayes, VarDict, Lancet) to reflect expected variant frequencies in
haploid genomes. Other than ploidy and alternate allele fraction, default parameters were used in all variant
callers; we assumed the multiallelic variant-calling model as the default setting for “bcftools call.”

Variant normalization and VCF filtering. Since each variant caller can have different default infor-
mation reported in their output VCFs, we postprocessed all VCFs so that variant sequences and genomic
coordinates could be accurately compared to determine true/false calls for calculation of precision and
recall. True positive variant calls are those with the same sequence and genomic coordinates as simu-
lated mutations. Variant calls that differ from the simulated mutations in sequence or coordinates are
considered false positive, while false-negative calls are simulated mutations that are not identified by
the variant caller. Precision (or positive predictive value) is then calculated as the ratio of total true posi-
tive calls to the sum of true positive and false-positive calls, while recall (sensitivity) is the ratio of total
true positive calls to the sum of true positive and false-negative calls.

Variant normalization refers to both left-aligning the variant coordinates with respect to the refer-
ence genome, and parsimoniously representing the variant sequence. GATK LeftAlignAndTrimVariants
was used to normalize variant representations in all VCF files. Because most variant callers report diploid
genotypes, we decided that heterozygous alternate alleles should be counted as valid variant calls as
well, and only filtered out homozygous reference alleles (e.g., GT 5 0/0) from VCFs that reported them.

Data availability. All pipeline associated code are publicly available at https://github.com/molmicdx/mtb
-pipeline. The simulated synthetic genomes used for this analysis, and a Jupyter notebook containing data
analysis code to reproduce these results are provided on Zenodo (doi:10.5281/zenodo.8030188).

RESULTS

Sixty mutated genomes per mutation type (i.e., SNPs-only, insertions-only, deletions-only)
were generated in silico from each of the three bacterial references, at a density of 1 in 200
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bases and average 50� read depth, resulting in approximately 1.2 million pooled nondupli-
cate mutations per mutation type in M. tuberculosis, approximately 1.4 million in K. pneumo-
niae, and approximately 800,000 in S. aureus. Using this approach, we were able to generate
a large number of observations without over-saturating individual genome locations.

All eight variant callers performed similarly well in calling variants from theM. tuberculosis
data sets that comprised only SNPs (Fig. 1a), with recall ranging from 97.9% (DiscoSNP) to
99.9% (bcftools, DeepVariant, FreeBayes, GATK, Octopus, and VarDict), and precision 99.96%
(DiscoSNP) to 100% (bcftools, FreeBayes, GATK, VarDict). Performance predictably declined
when calling indels, with the most variable performance on the insertions-only data set
(Fig. 1a, middle and right panels). Recall on the insertions-only data set ranged from
33.30% (DiscoSNP) to 99.86% (GATK), while recall ranged from 71.20% (DiscoSNP) to 99.99%
(GATK) on the data sets that consisted of only deletions. Meanwhile, precision on the inser-
tions-only data set ranged from 83.54% (VarDict) to 99.97% (GATK), and 97.39% (bcftools) to
99.99% (GATK and Lancet), on the deletions-only data set.

Similarly in the K. pneumoniae data sets (Fig. 1b), SNP recall and precision were 99.99%
or better, while in the S. aureus data sets (Fig. 1c) SNP recall ranged from 94.9% (DiscoSNP)
to 100% (FreeBayes), with precision ranging from 98.3% (DiscoSNP) to 99.99% (all other call-
ers). Recall of insertions set the variant callers apart, ranging from 33.79% (DiscoSNP) to
99.93% (Octopus) in the K. pneumoniae data sets and 32.59% (DiscoSNP) to 99.09% (GATK
and Octopus) in the S. aureus data sets. Precision in calling insertions meanwhile ranged
from 87.97% (VarDict) to 99.99% (DeepVariant) in the K. pneumoniae data sets, and 92.54%
(VarDict) to 99.14% (DeepVariant and Octopus) in the S. aureus data sets. DiscoSNP had the
lowest recall of deletions in both the K pneumoniae and S. aureus data sets (72.26% and
70.77%, respectively), while DeepVariant, GATK, and Octopus each recalled 99.99% in both
bacterial data sets. Precision in calling deletions ranged from 97.99% (bcftools) to 99.99%
(DeepVariant, FreeBayes, GATK, Lancet, Octopus) in the K. pneumoniae data sets, and 97.83%
(bcftools) to 100% (GATK) in the S. aureus data sets.

(a)

(b)

(c)

FIG 1 Recall versus precision on synthetic data sets with SNP-only (left), INS-only (middle), and DEL-only mutations
(right). Each data set comprised 60 mutated (a) M. tuberculosis, (b) K. pneumoniae, and (c) S. aureus reference
genomes. Mutations were introduced at a density of 1 for every 200 bases. Synthetic reads were generated at 50�
average read depth.
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We also analyzed data sets consisting of mixed mutation types, similarly introduced at
a density of one every 200 bases (approximately 1.2 million, 1.4 million, and 800,000 mutations
perM. tuberculosis, K. pneumoniae, and S. aureus data sets, respectively). The first data set com-
prised 50% SNPs and 25% each of insertions and deletions, while the second data set con-
sisted of 85% SNPs and 7.5% each of insertions and deletions (Fig. 2); insertions in both data
sets comprised 50% duplications, and 50% inversions or random sequences. Median indel
length was 25 bp (mean 25.5, SD 14.4).

In the M. tuberculosis data sets, recall and precision when SNPs comprised 50% of the
mutations ranged from 74.79% (DiscoSNP) to 99.95% (GATK and Octopus), and 95.26%
(VarDict) to 99.97% (FreeBayes, GATK, Lancet, and Octopus), respectively. Recall and preci-
sion improved when the ratio of SNPs was increased to 85% in M. tuberculosis, ranging
from 87.82% (DiscoSNP) to 99.98% (GATK and Octopus), and 96.67% (DiscoSNP) to 99.99%
(DeepVariant, FreeBayes, GATK, Lancet, and Octopus), respectively (Fig. 2a). This pattern is
similarly observed for K. pneumoniae (Fig. 1b) and S. aureus (Fig. 1c). Recall and precision
for K. pneumoniae with 50% SNPs ranged from 76.0% (DiscoSNP) to 99.98% (GATK), and 96.7%
(VarDict) to 99.99% (FreeBayes and GATK), respectively. At 85% SNPs, recall in K. pneumoniae
ranged from 92.4% (DiscoSNP) to 99.99% (GATK and Octopus), with . 98% precision for
all variant callers. Recall and precision for S. aureus with 50% SNPs ranged from 74.5%
(DiscoSNP) to 99.7% (GATK and Octopus), and 97.9% (VarDict) to 99.70% (FreeBayes and
GATK), respectively. Finally, recall for 85% SNPs in S. aureus was 90.8% (DiscoSNP) to 99.99%
(GATK), with. 99% precision for all variant callers.

We then partitioned the indels simulated in Fig. 1 (middle and right panels for all reference
genomes, i.e., 120 mutated genomes per species) by size to determine the effect of indel
length on the variant callers’ ability to recall them. The total number of insertions and deletions
21 to 50 bp in length varied based on reference genome size, ranging from 946,920 (S. aureus)
to 1.8 million (K. pneumoniae). Indels 6 to 20 bp in length ranged from 474,617 to 894,070 while
indels 1 to 5 bp in length ranged from 157,691 to 297,351.

(a)

(b)

(c)

FIG 2 Precision versus recall on synthetic data sets with mixed variants in mutated (a) M. tuberculosis, (b) K. pneumoniae,
and (c) S. aureus genomes. Left panel: 50% SNPs, 25% insertions, 25% deletions; right panel: 85% SNPs, 7.5% insertions,
7.5% deletions.
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The most consistent pattern differentiating variant caller recall in all three bacterial
references is the length of insertions, while deletion length did not significantly alter recall
(Fig. 3). Across all three bacterial reference genomes, insertions 21 to 50 bp in length signif-
icantly differentiated the variant callers, with recall ranging between 3.5% to 3.6% (DiscoSNP)
and 99.0% to 99.9% (GATK and Octopus). The recall range was much narrower for shorter
insertions. Recall of insertions 6 to 20 bp in length ranged between 69.9% to 72.5%
(DiscoSNP) and 99.15% to 99.98% (VarDict), while recall of insertions of sizes 1 to 5 bp ranged
between 92.9% to 96.0% (DiscoSNP and Lancet) and 99.2% to 99.99% (bcftools and VarDict).
Unlike insertions, deletions of varying lengths did not appear to affect variant caller as strongly,
with recall values over 97% across all lengths and reference genomes. The exception was
DiscoSNP; while DiscoSNP’s recall of 6 to 20 bp deletions was also above 97%, this deterio-
rated to 54% with deletions 21 to 50 bp in length.

Finally, we also investigated the effects of varying read depths from 5� up to 100�
at a mutation density of one for every 1,000 bases on variant caller performance, focusing
on the M. tuberculosismutated genomes, because recall and precision trends in all mutation
types are recapitulated in both K. pneumoniae and S. aureus. At a density of 1 mutation every
1,000 bases, the total mutation counts were 4,398 for the SNPs-only data set (Fig. 4a); 4,315
for the insertions-only data set (Fig. 4b); and 4,261 for the deletions-only data set (Fig. 4c).
Across all variant callers, recall and precision in the SNPs-only data set were$ 95% and$ 99%,
respectively, at read depths of 20� and higher (Fig. 4a).

For the insertions-only data set, however, recall at 20� ranged from 25.5% (DiscoSNP) to
97.5% (GATK) (Fig. 4b). The influence of read depth on recall also varied widely by variant
caller, with the point of rapid decline in performance at 70� coverage for Lancet (89% recall)
and lowest of 15� for FreeBayes (58% recall) (Fig. 4b). Precision of the variant callers on the
insertions-only data set at 20� was similar to the SNPs-only data set at $ 99%, except for
VarDict at 90.8%. Interestingly, VarDict’s precision was inversely correlated to read depth,
steadily decreasing from 93% at 5� to 71% at 100�.

FIG 3 Recall of introduced deletions versus insertions by each variant caller. Indels were introduced into M. tuberculosis
(top row), K. pneumoniae (middle row), and S. aureus (bottom row), and are binned by size: 1 to 5 bp (left), 6 to 20 bp
(middle), and 21 to 50 bp (right).
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All of the variant callers performed slightly better on the deletions-only data set than
on the insertions-only data set at 20� read depth (Fig. 4c), with recall ranging from 68.9%
(DiscoSNP) to 98.7% (GATK) and precision ranging from 97.55% (DiscoSNP) to 99.98%
(GATK and Lancet). VarDict’s precision only declined slightly between 5� and 30� to 98%
on the deletions-only data set; however, precision of bcftools dropped from 97.9% to 89.3%
between 10� and 100�.

Three types of insertions were introduced into the insertions-only data set referenced in
Fig. 4b: duplications, inversions, and random sequences, at a ratio of 2:1:1. In order to further
investigate the features of insertions that determine recall for each variant caller, we subdi-
vided the same insertions-only data set by the types of insertions introduced (Fig. 5): dupli-
cations-only (2,220 total mutations), inversions-only (1,016), and random sequences only
(1,079). Median insertion lengths were 26 bp (mean 25.7, SD 14.4), 25 bp (mean 25.6, SD
14.3), and 24 bp (mean 24.8, SD 14.6) for duplications, inversions, and random sequences,
respectively. At read depths of 20� and higher, recall did not significantly differ between
duplications, inversions, and random sequences for DeepVariant (respectively 93.6%, 98.1%,
and 98.7%, at 20�) and GATK (96.7%, 98.1%, and 98.4%). However, recall of duplications
were the lowest of the three insertion types for DiscoSNP (max. 25.3% at$ 40�), FreeBayes
(max. 47.7% at 40�), and bcftools (max. 67.9% at 90�), while recall of inversions were low-
est for Lancet (max. 69.5% at 100�) and VarDict (max. 87.9% at 70� and 100�).

(a)

(b)

(c)

FIG 4 Recall and precision on synthetic M. tuberculosis data sets with 1 mutation/1,000 bases per simulation to approximate
the genetic distances between M. tuberculosis complex (MTBC) species, at varying read depths for the (a) SNP-only, (b) INS-only,
and (c) DEL-only data sets.

FIG 5 Recall values for insertions consisting of duplications, inversions, and random sequences. Precision was not calculated
since false-positive calls did not have information on the type of insertions that were identified by the variant callers.
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DISCUSSION

Identifying single nucleotide polymorphisms from whole-genome sequencing short
reads has become a relatively straightforward task that most popular variant calling software
and pipelines can reliably perform, especially with high-quality sample preparation and trusted
reference databases. More recent advancements in identifying SNPs focus on either calling
with limited signal information (e.g., low-frequency variants), or reducing computational bur-
den. Accurately identifying indels and structural variants, however, remains a challenge.
Developing effective algorithms for calling complex variants is one part of the challenge,
while the other is generating a reference set of known variants to validate against. This
study was specifically motivated by the need for a principled approach for selecting a vari-
ant caller and defining relevant parameters in the process of developing and validating a
clinical assay for predicting antimicrobial resistance in M. tuberculosis. Additional species
were included to ensure that this approach is generalizable to other genomic contexts.

Application of whole-genome sequencing in the clinical microbiology laboratory can
aid clinicians in predicting antimicrobial resistance (9). Markers of antimicrobial resistance
include insertions, deletions, and other complex mutations in addition to SNPs, necessitating
the use of variant callers that are robust in detecting such mutations. For example, indels were
found to be enriched in the antibiotic resistance-conferring genes of M. tuberculosis strains
involved in the Central Asian multidrug-resistant outbreak (10). Small indels in M. tuberculosis
were also associated with increased MIC of the antibiotics levofloxacin, ethionamide, and
delamanid (11). Resistance traits associated with indels and other complex mutations are also
significant in other species. Integration of the SCCmec cassette in the chromosome of S. aur-
eus, for example, confers methicillin resistance (12), which can also subsequently be inactivated
through insertion of Tn551 (13). Polymyxin resistance is also associated with deletions in the
PhoPQ gene in K. pneumoniae and other bacterial species (14).

Methods for indel detection generally employ gapped alignment, split reads, de novo
assembly, or a combination thereof (15). Gapped alignment methods detect small indels
that are contained within the length of a read; split-read methods identify medium-length
indels (10 bp to 1 kb) at the cost of missing low-frequency indels, while de novo assembly
methods can identify larger indels, albeit by utilizing significant computational resources
(15). Given that identifying variants is an integral part of clinical genomics, variant callers
and other software used as part of the bioinformatics workflow are often validated and
benchmarked against human reference data sets (e.g., 6, 15, 16). Variant calling in the con-
text of resolving clinical infections or tracking infectious disease transmission and epidemi-
ology also relies on the same bioinformatics tools; therefore, these tools also need to be
tested against microbial data sets.

Recent efforts to validate widely used bioinformatics tools with microbial data include
testing SNP-calling assemblies and pipelines against increasingly divergent bacterial refer-
ence genomes (1, 4), and combining whole-genome sequencing and traditional molecular
biology assays to validate a SNP-calling bioinformatics workflow (17). Steglich and Nübel
(18) tested four indel callers against 1- to 2,321-bp indels introduced into a reference
Clostridium difficile bacterial genome in silico, and found that while gapped alignment
(e.g., as implemented in FreeBayes) was suitable for indels# 29 bp, a combination of methods
as employed by the ScanIndel framework (15) was best for indels. 29 bp.

In the present study, we synthetically generated variant whole-genomes based on three
bacterial reference genomes to test the performance of eight variant callers that are designed
to identify both SNPs and short indels. Within the context of a clinical workflow, variants are
primarily identified by comparing isolates against reference strains that are medically informa-
tive for treatment or epidemiological tracking. For example, the WHO’s catalog of mutations
associated with antimicrobial resistance in M. tuberculosis are identified with reference to the
H37Rv strain of the pathogen (19). We therefore used the same M. tuberculosis H37Rv refer-
ence genome for our analyses, as well as K. pneumoniae HS11286 and S. aureus NCTC 8325 ref-
erence genomes for the respective data sets. Selection of an appropriate reference genome
has been shown to be the main factor affecting SNP calling sensitivity and precision, with
decreasing pipeline performance as genetic distance between reads and reference genome
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increased (1). Our results correspond with Bush et al.’s findings (1); variant-calling perform-
ance generally suffered with increased ratio of indels to SNPs (Fig. 2), and increased indel
lengths (Fig. 3).

The three selected reference strains are varied in genome size and GC content, ranging
from S. aureus with a genome size of 2.8 Mbp and %GC 32.9 to K. pneumoniae with the larg-
est genome (5.3 Mbp) and M. tuberculosis with the highest %GC (65.6 Mbp). The differences
in reference genome sizes and GC content did not appear to affect variant caller recall and
precision as they performed similarly across all three bacterial species. Genomic regions with
homopolymers and repetitive sequences are known to introduce ambiguous read mapping
results; these regions can be masked to reduce the amount of false-positive calls (2). This is
typically done for example, in the highly repetitive PE/PPE regions of the M. tuberculosis ge-
nome (17, 20). We did not restrict variant simulation or calling to any loci in this study; simu-
lated variants were evenly distributed across the genomes. Our results indicate that masking
these regions was generally unnecessary for these variant callers to accurately identify SNPs
alone. Further work is needed to examine the relationship between indel length, genome
complexity, and variant caller performance.

The widely used “bcftools mpileup” and “bcftools call,” which evolved from “samtools
mpileu” and “bcftools view,” applies a multiallelic variant-calling model to identify SNPs
and indels by statistically inferring allele and haplotype frequencies based on “pileups” of
reads aligned to a reference genome (21, 22). FreeBayes also models multiallelic loci within
a Bayesian statistical framework based on aligned reads in order to detect variation across
inferred haplotypes (23). DeepVariant meanwhile, takes advantage of images of read pileups
and known true diploid genotypes to train a convolutional neural network model to subse-
quently identify new candidate SNP and indel variants (24).

Instead of strictly utilizing genomic position-based pileups, GATK HaplotypeCaller
uses a consensus of reads at genomic regions of interest to assemble theoretical haplotypes
from deBruijn-like graphs (25–27). VarDict similarly relies on aligned reads, then uses soft-
clipped reads (reads with mismatched bases that are masked for the purposes of align-
ment but not permanently trimmed) (28, 29) for local realignment to estimate indel allele
frequencies (30). The variant caller Octopus, also uses k-mer-based deBruijn graphs for local
reassembly, in combination with read pileups and common patterns of misalignments to
identify alleles and generate candidate haplotypes (31). The somatic variant caller Lancet
also locally assembles mapped reads, then decomposes them into k-mers to construct
deBruijn graphs that are color-labeled to differentiate tumor versus normal samples (32).
DiscoSNP meanwhile eschews aligned reads completely, instead constructing deBruijn
graphs of k-mers from raw read sets to detect SNPs and indels (33).

While all tested variant callers generally excelled at identifying SNPs, the variant callers
that were best at recalling insertions in the three bacterial reference genomes, GATK
HaplotypeCaller, Octopus, and VarDict (Fig. 1), all scrutinize genomic regions with discrepan-
cies such as base mismatches and high quality soft-clipped bases to identify indels (27, 30, 31).
This also suggests an explanation for DiscoSNP’s poor recall because local alignment context
is lost when only k-mers of raw reads are used for variant identification. GATK HaplotypeCaller
and VarDict’s high recall corresponds with the performance of the ScanIndel framework; the
latter also recovers soft-clipped reads for realignment before final variant calling, which helps
to identify medium-sized insertions and large deletions (15). Interestingly, higher coverage
depth up to 100� and lower mutation density caused VarDict to falsely call more insertions
than GATK HaplotypeCaller did (Fig. 4b), by up to 3 orders of magnitude. Lai et al. (30)
describes VarDict's strength in detecting deletions and complex variants that include
deletions, which are supported by our observations in the deletions-only data set. The dele-
tions-only data set also posed less of a challenge to the other tested variant callers, presumably
because deletion breakpoints are simpler to identify by the lack of reads or read segments.

We initially expected variant callers that allow specific parameterizations to reflect
haploid genomes to perform better due to more accurate expectations of variant allele
frequencies or genotypes. The ability to parameterize ploidy (Table 1) did not appear to
have a significant effect on recall of insertions. Of the variant callers where ploidy could be
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set to 1, bcftools and FreeBayes consistently had poorer recall of insertions than GATK
HaplotypeCaller and Octopus. On the other hand, DeepVariant and Lancet, which do not
have ploidy settings, demonstrated better recall of insertions than bcftools and FreeBayes
did (Fig. 1). Specifying the minimum fraction of variant alleles to reflect expected haploid
variant frequencies may have helped in the case of Lancet, but not FreeBayes. Nevertheless,
we note that failing to set the variant allele fractions in callers that had this parameter avail-
able resulted in excessive amounts of false-positive calls.

The variant callers surveyed in this study employ different strategies that ultimately
attempt to deal with the problem of aligning reads that do not match the reference sequence.
Our data indicate that algorithms that take advantage of local genomic context, especially
when there are significantly mismatched or soft-clipped bases, perform better than those that
do not; however, the specific local realignment strategies adopted by the variant callers matter
in differentiating their respective performances on insertions versus deletions. Ultimately, the
selection of a variant caller for use in laboratory-developed tests should be informed not only
by performance characteristics, but also by the quality of documentation, organizational famili-
arity with computing languages and platforms, whether the software project is actively main-
tained, and usage patterns in the literature and laboratory community.
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