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Abstract

Near-infrared diffuse optical tomography (DOT) is a promising functional modality for breast 

cancer imaging; however, the clinical translation of DOT is hampered by technical limitations. 

Specifically, conventional finite element method (FEM)-based optical image reconstruction 

approaches are time-consuming and ineffective in recovering full lesion contrast. To address 

this, we developed a deep learning-based reconstruction model (FDU-Net) comprised of a Fully 

connected subnet, followed by a convolutional encoder-Decoder subnet, and a U-Net for fast, end-

to-end 3D DOT image reconstruction. The FDU-Net was trained on digital phantoms that include 
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randomly located singular spherical inclusions of various sizes and contrasts. Reconstruction 

performance was evaluated in 400 simulated cases with realistic noise profiles for the FDU-

Net and conventional FEM approaches. Our results show that the overall quality of images 

reconstructed by FDU-Net is significantly improved compared to FEM-based methods and a 

previously proposed deep-learning network. Importantly, once trained, FDU-Net demonstrates 

substantially better capability to recover true inclusion contrast and location without using any 

inclusion information during reconstruction. The model was also generalizable to multi-focal 

and irregularly shaped inclusions unseen during training. Finally, FDU-Net, trained on simulated 

data, could successfully reconstruct a breast tumor from a real patient measurement. Overall, 

our deep learning-based approach demonstrates marked superiority over the conventional DOT 

image reconstruction methods while also offering over four orders of magnitude acceleration 

in computational time. Once adapted to the clinical breast imaging workflow, FDU-Net has 

the potential to provide real-time accurate lesion characterization by DOT to assist the clinical 

diagnosis and management of breast cancer.
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I. INTRODUCTION

Nnear-Infrared (NIR) diffuse optical tomography (DOT) is an emerging functional imaging 

technology for cost-effective, safe, and noninvasive assessment of breast cancer [1], 

[2]. Using non-ionizing NIR light, DOT can capture abnormal deep tissue vasculature 

and metabolism through quantitative in vivo tomographic images of total hemoglobin 

concentration and average tissue hemoglobin oxygenation. Over the years, independent 

clinical studies have repeatedly demonstrated the potential of DOT in differentiating 

between malignant and begin breast lesions [3]–[8], as well as in the early prediction of the 

outcome of neoadjuvant therapy [9]–[11], especially when used in a multi-modal approach 

in combination with clinical breast imaging modalities.

Despite its sensitivity to cancer pathophysiology and success in pilot studies, DOT faces a 

few limitations attributed to the intrinsic challenges in solving the ill-posed DOT inverse 

problem [12]. To ensure a stable solution, regularization is typically required at the 

cost of the loss of spatial resolution and contrast recovery, which results in the current 

utility of DOT being predominantly limited to imaging large lesions over 1–1.5 cm in 

size. Yet, in the diagnostic setting in the U.S., over 60% of all biopsy-confirmed breast 

cancers detected with screening mammography are smaller than 1.5 cm [13]. Efforts in 

utilizing more sophisticated reconstruction methods with compressed sensing and sparse 

regularization have been attempted [14]–[16] but only achieved incremental improvement 

in image quality. Fundamentally, these algorithms are still built upon the current paradigm 

of DOT image reconstruction that uses iterative nonlinear optimization together with a 

finite-element numerical model of light propagation. These conventional methods are not 
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only time-consuming but also require trained experts to optimize performance, making DOT 

less appealing for clinical translation.

In recent years, the use of various deep neural networks (DNN) architectures has become 

an active research area for image reconstruction in low-dose computed tomography (CT), 

positron emission tomography (PET), and compressed sensing magnetic resonance imaging 

(MRI) [17], [18]. Despite different underlying physics across imaging modalities, consistent 

and significant improvements have been achieved over existing methods in the quality of 

recovered images. Strictly data-driven DNN models have shown remarkable generalization 

with superior noise and sampling defect immunity [19]. Once trained, it takes as little 

as a few milliseconds to obtain a 2D image slice or a 3D volume using a single feed-

forward inference, significantly increasing the reconstruction speed. The ability of deep 

learning (DL) methods to instantaneously recover high-quality images from noisy, under-

sampled acquisitions presents a novel opportunity to address the limitations in DOT image 

reconstruction.

Indeed, several recent works in the field of nonlinear diffuse tomographic imaging [20]–

[25], including fluorescence tomography [26]–[28] and photoacoustic tomography [29], 

have shown early promise of DL-based approaches for end-to-end direct sensor-to-image 

domain mapping for optical image reconstruction. In the domain of DOT, Feng et al. [20] 

trained a three-layer neural network and demonstrated significantly improved quantification 

accuracy over the conventional Tikhonov regularization-based reconstruction method in 

simulated two-dimensional (2D) circular phantoms. The same group further proposed a 

2D Z-Net [24] that also used MRI images as model input together with multispectral 

optical signals to enhance image quality and demonstrated its ability to differentiate a 

large malignant lesion from a benign case. Yedder et al. [21] proposed a DNN model 

comprising a fully-connected layer, a set of convolutional layers, and a final integration 

layer. Though trained on 2D synthetic data, the model could recover optical images from 

real measurements on liquid phantoms with better quality than the analytical method. Yoo 

et al. [25] trained a three-dimensional (3D) DNN model to invert the nonlinear Lippman-

Schwinger equation with simulated optical data and applied the DL model to in vivo 
animal experiments. The model was successful in recovering the 3D location of anomalies 

more accurately than the iterative FEM-based method using the Levenberg-Marquardt 

algorithm. Zou et al. [22] proposed another 3D machine learning model with physical 

constraints (ML-PC) implemented in the loss function and trained it with mixed simulated 

and real measurement data. Compared to the Born conjugate gradient descent method, the 

ML-PC model showed reduced mean percentage error of reconstructed maximum absorption 

coefficient within the inclusion and improved depth distribution in phantom cases. The 

ML-PC approach was further tested in 10 patient cases and demonstrated potential for 

improved differentiation between malignant and benign lesions.

While promising, prior works using DL-based approaches in DOT image reconstruction 

have focused primarily on the overall image quality and validation in a small number of 

sample cases, generally with large sizes and high contrasts. This paper presents a novel 3D 

deep convolutional neural network, the FDU-Net, to directly reconstruct optical images of 

absorption coefficients from simulated data with commensurate noise profiles as real DOT 
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measurements. We further compare the performance of FDU-Net with another DL-based 

network similar to prior work [25] and with conventional FEM-based approaches in 400 

simulated test cases (100 each in four size groups of 8-, 10-, 12-, and 16-mm in diameter) 

with inclusion contrasts aligned with those observed in our prior study on DOT for the 

diagnosis of breast cancer [4]. Afforded by the existence of ground truth, these testing 

cases allow us to systematically evaluate the capability of the DL-based model in resolving 

inclusion contrast, location, and size, especially in conventionally challenging small-size 

and/or low-contrast cases. This first-of-its-kind systematic performance evaluation aims to 

determine if the apparent superiority of DL-based methods depends on lesion characteristics 

such as size and contrast. This work will help us better understand the advantages and 

limitations of deep learning models to guide the design of future model architecture for the 

robust reconstruction of DOT images.

II. METHODS

A. Forward Simulation of DOT Measurements

One challenge in adopting deep learning methods for DOT image reconstruction is the lack 

of ground truth knowledge of the heterogeneous distribution of tissue constituents that give 

rise to the contrast seen in DOT images. A common approach is to use simulated optical 

measurements on digital phantoms. In this work, a 3D breast shape was positioned inside a 

216 × 144 × 60 mm3 bounding volume, as shown in Fig. 1. To simulate breast lesions within 

the breast boundary, a single spherical inclusion with diameters ranging from 8 to 16 mm 

(mean ± std: 12.00 ± 2.32 mm, uniform distribution) was inserted at random x-y locations 

at the central depth (z = 30 mm). Based on this geometry, dual-resolution tetrahedral meshes 

composed of a fine mesh (mean nodal distance of 0.36 mm) within the inclusion region and 

a coarse mesh (mean nodal distance of 5.92 mm) outside were generated for each geometry 

using a MATLAB-based meshing tool iso2mesh [30].

As shown in Fig. 1, 48 continuous-wave (CW) sources and 32 detectors, spatially distributed 

in the same pattern as in our clinical multimodal DOT/mammography breast imaging 

system [31], were used to generate a set of 1,536 simulated CW optical measurements 

at 690 nm using a diffusion equation-based forward model [12] for each digital phantom. 

To this end, absorption coefficients μa  representative of typical tissue optical properties 

[32]–[34] were randomly assigned to the inclusion (0.17 ± 0.05 cm−1) and homogenous 

background (0.06 ± 0.01 cm−1), respectively, in each phantom case, resulting in a range of 

inclusion-to-background absorption coefficient ratios from 1.12 to 5.12 (v), while reduced 

scattering coefficients μs
′  were fixed at 9.25 cm−1 across phantoms. The choice of this 

fixed μs
′ value was guided by the bulk μs

′ measured in our prior large-population study [4], 

which is consistent with widely accepted literature values reported by other groups [35], 

[36], where the mean and standard deviation of μs
′ at 690 nm is 9.8 ± 2.0 cm−1. The diffusion 

equation was then numerically solved on the dual-resolution mesh using a MATLAB-based 

finite-element solver Redbird-m [37], [38].
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B. Noise Model

To ensure the simulated data resemble the signal amplitude and noise profiles of real 

measurements, DOT data of a homogenous silicone rubber slab phantom (6.5-cm thick, 

μa = 0.024 cm−1 and μs
′ = 7.275 cm−1 at 690 nm, made by mixing Smooth-On Silc Pig White 

& Black pigments into Smooth-On Ecoflex 00–50 silicone) collected by the multimodal 

optical imaging system in [31] were used to characterize the dynamic range and noise levels. 

A forward simulation based on the same geometry and optical properties is performed 

the same way as described above to serve as a reference. Using the set of measured and 

simulated fluence at each source and detector pair, we first determined the global scaling 

factor α that brings the simulated data in the range of the experimental data as:

arg min
α

∥ α ⋅ Φs s, d − Φm s, d ∥2 (1)

where s is the index of source optodes; d is the index of detector optodes; Φm s, d  is the 

measured fluence data averaged over four measurements of the silicone rubber phantom; 

Φs s, d  is the simulated data using the forward model described above; and ∥ ⋅ ∥2 denotes 

the L2 norm.

Then, two types of pseudo-random noise, namely the signal-independent electronic noise 

and the signal-dependent shot noise [39], were added to the scaled forward model output 

using:

Φs
′ s, d = α ⋅ Φs s, d + nelec + nsℎot (2)

nelec = σelec × U1 (3)

nsℎot = σsℎot × U2 × α ⋅ Φs s, d (4)

where Φs
′(s, d) is the scaled simulated data with noise added; nelec and nsℎot are electronic and 

shot noise, respectively; U1 and U2 are two independent random variables with the standard 

normal distribution; σelec and σsℎot are factors that control the level of added electric and shot 

noise, respectively, which are determined by the following minimization process:

arg min
σelec, σsℎot

{ ∥ Φs
′(s, d) − Φm(s, d) ∥ 2} (5)

As shown in Fig. 2, the scaled simulated data with added noise (red stars) can accurately 

recapitulate the characteristics of signals collected from real measurements (blue squares), 

including the noise floor that is determined by the detection limit of the optical imaging 

hardware. The same global scaling factor α and noise factors σelec and σsℎot are then applied to 

all Redbird-m forward outputs.
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C. Preprocessing and Ground Truth

Redbird-m forward output data with added noise were rescaled using the minimum and 

maximum values across simulated data from all phantoms in the training dataset, i.e., the 

population min-max normalization. All 1,536 data points (48 sources × 32 detectors) of each 

simulation were included as the input to train the deep learning models, including those that 

are typically excluded in conventional DOT image recon methods due to low signal-to-noise 

ratio (data to the right of source-detector separation limit shown in cyan dotted line in 

Fig. 2). To decrease the number of parameters that need to be trained, thus reducing the 

computation cost, we downsampled the original image volume of 216 × 144 × 60 mm3 

to form the ground truth 3D volume of 72 × 48 × 12 voxels with a resolution of 3mm 

× 3mm × 5mm. This image downsampling rate was determined by a few considerations. 

First, the downsampled voxel should be small enough to preserve inclusion information for 

the smallest 8-mm diameter inclusions. Second, we chose a slightly higher factor of 5 in Z 

than the 3 × 3 in-plane downsampling rate as DOT is known to have limited Z resolution. 

Moreover, in the parallel-plate geometry, the XY localization accuracy is of higher clinical 

importance. The downsampling represents a balanced trade-off between the potential image 

resolution limited by the physics of NIR light propagation in tissue and training efficiency. 

The population min-max normalization was also applied to the ground truth optical images 

of μa at 690 nm to boost the rate of convergence. The minimum and maximum values used 

to normalize the inputs and outputs of the neural network were logged and used later to 

preprocess the testing dataset and restore model outputs to meaningful values of absorption 

coefficients, respectively.

D. Deep Learning Neural Networks and Training

1) Network Structure—As shown in Fig. 3, we implemented our DOT image 

reconstruction framework with a deep neural network, named FDU-Net, consisting of Fully 

connected layers and a 3D convolutional encoder-Decoder followed by a U-Net to further 

enhance inclusion features and reduce noise. First, the front part of the network has two 

fully connected layers, i.e., the input layer and a hidden layer, activated by the rectified 

linear unit (ReLU) function and then a reshape operation to transfer the sensor-domain data 

(1,536 linear array) to image-domain (72 × 48 × 12 voxels). These fully connected layers 

function as an approximation of the inversion operator that resolves the spatial distribution 

of absorbers from a finite number of measurement pairs. To enhance the robustness of the 

fully connected network and prevent overfitting, an empirically determined dropout rate 

of 0.8 was used [40]. Then, the reshaped volume was passed onto a 3D convolutional 

autoencoder network to extract inclusion features, e.g., location and contrast, presented as 

small, localized perturbation. Finally, the intermediate model output was fed into a 3D 

U-Net [41], [42] with three resolution steps. Each layer in the analysis path consists of 

two 3×3×3 padded convolutions with ReLU activation followed by a 2×2×2 max pooling 

operation with strides of two in each dimension for downsampling. Starting with 32 feature 

channels, the number of feature channels was doubled at each downsampling step. In the 

synthesis path, each layer consists of an up-convolution of 2×2×2 by strides of two followed 

by one 3×3×3 convolution with ReLU activation. Skip connections from layers of equal 

resolution in the analysis path provide the high-resolution features to the synthesis path. The 
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final layer, a 1×1×1 convolution, is used to map the 32-channel features to the unified final 

72 × 48 × 12 image volume.

2) Prior-Weighted Loss Function—Since the embedded single spherical inclusion 

constitutes only a tiny fraction (0.14 – 1.15‰) of the entire 3D image volume and the μa

contrast between inclusion and background (inclusion-to-background ratio R = 2.73 ± 0.87, 

range 1.12 – 5.12) is relatively small, attempts to use the typical L2 loss function were 

not effective in recovering such small perturbations. Inspired by the concept of prior-guided 

reconstruction methods [43]–[46] that have been proven advantageous in recovering small 

lesion contrast in conventional DOT image reconstruction, we introduced a loss function that 

penalized more heavily on inaccuracies within the inclusion region-of-interest (ROI). The 

loss function took advantage of the prior knowledge of the location and size of the inclusion 

to impose different weights on the L2 loss within and outside the inclusion ROI:

Lroi = ωroi*∥ yroi
output − yroi

trutℎ ∥2
2 + 1 − ωroi *

∥ ybg
output − ybg

trutℎ ∥2
2 (6)

where Lroi is the prior-weighed loss function; ytrutℎ and youtput are the ground truth optical 

image and model output with subscription “roi” and “bg” denotes the values within the 

inclusion ROI and background image volume, respectively; ωroi and 1 − ωroi  are the weights 

imposed to the L2 loss within and outside the inclusion ROI. By setting the value of ωroi

between 0.5 and 1, we control the strength in reinforcing accuracy within the inclusion. This 

prior-weighted loss function is somewhat analogous to the class weighting strategy used in 

the work of nnU-Net by Isensee et al. for biomedical image segmentation [47].

The ωroi setting was determined empirically. The optimal values used in the fully trained 

model were ωroi = 0.985 and 0.9, respectively, for the intermediate and final training steps, 

which are close to the volume fraction of the background. During training, using the prior-

weighted loss function as defined in Equation (6) was observed to accelerate the learning 

process and improve the accuracy of inclusion location recovery using the input data that 

revealed no explicit information on system configuration. It is important to note that the 

prior-weighted loss is only relevant during training; once trained, no prior knowledge is used 

to recover the optical images in the testing dataset using the FDU-Net model.

3) Two-Step Training—Overall, a total of 3,445 cases with randomized lesion sizes, 

locations, and optical properties were generated and randomly split into training (95%) 

and validation datasets (5%). We used the TensorFlow [48] framework to train the neural 

network on a NVIDIA Titan RTX GPU using the Adam gradient descent optimization 

algorithm [49]. A two-step training strategy was used to train the three-part FDU-Net. First, 

we trained the fully connected and the convolutional autoencoder network, i.e., the first 

two parts, together for 300 epochs with starting learning rate α = 0.001 and exponential 

decay rates β1 = 0.9 and β2 = 0.999, values recommended by the original Adam paper [49]. 

Note that though empirically determined, we have validated via training loss plots and 

recovered image quality that 300 epochs are sufficient to ensure model convergence with 

these hyperparameters during training. Once trained, the weights of the first two parts were 
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fixed and training of the third part, i.e., the 3D U-Net, proceeded. The learning rate was 

reset to 0.001, and the network was trained until the validation loss did not reduce further in 

the past 10 epochs. On a Linux CentOS workstation equipped with two 16-core 2.10 GHz 

Xeon Gold 6130 CPUs and a Titan RTX GPU with 24 GB memory, it took about 5 hours to 

complete the two-step training of the 68,625,314 parameters of the FDU-Net.

E. Performance Evaluation and Comparison

A separate set of 400 cases was generated, 100 each for 8-, 10-, 12- and 16-mm diameter 

inclusions, respectively, with randomized locations and optical properties (inclusion-to-

background ratios R = 2.71 ± 0.80, range 1.13 – 4.85). They were used for testing and 

comparing model performance among various methods. In addition, testing cases with 

irregularly shaped inclusions and with two separate inclusions of randomized diameters 

and contrasts were created to evaluate model performance in recovering previously unseen 

shapes.

Several reference DOT image reconstruction methods were used to put the performance 

of the FDU-Net in the context of other typically used methods. First, we used the 

widely adopted finite-element (FEM) based Tikhonov-regulated iterative Gauss-Newtown 

reconstruction method implemented by an in-house inverse problem solver Redbird [38], as 

the reference to compare performance with the proposed FDU-Net model. Two FEM image 

reconstruction approaches were used – one used optical data only without prior knowledge 

of inclusion location to resemble the use cases of standalone DOT systems (FEM-noprior), 

and the other leveraged the size and location of the inclusion to further regularize the 

solution [43], [44], resembling the use cases in multimodal implementations of DOT where 

co-registered anatomical breast images from a complementary medical imaging modality 

can be used as structural priors (FEM-prior). Regularization parameters used in FEM-based 

reconstructions were optimized by the standard “L-curve” approach [50] with no further 

fine-tuning on each individual case.

In addition, to evaluate the performance of FDU-Net against other DL-based networks 

previously proposed for the same DOT image reconstruction task, we constructed a network 

we call FD-Net as a DL-based reference model. Structurally, the FD-Net is equivalent 

to the proposed FDU-Net without the U-Net component, and comprises only the Fully 

connected layers followed by a convolutional encoder-Decoder, similar to the architecture 

used in Yoo’s work [25]. The FD-Net was also trained using the same hyperparameters and 

MSE loss as in Yoo’s work. It is worthwhile to point out that despite the similarities in 

architecture between the reference FD-Net and Yoo’s model, differences exist. For example, 

the FD-Net has different numbers of input and output channels due to the differences in 

numbers of DOT data pairs and reconstructed image volume. Moreover, the lack of public 

benchmark datasets for the purpose of DOT image reconstruction algorithm development 

makes the FD-Net we trained inevitably different from Yoo’s model. As such, we can only 

cautiously extend conclusions based on the observations in performance differences between 

the FDU-Net and FD-Net to a comparison of the FDU-Net vs. Yoo’s model.

To quantitatively compare the overall quality of the recovered images, automated objective 

image quality metrics, such as root mean squared error (RMSE), structural similarity index 

Deng et al. Page 8

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(SSIM), and peak signal-to-noise ratio (PSNR) were calculated by MATLAB functions 

“rmse”, “ssim”, and “psnr”, respectively, using the 3D ground-truth optical images as 

reference. Further, to evaluate the performance in inclusion recovery, the primary focus 

of this work, we used the MATLAB function “graythresh” to perform automatic image 

thresholding based on the Otsu’s algorithm [51] to segment the central slice of the 

recovered optical images into two classes – background and inclusion. Based on the Otsu 

segmentation, three metrics were quantified on the recovered optical images at the central 

depth to evaluate the accuracy of inclusion recovery objectively:

1. Inclusion-to-background ratio (R): Defined as the ratio between the mean optical 

property within the inclusion region and that within the background region. The 

closer to the ground-truth R, the higher accuracy in contrast recovery.

2. Reconstructed-to-true diameter ratio: Defined as the ratio between the equivalent 

reconstructed diameter de = A/π × 2  calculated on the area of segmented 

inclusion region (A) and the ground-truth inclusion diameter. The closer to 1, 

the more accurate in size recovery.

3. Inclusion center offset: Defined as the Euclidean distance on the XY-plane 

between the maximum pixel on the reconstructed image of the segmented 

inclusion region and the centroid of the spherical inclusion of ground truth. The 

closer to 0, the higher the localization accuracy.

III. RESULTS

Fig. 4 shows images of absorption coefficients at 690 nm for three sample cases recovered 

by the proposed FDU-Net, the FD-Net similar to prior work [25], and conventional FEM-

based methods, both with (FEM-prior) and without (FEM-noprior) prior guidance. In all 

cases, the images recovered by FDU-Net (2nd column) result in lower RMSE, higher SSIM, 

and higher PSNR than other methods. The background recovery is also more homogenous 

that closely resembles the ground truth image. More importantly, inclusion contrasts are 

better preserved, as evidenced in notably higher inclusion-to-background ratios R. The 

average contrast recovery ratio among these three sample cases is 92.0%, compared to 

36.5%, 39.5% and 50.1%, respectively, using FD-Net (3rd column), FEM-noprior (4th 

column) and FEM-prior (5th column) methods. FDU-Net recovered inclusions are also in the 

close vicinity of the ground-truth locations. Note that such localization precision is achieved 

without explicitly informing the reconstruction process about the true inclusion location 

as used in the FEM-prior method. The reference FD-Net model performs reasonably 

well in identifying inclusion location; however, it is very limited in recovering contrast. 

We have also benchmarked the time cost for each reconstruction method. By leveraging 

GPU computing, the image reconstruction using the trained DL models, i.e., FDU-Net 

and FD-Net, took about 20 ms to complete through a single inference. In comparison, 

FEM-noprior and FEM-prior took a total of 12 min and 3 hours, respectively, for a complete 

reconstruction consisting of 10 iterations of optimization. This means that the DL-based 

approaches can be four orders of magnitude faster than the conventional FEM-based 

methods.
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Findings in the sample cases are well represented in the group analyses of all 400 testing 

cases. As shown in Fig. 5a, in all size groups, the median RMSEs of images recovered 

by FDU-Net (red boxes) are significantly less than other methods. Especially, RMSEs of 

FDU-Net are less than half of conventional FEM-based methods, suggesting much improved 

overall quantification accuracy. Furthermore, the SSIM and PSNR of the FDU-Net approach 

is the highest, while that of the FEM-noprior method is the lowest among all reconstruction 

methods in all size groups, as shown in Figs. 5b and 5c. Compared to FEM methods, the 

variation in RMSE and SSIM across images, indicated by the tightness of the box, is also 

smaller using the FDU-Net method, suggesting consistency in the quality of reconstructed 

images.

The scatter plots in Fig. 6 further focus on the size-dependent quantification accuracy in the 

recovery of inclusion contrast R. In all four methods, as the size of the inclusion increases, 

a higher percentage of contrast is recovered in more cases. When the inclusion size reaches 

16-mm diameter (Fig. 6d), the vast majority of recovered contrast values by FDU-Net (red 

asterisks) track along the ideal recovery reference line. To allow quantitative comparisons, 

linear fits of the data points in each size group and reconstruction methods were performed. 

The resulting slopes, intercepts, and coefficients of determination of the fit R2  are shown in 

Table 1. Using the FD-Net and FEM-noprior method, the recovered inclusion-to-background 

ratios R stay around 0.99 and 1.12, respectively, regardless of inclusion size and ground-

truth R (evidenced by near 0 slopes). As shown in Figs. 4h and 4i, although this contrast 

level can still be visually discerned, interpretation of an optical image of this quality can 

be challenging due to the commensurate background. Using the FEM-prior method, the R2

values in 12- and 16-mm size groups are improved significantly but remain low in smaller 

8- and 10-mm size groups R2 < 0.10 . In contrast, the R2 values for FDU-Net start from a 

moderately high value of 0.38 even in the smallest 8-mm diameter size group and increase 

steadily to 0.78 in the 16-mm size group with a slope of 0.80.

Moreover, to compare the physical properties of recovered inclusions, Fig. 7 shows the 

box plots of size recovery ratios and inclusion center offsets of the four size groups using 

DL- and FEM-based methods. Though notably better localization accuracy is seen in the 

16-mm group, the FEM-noprior method (black boxes) in general yields overestimation in 

size (median >3.0) and large offsets from the ground-truth centroids (median >40 mm) in 

all other size groups, indicating erroneous inclusion recovery. Using the FEM-prior method 

(blue boxes), the median recovery size ratios and offsets approach ideal values of 1 and 0, 

respectively, in the 16-mm group. Moderate improvement in the 10- and 12-mm groups over 

the FEM-noprior is observed. Yet, the FEM-prior method still struggles, as evidenced in the 

wide spread of the 25th to 75th percentile boxes, especially in size recovery. Interestingly, as 

shown in Fig. 7b, the reference FD-Net (green boxes) demonstrates consistent localization 

performance with medians of ~20 mm off the ground-truth locations in all size groups, while 

showing a comparable performance in reconstructed-to-truth diameter ratio to FEM-based 

methods. In contrast, the FDU-Net model (red boxes) shows clear superiority in all size 

groups. For 10-mm diameter and above, especially, the medians of both metrics are close 
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to the ideal values. Even in the smallest 8-mm size group, the size recovery is significantly 

improved despite the challenge in localization.

Finally, to demonstrate the generalizability of the FDU-Net model, reconstructed images of 

an irregularly shaped inclusion case and two two-inclusion cases, one of the same sizes but 

different Rs and the other of different sizes and Rs, are shown in Fig. 8. Although trained 

exclusively on single spherical inclusion cases, the FDU-Net model could still recover the 

contrast, shape, and location with precision for an irregularly shaped inclusion as shown in 

the top row of Fig. 8. Among other methods, the shape recovery is only successful using 

FEM-prior, where the inclusion shape and location information were used explicitly to guide 

the image reconstruction. For the two-inclusion cases, the FDU-Net is the only method to 

correctly identify and recover the most contrast in both cases. Meanwhile, the reference 

FD-Net recovers only one inclusion, either the one with the higher R or larger size. For 

the same-size different-R two-inclusion case (middle row), the FDU-Net also preserves the 

relative contrast between the two inclusions; however, when inclusions of two different sizes 

are present, the FDU-Net picks up the larger size inclusion better than the smaller ones, 

as all other methods. The capability of the FDU-Net in recovering previously unexposed 

shapes further highlights the potential of the FDU-Net model to accurately reconstruct 

the optical property distributions corresponding to realistically shaped and potentially multi-

focal lesions.

Beyond the simulated inclusion cases shown thus far, using the FDU-Net model trained 

entirely on simulated data, we have further recovered optical images from a real DOT 

measurement on a 42-year-old woman with an 18×21 mm invasive ductal carcinoma. The 

measurement protocol, detailed in prior work [31], has been approved by the Institutional 

Review Board at MGH, and a written consent was obtained from the patient. As shown 

in Fig. 9, the trained FDU-Net model is able to recover an absorption increase due to 

the presence of the malignant tumor at the correct location with higher contrast than the 

conventional FEM-noprior method. This is an encouraging preliminary result obtained 

without any further training of the FDU-Net using experimental data. Also, note the 

difference in the optode density between Figs. 9a and 9b – the FDU-Net only used 43.2% 

of DOT data (only 1,536 CW data pairs at 690 nm) as inputs compared to the FEM method 

(all 3,552 CW and frequency-domain data pairs at both 690 and 830 nm) during image 

reconstruction. Again, this result was achieved with a significantly accelerated (20 ms vs. 

1.5 hours in this case) and fully automated process. However, there is some mismatch 

of tumor boundaries between the recovered optical contrast and x-ray mammogram-based 

tumor marking. This is likely due to multiple factors including the limited resolution of DOT 

compared to x-ray mammography, the somewhat subjective nature of the lesion boundary 

marked by a breast radiologist on a mammogram acquired separately from the DOT 

imaging data, and, importantly, the indirect structural-to-functional contrast relationship 

of breast tumors [52], [53]. While large-population validation is needed, this case study 

supports the feasibility of deploying the FDU-Net trained on simulated data for DOT image 

reconstruction of real patient measurements.
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IV. DISCUSSION

In this work, we constructed a 3D deep convolutional neural network and trained it with 

simulated DOT data on cases with a simple geometry for direct sensor-to-image domain 

transformation, i.e., the image reconstruction task. We hypothesized that the network could 

learn the correspondence between optical contrast and boundary measurements across 

space, and complex internal contrast distributions can then be reconstructed additively from 

the superposition of several elementary building blocks. Empirically, this hypothesis is 

supported by our results showing high performance on test cases with multiple or irregularly 

shaped inclusions, as well as on a real patient case.

The FDU-Net architecture is informed by the structures proposed in AUTOMAP and Yoo et 
al. [19], [25], typically composed of fully connected layers followed by a convolutional 

encoder-decoder sub-network. Such a general framework has been proven effective in 

solving various inverse problems by using fully connected layers first to approximate the 

projection from the sensor domain to the image domain and then utilizing the sparse 

autoencoder to extract high-level features from the image domain. Although most prior 

works have tested the feasibility of deep learning for the image reconstruction task in 2D, 

given that DOT measures the 3D distribution of tissue constituents, it is necessary to utilize 

3D networks to recover tomographic images for applications in breast imaging. Specifically, 

in the scenarios of supplementing digital breast tomosynthesis (DBT) and clinical MRI with 

functional DOT for breast cancer screening and diagnosis, 3D localization is required to 

characterize suspicious lesions.

The FDU-Net introduced in this work has made several advances on the previous general 

framework. First, a 3D U-Net was included in the back end of the model to enhance 

inclusion features further. By utilizing skip connections that transfer the high-resolution 

information from the low-level layers of the analysis path to the high-level layers of the 

synthesis path, U-Nets can leverage both local and global information to enhance the image 

quality. The resulting three-part FDU-Net leads to not only precise localization but also to a 

significant improvement in quantification accuracy, the lack of which was a limitation of the 

previously proposed model [25] similar to the reference FD-Net shown in this paper. To help 

us better understand the role of each subnet, we have constructed several variations of the 

FDU-Net and performed ablation tests (results not shown). We found that the convolutional 

encoder-decoder is effective in suppressing artifacts away from the ground truth location 

to achieve localization accuracy, which explains the consistent localization performance of 

the FD-Net shown in Fig. 7b, while the U-Net is essential in enhancing contrast recovery. 

Second, a unique prior-weighted loss function was introduced during training to effectively 

characterize small perturbations at the lesion location in the optical reconstructions within a 

noisy background. This idea is inspired by the structural prior guided approaches [43]–[46] 

widely used in the conventional FEM methods. The difference is that the prior information 

is only used during training for loss calculation, and no prior knowledge of inclusion size 

and location is needed during the reconstruction using the trained FDU-Net. As shown 

in Fig. 8, imposing such prior-weighed loss does not result in the model predicting only 

single spherical inclusion shapes but rather offering sufficient generalizability needed for the 

trained FDU-Net model to succeed in previously unexposed cases. Finally, the input layer 
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of the FDU-Net indiscriminately took in all CW data shown in Fig. 2 (red stars), including 

those that fell within and below the noise floor. Data pruning to get rid of noisy and invalid 

measurement pairs, a cumbersome preprocessing step typically needed in the FEM-based 

conventional methods, is now intrinsically part of the FDU-Net image reconstruction learned 

directly through the strictly data-driven approach. This eliminates the need to change the 

model structure and train separate models for different applications.

The improved overall image quality reconstructed by the trained FDU-Net model is clearly 

demonstrated in the three sample cases shown in Fig. 4 and group analysis results on 

RMSE, SSIM, and PSNR metrics of all 400 test cases shown in Fig. 5. The FDU-Net has 

demonstrated significantly better performance than other methods across all size groups 

with all metrics. In line with prior work, a deep learning-based approach outperforms 

conventional methods in solving the DOT inverse problem, yielding images with a higher 

level of fidelity to ground truth and less noise. Notably, such improvement is achieved 

with excellent efficiency. The 3D image reconstruction is done by performing a single 

feed-forward pass through the trained FDU-Net model using all source-detector data pairs 

without the additional needs of preprocessing or iterative optimization as in the FEM-based 

methods. This means a full image reconstruction is completed in less than a second with no 

subjective intervention, greatly lowering the translation barrier of DOT for real-time breast 

imaging.

Another main objective of this work is to systematically study the performance of deep 

learning models in inclusion recovery, especially in conventionally challenging cases. It 

is known that FEM-based methods are limited in reconstructing small and low-contrast 

lesions. This is again evidenced in Fig. 4, where in comparison to a typical case with a 

high-contrast 16-mm diameter large inclusion (Case 2, middle row), cases with either a 

comparable R but half the diameter (Case 1, top row) or the same diameter but half the R
(Case 3, bottom row) failed to be recovered using FEM without the guidance of structural 

lesion priors (4th column). As expected, with priors, the conventional method demonstrated 

much-improved performance (5th column), especially in localization precision. However, 

the recovered inclusion contrasts are significantly lower than the learning-based FDU-Net 

model (2nd column) in all three cases. In images reconstructed by the FDU-Net, the Rs
were fully recovered in the two large inclusion cases. Even in the 8-mm inclusion case, 

where contrast recovery is expected to be impacted by the 3× in-plane downsampling, near 

half of R was recovered. In contrast, the reference FD-Net, with no additional U-Net and 

using standard MSE loss, could identify the inclusion location with a degree of success but 

severely underestimates the contrast. Although the FD-Net is not exactly the same as the 

model used in prior work by Yoo et al. [25], this observation is consistent.

From Fig. 6, it is clear that success in inclusion recovery is dependent on size and 

contrast, although, on a case-by-case basis, the FDU-Net method generally yields the highest 

recovered inclusion contrasts. Using the FDU-Net, in size groups of 10-mm and above, a 

linear relationship can be observed with at least 50% of ground-truth R recovered in most 

cases, and the linear fit fast approaches the ideal line when the inclusion size reaches 16-mm 

in diameter. In comparison, the FEM-noprior method, as well as the FD-Net model, largely 

failed in size groups smaller than 16-mm. With the help of prior knowledge of ground-truth 
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inclusion size and location, the FEM-prior method starts to be able to recover ~40% of R
in size groups of 12-mm and above, especially in high contrast cases with R ≥ 3. In the 

smallest size group of 8-mm diameter inclusion, FDU-Net can still recover a substantial 

percentage of contrast while other methods mostly failed.

However, as the inclusion size decreases under 10-mm in diameter, it becomes challenging 

even for the FDU-Net to accurately locate the inclusion. As shown in Fig. 7b, in the 8-mm 

size group, on average, all four reconstruction methods have recovered centroids over 30 

mm off from the ground truth. That is almost four times the inclusion diameter, indicating 

failure in accurate localization. However, in 10-mm and above size groups, the FDU-Net 

quickly regains localization precision with median offsets staying around 5 mm, which is 

commensurate to the radius of the inclusions. In comparison, FEM-prior and FEM-noprior 

methods achieve similar localization accuracy starting at only 12- and 16-mm diameter size 

groups, respectively. The reference FD-Net, however, maintains similar levels of localization 

accuracy of ~20 mm off the ground truth across size groups despite a slow decreasing trend. 

Moreover, since the edges of inclusions recovered by the reference FD-Net and the FEM-

based methods are usually blurry and lack a sharp contrast relative to the background, the 

Otsu segmentation (selected to ensure objectivity in image interpretation) quite frequently 

enlarged the inclusion region, resulting in overestimated recovered inclusion size as shown 

in Fig. 7a. Meanwhile, the average recovered size ratios using the FDU-Net are around 1 in 

size groups 10-mm and above, close to ground-truth inclusion sizes.

The challenges faced by the FDU-Net in recovering the small 8-mm inclusions can be 

attributed to a few factors. First, the image volume was downsampled to a 3 mm × 3 mm × 

5 mm voxel resolution. This leads to a loss of edge contrast of the spherical inclusion and 

only a very limited number of voxels representing the full ground-truth R. As a result, the 

recovered lesion characteristics, i.e., R, size, and XY offset, by the FDU-Net in the 8-mm 

size group are inferior to other size groups. The most direct impact of the downsampling 

is probably the recovered size. Moreover, the level of noise added to the simulated DOT 

data could be too large for the FDU-Net to tease out the subtle perturbation to the signal 

introduced by the inclusion. The realistic noise profile is equivalent to adding a shot noise at 

an average level of 74.8% of the amplitude of the clean optical signal and electronic noise 

that results in a ~50 dB dynamic range (20log10) with the percentage of overall added noise 

ranging from ~0.1% for the highest signal to 4764.1% for the lowest signal, almost an order 

of magnitude more noise than those used in previous studies from others and our group [43]. 

This probably has not only led to larger errors in localizing small 8-mm inclusions but also 

caused larger, low-contrast lesion cases to be susceptible to artifacts as shown in Fig. 4i.

To better understand the limitations of the FDU-Net, we have defined some empirical 

criteria to classify recovered images into three categories – success, limited success with 

artifact, and failure. A case is deemed a success if the center of mass of the highest contrast 

region reconstructed is within 10 mm of the ground-truth centroid and secondary areas of 

contrast, if any, are lower than 50% of the highest reconstructed contrast. A case is deemed 

a limited success with artifact if secondary contrasts are larger than or equal to 50% of 

the highest reconstructed contrast. All other cases are deemed as a failure. We found that 

the main driver of artifacts or failed reconstructions was indeed low contrast, more so for 
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smaller inclusions. Over 86% of limited success with artifact cases have ground-truth R
smaller than 3. About 97% of failed cases have ground-truth R smaller than 3 and over 

half of the failed cases are of the 8-mm size group. These observations emphasize that DL 

models, like the FDU-Net, though effective in improving the optical image quality over the 

conventional FEM-based methods, cannot bypass the fundamental limitations in physics. 

When the intrinsic signal-to-noise ratio of the DOT data is low, the performance of model 

prediction will be suboptimal. Nevertheless, the FDU-Net is still effective in improving the 

detectability of an inclusion. The minimum inclusion-to-background ratios R required for 

90% cases to be successfully reconstructed are 3.23, 2.88, 2.15, and 1.39 for 8-, 10-, 12- 

and 16-mm size group, respectively, using the FDU-Net. In comparison, the conventional 

FEM-prior method never reaches a 90% success rate for the 8- and 10-mm size groups and 

requires minimum Rs of 3.56 and 2.41, respectively, for the 12- and 16-mm size groups, 

which is 65–75% higher than the FDU-Net. We expect further performance improvement, 

particularly in small and low-contrast cases, by using the multimodal DOT approach, where 

anatomical images such as DBT and MRI can be used jointly with optical signals as inputs 

in deep learning models to improve quantification accuracy further, as demonstrated by Feng 

et al. [24].

Despite the demonstrated superior performance of the FDU-Net over previously proposed 

DL network structures and the conventional FEM-based methods in standalone DOT image 

reconstruction, our work has limitations. Since the FEM-based methods tend to result in 

larger artifacts towards the surface in the parallel-plate setting, we have only focused 

on inclusion recovery at the central depth when comparing performance across methods. 

The FDU-Net needs to be further trained on cases of various inclusion depths to ensure 

3D localization. Further, due to the downsampling, performance evaluation in inclusion 

sizes smaller than 8-mm is limited. Future work is needed to decrease the voxel size at 

the model output before using FDU-Net for small lesion cases. Moreover, as mentioned 

above, spatially co-registered anatomical images will likely be needed as model input to 

further ensure robust performance in cases with small anomalies. Finally, while we have 

demonstrated the feasibility of using deep learning models trained on synthetic data directly 

on real measurements in a patient case, as has been repeatedly shown to be feasible in prior 

works [19], [22], [24], further validation in large-scale human-subject imaging using trained 

FDU-Net model for a variety of breast sizes, including fine-tuning of model parameters by 

training on real measurement data, is needed to demonstrate its effectiveness in improving 

the sensitivity and specificity of breast cancer diagnosis with DOT.

V. CONCLUSION

In this study, a deep learning-based FDU-Net was used to achieve direct sensor- to image-

domain transformation for 3D DOT image reconstruction. The model was built upon a 3-part 

architecture and trained using a unique prior-weighed loss function to enhance inclusion 

recovery further. The performance of FDU-Net was systematically studied and compared 

with a DL network analogous to previously proposed ones and conventional FEM-based 

methods in 400 simulated data with added realistic noise. Using all source-detector data 

pairs unbiasedly, the FDU-Net can recover images of significantly improved quantification 
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accuracy in a fraction of a second without human intervention. In inclusions of 10-mm 

diameter and above, the FDU-Net is capable of recovering over 50% of ground-truth 

inclusion-to-background ratio with less than 5 mm in-plane localization error and near-ideal 

size, outperforming other methods in every metric, including the FEM-prior method that 

leverages ground-truth inclusion size and location to guide the image reconstruction. Even in 

small 8-mm inclusion cases, where conventional methods have largely failed, the FDU-Net 

is able to demonstrate reasonable performance. With the excellent model generalizability, 

the trained FDU-Net bears ample potential to be further developed and used as an effective 

new approach for DOT image reconstruction in breast cancer imaging.
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Fig. 1. 
(a) Photo of the DOT system integrated with a clinical digital breast tomosynthesis (DBT) 

device in the transmission geometry, i.e., the DOT source and detector probes arranged on 

the opposite sides of the compressed breast. (b) A sample phantom geometry with an 8-mm 

diameter inclusion embedded within a breast-shaped boundary represented by cloud points 

of the dual-resolution mesh nodes, magenta dots in the fine inclusion region and pale gray 

dots in the rest of the geometry, respectively. 48 CW sources (green dots) and 32 detectors 

(blue dots) are plotted as overlays on the top and bottom of the phantom, i.e., superior and 

inferior in the patient position orientation, respectively.
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Fig. 2. 
Plot of the signal amplitude of all 48×32 source-detector combinations versus the 

corresponding distances. Black circles: simulated data with only global scaling factor 

applied; Red stars: scaled simulated data with noise added; Blue squares: averaged real 

measurements of a homogeneous silicone rubber slab phantom; Gray shaded area: region 

reaching the noise floor; Cyan dotted line: the source-detector separation limit set for 

FEM-based methods.
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Fig. 3. 
Schematic of the proposed deep convolutional neural network, i.e., the FDU-Net. FC: fully 

connected layers. Lroi: prior-weighted loss function; ytruth: ground truth 3D optical image 

volume of μa; yinter: intermediate model outputs upon completing the first training step; 

yfinal: eventual optical image recovered after the second training step.
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Fig. 4. 
Ground-truth (1st column) and recovered absorption coefficients (μa) at 690 nm using DL-

based (2nd column, proposed FDU-Net, and 3rd column, FD-Net that has similar architecture 

as previously published in ref [25]) and conventional FEM-based without (4th column, FEM-

noprior) and with (5th column, FEM-prior) structural prior guided reconstruction methods 

for three single spherical inclusion sample cases. Note that only the FEM-prior method used 

ground-truth inclusion size and location during image reconstruction. Case 1 (top row) has 

an 8-mm diameter inclusion of ground-truth R = 3.83; Case 2 (middle row) has a 16-mm 

diameter inclusion of R = 3.98; and Case 3 (bottom row) has a 16-mm inclusion of R = 1.88. 

RMSE, SSIM, PSNR, and R annotated in the top right corner of each reconstructed image 

from top to bottom. Yellow circle – source optode; Cyan cross – detector optode.
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Fig. 5. 
Box plots of (a) root mean squared error (RMSE), (b) structural similarity index (SSIM), 

and peak signal-to-noise ratio (PSNR) of 100 test cases in each size group with four 

reconstruction methods. The bottom and top edges of each box indicate the 25th and 75th 

percentiles, respectively. Notch line – median. Significance bars of two-sided paired t-test 

between two methods: * p<0.05; ** p<0.01; *** p<0.001.
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Fig. 6. 
Recovered inclusion-to-background ratio R using two DL- and two FEM-based 

reconstruction methods for 4 different inclusion sizes, 100 test cases in each size group. 

Cyan solid line – reference for perfect recovery.
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Fig. 7. 
Box plot comparisons of inclusion size and localization accuracies in terms of (a) ratios of 

reconstructed inclusion diameter to ground-truth diameter, and (b) offsets of inclusion center 

from ground-truth centroid in XY-plane. The bottom and top edges of each box indicate 

the 25th and 75th percentiles, respectively. Target symbols – median. Significance bars of 

two-sided paired t-test between two methods: * p<0.05; ** p<0.01; *** p<0.001.
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Fig. 8. 
Ground-truth (1st column) and recovered absorption coefficients (μa) at 690 nm using DL-

based (2nd column, proposed FDU-Net, and 3rd column, FD-Net) models trained on only 

singular spherical inclusion cases and conventional FEM-based without (4th column, FEM-

noprior) and with (5th column, FEM-prior) structural prior guided reconstruction methods 

for three previously unseen cases. Top row – a case with an irregularly shaped inclusion; 

Middle row – a case with two 16-mm diameter spherical inclusions 83.7 mm apart; Bottom 

row – a case with one 15.7-mm and one 12.4-mm diameter spherical inclusions 52.6 mm 

apart. RMSE, SSIM, PSNR, and R annotated in the top right corner of each reconstructed 

image from top to bottom. R1 and R2 – Inclusion-to-background ratios R for the 1st inclusion 

on top and a 2nd inclusion on the bottom, respectively, in the two-inclusion cases; Yellow 

circle – source optode; Cyan cross – detector optode.
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Fig. 9. 
Recovered optical images of a patient with a malignant tumor using (left) FDU-Net model 

trained entirely on simulated data and (right) FEM-based conventional method. White line 

– breast contour; Red line – tumor marking spatially transformed from ROI drawn by a 

breast radiologist on separately acquired clinical x-ray mammogram; Yellow circle – source 

optode; Cyan cross – detector optode. Note that more DOT measurement data were used in 

the FEM-based reconstruction.
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Table 1

Parameters of Linear Regression y = ax + b  between Ground-Truth and Recovered R using Various 

Reconstruction Methods

Inclusion Diameter
FDU-Net FD-Net FEM-prior FEM-noprior

a b R2 a b R2 a b R2 a b R2

8 mm 0.26 0.82 0.38 0.005 1.01 0.21 0.06 1.10 0.02 −0.002 1.15 0.02

10 mm 0.42 0.50 0.63 0.017 0.98 0.47 0.09 0.99 0.09 −0.001 1.11 0.01

12 mm 0.63 0.40 0.73 0.021 0.99 0.30 0.26 0.67 0.36 −0.004 1.12 0.03

16 mm 0.80 0.53 0.78 0.039 0.97 0.30 0.34 0.61 0.47 0.021 1.07 0.25
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