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Background. Ferroptosis, a newly discovered mode of cell death, emerges as a new target for atherosclerosis (AS). Long noncoding
RNAs (lncRNAs) are involved in the regulation of ferroptosis. In our previous study, lnc-MRGPRF-6:1 was highly expressed in
patients with coronary atherosclerotic disease (CAD) and closely associated with macrophage-mediated inflammation in AS. In the
present study, we aim to investigate the role of lnc-MRGPRF-6:1 in oxidized-low-density lipoprotein (ox-LDL)-inducedmacrophage
ferroptosis in AS.Methods. Firstly, ox-LDL-treated macrophages were used to simulate macrophage injury in AS. Then, ferroptosis-
related biomarkers and mitochondrial morphology were detected and observed in ox-LDL-treated macrophages. Subsequently, we
constructed lnc-MRGPRF-6:1 knockdown and overexpression of THP-1-derived macrophages and investigated the role of
lnc-MRGPRF-6:1 in ox-LDL-induced ferroptosis. Then human monocytes were isolated successfully and were used to explore
the role of lnc-MRGPRF-6:1 in macrophage ferroptosis. Likely, we constructed lnc-MRGPRF-6:1 knockdown and overexpression of
human monocyte-derived macrophages and detected the expression levels of ferroptosis-related biomarkers. Then, transcriptome
sequencing, literature searching, and following quantitative real-time polymerase chain reaction and western blot were implemented
to explore specific signaling pathway in the process. It was demonstrated that lnc-MRGPRF-6:1 may regulate ox-LDL-induced
macrophage ferroptosis through glutathione peroxidase 4 (GPX4). Eventually, the correlation between lnc-MRGPRF-6:1 and GPX4
wasmeasured inmonocyte-derivedmacrophages of CAD patients and controls. Results. The ox-LDL-induced injury inmacrophages
was involved in ferroptosis. The knockdown of lnc-MRGPRF-6:1 could alleviate ox-LDL-induced ferroptosis in macrophages.
Meanwhile, the overexpression of lnc-MRGPRF-6:1 could intensify ox-LDL-induced ferroptosis. Furthermore, the knockdown of
lnc-MRGPRF-6:1 could alleviate the decrease of GPX4 induced by RAS-selective lethal compounds 3 (RSL-3). These indicated that
lnc-MRGPRF-6:1 may suppress GPX4 to induce macrophage ferroptosis. Eventually, lnc-MRGPRF-6:1 was highly expressed in the
monocyte-derived macrophages of CAD patients and was negatively correlated with the expression of GPX4. Conclusion. lnc-
MRGPRF-6:1 can promote ox-LDL-induced macrophage ferroptosis through inhibiting GPX4.

1. Introduction

As the increasing incidence of coronary atherosclerotic dis-
ease (CAD) with high mortality and disability rate, it has
attracted great attention. Atherosclerosis (AS), the pathologic
basement of CAD, is worth studying in-depth [1–3]. As is
known to all, inflammatory progression is essential basis of
AS [4]. Macrophage-mediated inflammation plays an impor-
tant role in the pathophysiology of AS [5]. The progression of
inflammation is closely associated with cell death [6].

Ferroptosis is the newly discovered and unconventional
form of cell death in 2012, which is different from the previ-
ously reported cell death modes [7]. Ferroptosis is defined as
iron-dependent lipid peroxidation process, which is closely
related to many diseases [8–10]. The morphologic changes of
mitochondria including the reduction of mitochondrial cris-
tae and the increase of mitochondrial outer membrane den-
sity were characteristic [11]. Increased iron uptake and iron
release from intracellular ferritin autophagy will lead to iron
accumulation [12]. The excess accumulation of iron results
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in the abundance of reactive oxygen species (ROS) through
Fenton reaction [13]. ROS exceeding the capacity of reductase
can directly promote excessive oxidative stress and accumula-
tion of lipid peroxidation including malondialdehyde (MDA)
[14, 15]. Oxidation of polyunsaturated fatty acids (PUFAs)
including membrane phospholipids (PLs) is identified as a
sign of ferroptosis [7]. The accumulation of lactate dehydroge-
nase (LDH) and the decrease of cell viability were evident in
ferroptosis cells [16]. Meanwhile, antioxidants can effectively
reduce the sensitivity to ferroptosis. The synthesis of superox-
ide dismutase (SOD) and glutathione (GSH) can remove ROS
to achieve a balanced state and prevent ferroptosis [17]. Inacti-
vation of cellular antioxidant systems can promote ferroptosis.
The amino acid antiporter system Xc−/glutathione peroxidase
4 (GPX4) axis is considered as the central inhibition pathway
in ferroptosis [18–20]. Solute carrier family 7 member 11
(SLC7A11) is a vital component of system Xc−, which can
promote the resistance of ferroptosis [21, 22].

Studies showed that ferroptosis is closely involved in AS
[12, 23]. It was reported that oxidized-low density lipoprotein
(ox-LDL)-treatedmouse aortic endothelial cells (MAECs) were
involved in ferroptosis and the expression of SLC7A11 and
GPX4 reduced significantly. The ferroptosis inhibitor Ferros-
tatin-1 (Fer-1) could protect against the aggravation of endo-
thelial dysfunction in AS [23, 24]. It was demonstrated that
hyperuricemia could promote the formation of ox-LDL-
induced macrophage-derived foam cells and promote macro-
phage ferroptosis significantly in AS through down-regulating
nuclear respiratory factor 2 (NRF2)/SLC7A11/GPX4 signaling
pathway and Fer-1 could reverse these manifestations [25].
These reports indicate that ferroptosis plays vital role in AS.
It is very promising to intervene the progression of AS by
regulating ferroptosis.

Long noncoding RNAs (lncRNAs) are a class of nucleotide
sequences with a length ofmore than 200 bases and no protein-
coding potential, which play an important role in biological
processes such as cell metabolism, proliferation, differentiation,
and apoptosis [26]. It is reported that lncRNAs participate in
the regulation of ferroptosis. LINC00472, a tumor suppressor
modulating expression of P53-, was proven to promote ferrop-
tosis through bounding RasGTPase-activating protein-binding
protein 1 (G3BP1) and upregulating P53 [27]. Moreover, the
inhibition of lncRNA plasmacytoma variant translocation 1
(lncRNA PVT1) could suppress ferroptosis through regulating
the expression of transferrin receptor (TFRC) and P53 which is
associated with ischemia/reperfusion (I/R) closely [28].

Lnc-MRGPRF-6:1, the newly discovered lncRNA by our
group which is located on the antisense chain of human
chromosome 11, hg38 chr11:69303412-69303807. In our
previous studies, it was identified that lnc-MRGPRF-6:1
was significantly increased in plasma of CAD patients and
was related to macrophage polarization-mediated inflamma-
tion in AS closely. However, the ox-LDL-induced macro-
phage ferroptosis in AS has not been revealed entirely.
This study aims to investigate the role of lnc-MRGPRF-6:1
in ox-LDL-induced macrophage ferroptosis.

2. Materials and Methods

2.1. Cell Culture and Infection of Lentivirus. THP-1 cells were
purchased from Shanghai Institute of Cell Research (Shang-
hai, China) and incubated with RPMI Medium 1640 (Invi-
trogen, 11875-093) with 10% fetal bovine serum (Invitrogen,
21985). THP-1-derived macrophages were obtained by inoc-
ulating logarithmic growth phase THP-1 cells in six-well
plate at 5× 105/well and incubating with 100 ng/mL phorbol
12-myristate 13-acetate (Beyotime, S1819) for 48hr. Then, groups
were as follows, control group, ox-LDL, ox-LDL+Fer-1, and Era-
stin group. Macrophages without special treatment were used as
the control group. In ox-LDL group, macrophages were incu-
bated with 50mg/L ox-LDL (Invitrogen, 2188176) for 24hr. In
ox-LDL+Fer-1 group, macrophages were incubated with
50mg/L ox-LDL and 5μmol/L Fer-1 (MCE, HY-100579) for
24hr. In Erastin group, macrophages were incubated with
5μM Erastin (MCE, HY-15763) for 24hr to induce ferroptosis.
The mitochondrial morphology of macrophages was observed
by transmission electron microscopy (TEM). lnc-MRGPRF-6:1
knockdown, overexpression, and negative control lentiviral vec-
tors were purchased from GENECHEM (Shanghai, China).
THP-1 cells were infected with different lentiviral vectors,
respectively, for 16hr at multiplicity of infection of 30 to
construct lnc-MRGPRF-6:1 knockdown, overexpression, and
control cells. Then, 2mg/mL puromycin (Beyotime, ST551)
was used to screen out uninfected cells for 72hr. RAS-selective
lethal compound 3 (RSL-3) was reported as a GPX4 inhibitor.
Macrophages were incubated with 5μM RSL-3 (MCE, HY-
100218A) for 24hr to inhibit the expression of GPX4. All cells
were cultured in incubator at 37°C and 5% CO2.

2.2. Study Population and Isolation of Human Monocyte. In
our study, 20 CAD patients and 20 controls were recruited.
The inclusion criteria of CAD patients were that any major
coronary artery (including left main, left gyrus, left anterior
descending, and right main) had ≥50% stenosis as shown by
coronary angiography. Another 20 patients with stenosis
<50% indicated by coronary angiography were selected as
control group. Patients with congenital heart disease, cardio-
myopathy, hepatic and renal insufficiency, hematologic dis-
eases, malignant tumor, and other concomitant diseases were
all excluded. Ficoll (Solarbio, p8900) was used for the isola-
tion of peripheral blood mononuclear cells (PBMCs) from
blood. Then, CD14microbeads (Invitrogen, 11367D) andmag-
netic beads conjugated with antibodies against human CD14
were used to separate out monocytes. The identification of
human monocytes was performed with CD14 (Servicebio,
GB11254) immunofluorescent staining. Subsequently, macro-
phage colony-stimulating factor (M-CSF) (Beyotime, P5313)
was used to induce the formation of human monocyte-derived
macrophages at the concentration of 50 ng/mL for 7 days.

2.3. Immunofluorescent Staining. The expression of CD14
was assessed by immunofluorescence staining. Human
monocytes were fixed in 4% paraformaldehyde (Servicebio,
G1101) for 15 min and blocked with 3% bovine serum
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albumin (Servicebio, GC305010) at room temperature for
30min. Subsequently, the primary antibody CD14 was used
to incubate cells at 4°C overnight. After washed three times
with PBS, cells were incubated with Goat Anti-Rabbit IgG
(Servicebio, GB21303) at room temperature for 50 min.
DAPI (Servicebio, G1012) was used for cellular nuclei stain-
ing. Then, all cells were observed with fluorescent microscope
(Olympus, Japan).

2.4. Biological Indicators Testing. RIPA lysis buffer (Beyo-
time, P0013B) was used to lyse macrophages. Firstly, the
protein concentration in cell lysis supernatant was detected
by protein assay kit (Beyotime, P0010S). Then, the MDA
assay kit (Beyotime, S0131S), ROS assay kit (Beyotime,
S0033S), LDH assay kit (Nanjing Jiancheng BioTEC, A020-
2), GSH assay kit (Nanjing Jiancheng BioTEC, A006-1-1),
SOD assay kit (Beyotime, S0103), and iron assay kit (Lea-
gene, TC1015) were used to detect the relevant expression in
macrophages according to product manual.

2.5. Oil Red Staining. Macrophages were stained with oil red
staining kit (Solarbio, G1262) and then observed and photo-
graphed under the microscope (Olympus, Japan).

2.6. Neutral Red Uptake Assay. Macrophages were stained
with neutral red staining medium (Beyotime, C0013) accord-
ing to product manual. Then, the optical density (OD) value
was detected using a microplate reader at 540 nm.

2.7. Quantitative Real-Time Polymerase Chain Reaction.
Total RNA from cells was extracted by RNA Isolation Kit
(Vazyme, RC112-01). RNA was reverse transcribed to
cDNA with HIScript ⅢRT SuperMix (Vazyme, R323-01).
RT-qPCR was performed using ChamQ SYBR qPCR Master
Mix (Vazyme, Q341) on Step One Plus Real-Time PCR Sys-
tem (ABI, USA). GAPDH was used as internal reference.
Equation 2−ΔΔCt was used to analyze the relative expression.
All the primers were synthesized by GenScript (Nanjing,
China). Detailed primer sequences are shown in Table 1.

2.8. Western Blot. Lysis buffer (Beyotime, P0013B) containing
1% protease inhibitor (Beyotime, ST505) was used to extract
protein. The protein assay kit (Beyotime, P0010S) was used to
detect protein concentration. The equal amount of protein was
separated by 10% SDS-PAGE gel and transferred to polyviny-
lidene fluoridemembranes. Themembranes were blocked with
blocking reagent (Beyotime, P0252) for 1 hr followed by incu-
bation with primary antibody GPX4 (CST, #52455), ferritin
heavy chain (FTH) (CST, #4393S), and Tubulin (Beyotime,
AF1216) at 4°C overnight. Then, the membranes were incu-
bated with HRP-labeled goat anti-rabbit IgG secondary anti-
body (Beyotime, A0208) for 1 hr at room temperature. The
membranes were observed and photographed by Bio-Rad
chemiluminescence imaging system after enhanced chemilu-
minescence solution (Beyotime, P0018S) was exposed. The
image gray value was analyzed quantitatively by Image J 1.8.

2.9. Cell Counting Kit-8 (CCK-8). The cell supernatant was
replaced with culture medium containing 10 μL CCK-8
detection reagent (Dojindo, CK04) and incubated for 3 hr

in incubator and then detected optical density (OD) at
450 nm on the microplate reader (TECAN, Switzerland).

2.10. Transcriptome Sequencing and Data Analysis. Total
RNA was extracted from lnc-MRGPRF-6:1 knockdown macro-
phages and control, respectively. Transcriptome sequencing was
performed by Beijing Genomics Institute (BGI) (Beijing, China).
Analysis of sequencing was carried out with BGI Online plat-
form (http://www.bgionline.cn).

2.11. Statistical Analysis. All data were analyzed with SPSS
26.0 (IBM Corp, USA) and GraphPad Prism 9.0 (GraphPad
Software, USA). Data were reported as meanÆ standard
deviation. Quantitative data between the two groups were
evaluated using Student’s t-test. Spearman’s correlation anal-
ysis was used to calculate correlation. Categorical data were
represented by case number (%), and χ2 test or Yates’ cor-
rection for continuity was applied. P<0:05 was considered
statistically significant difference.

3. Results

3.1. ox-LDL Induces Ferroptosis in Macrophages. Firstly, we
constructed the ox-LDL-treatedmacrophagemodel to simulate
macrophage injury in AS. Erastin-induced ferroptosis was used
as positive control. Wemeasured the expression levels of MDA
(Figure 1(a)), ROS (Figure 1(b)), LDH (Figure 1(c)), GSH
(Figure 1(d)), IRON (Figure 1(e)), cell viability (Figure 1(f)),
and lipid accumulation (Figure 1(g)) in macrophages. Results
showed that compared with the control group, the expression
levels of MDA, ROS, LDH, iron, and lipid accumulation
increased significantly, the expression level of GSH decreased
significantly, and cell viability decreased remarkably in the ox-
LDL group. Furthermore, the reduction of mitochondrial

TABLE 1: Primer sequences in this study.

Primer sequences

lnc-MRGPRF-6:1 forward AGGGACAGGAAGATGGTTGGC
lnc-MRGPRF-6:1 reverse GATGAGCAGAATGGTCGTGAGG
SLC7A11 forward AACCGAAGGCCAGAGAATCA
SLC7A11reverse AGGTTCAGGACCTCGAATGG
GPX4 forward ATACGCTGAGTGTGGTTTGC
GPX4 reverse CACGCAGATCTTGCTGAACA
ACSL3 forward AACTGGGATGGCAGAAAGGA
ACSL3 reverse AGACAGACAAGCTCAGCACT
ACSL4 forward ATTGGCTACTTGCCTTTGGC
ACSL4 reverse CAGCCATAAGTGTGGGCTTC
TFRC forward CATATGTCCCTCGTGAGGCT
TFRC reverse GCGCTGTCTTTGACCTGAAT
FTH forward TGAGGAGAGGGAACATGCTG
FTH reverse TTGTCAGTGGCCAGTTTGTG
FTL forward CCTGGCCCTAATTTCCTCCA
FTL reverse AAGCCCTACGGGAAGAGATG
NCOA4 forward TGGAGCTTGCTATTGGTGGA
NCOA4 reverse ACATTCCAGGTGACGGCTTA
GAPDH forward GCGGGGCTCTCCAGAACATC
GAPDH reverse TCCACCACTGACACGTTGGC
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FIGURE 1: Continued.

4 Mediators of Inflammation



cristae and the increase of mitochondrial outer membrane
density could be observed in macrophage-treated ox-LDL
(Figure 1(h)). All the above results were consistent with those
of macrophages treated with Erastin. Meanwhile, Fer-1 could
partially reverse these results induced by ox-LDL. These indi-
cate that ox-LDL-induced macrophage injury is involved in
ferroptosis.

3.2. Role of lnc-MRGPRF-6:1 in THP-1-Derived Macrophage
Ferroptosis. It was proven that ox-LDL could induce ferrop-
tosis in macrophage, and the expression levels of MDA, ROS,
and LDH were obviously increased. Meanwhile, the expres-
sion of GSH and SOD was downregulated. To verify the role
of lnc-MRGPRF-6:1 in macrophage ferroptosis, we estab-
lished the lnc-MRGPRF-6:1 knockdown and overexpression
of THP-1-derived macrophage model (Figures 2(a) and 2(b)).
We further determined the expression of MDA, ROS, LDH,
GSH, and SOD in lnc-MRGPRF-6:1 knockdown and over-
expression of THP-1-derived macrophage treated with or
without ox-LDL. It was revealed that the knockdown of lnc-
MRGPRF-6:1 could reduce the growth of MDA, ROS, and
LDH (Figure 2(c)–2(e)) induced by ox-LDL. In addition, the
reduction of GSH (Figure 2(f)) and SOD (Figure 2(g)) and
decrease of cell viability (Figure 2(h)) induced by ox-LDL was
decreased after lnc-MRGPRF-6:1 knockdown. Coinciden-
tally, the overexpression of lnc-MRGPRF-6:1 could promote
the ox-LDL-induced increase of MDA, ROS, and LDH (Fig-
ure 2(i)–2(k)) and further aggravate the decrease of GSH
(Figure 2(l)), SOD (Figure 2(m)), and cell viability (Figure 2
(n)). These results suggest that lnc-MRGPRF-6:1 can promote
ox-LDL-induced ferroptosis in macrophage. Meanwhile, it
was demonstrated that the knockdown of lnc-MRGPRF-6:1
could inhibit macrophage phagocytosis, and the overexpres-
sion of lnc-MRGPRF-6:1 could promote macrophage phago-
cytosis (Supplementary 1).

3.3. Role of lnc-MRGPRF-6:1 in Human Monocyte-Derived
Macrophage Ferroptosis. Subsequently, we isolated human
monocytes and established the human monocyte-derived

macrophages. The isolated human monocytes were stained
with CD14 (Figure 3(a)). It showed that human monocytes
were isolated successfully. Then, we knocked lnc-MRGPRF-
6:1 down and overexpressed lnc-MRGPRF-6:1 in human
monocyte-derived macrophage (Figures 3(b) and 3(c)). Simi-
larly, the knockdown of lnc-MRGPRF-6:1 could reduce the
growth of MDA, ROS, and LDH (Figure 3(d)–3(f)) induced
by ox-LDL. The reduction of GSH (Figure 3(g)), SOD
(Figure 3(h)), and cell viability (Figure 3(i)) induced by ox-
LDLwas decreased after lnc-MRGPRF-6:1 knockdown. Coin-
cidentally, the overexpression of lnc-MRGPRF-6:1 could
aggravate ox-LDL-induced ferroptosis in human monocyte-
derived macrophages (Figure 3(j)–3(o)). These results further
suggest that lnc-MRGPRF-6:1 can promote ferroptosis in
macrophage. Likewise, it was demonstrated that the knock-
down of lnc-MRGPRF-6:1 could inhibit human monocyte-
derived macrophage phagocytosis and the overexpression of
lnc-MRGPRF-6:1 could promote human monocyte-derived
macrophage phagocytosis (Supplementary 1).

3.4. lnc-MRGPRF-6:1 May Suppress GPX4 to Regulate
Macrophage Ferroptosis. To further clarify the signaling
pathway, lnc-MRGPRF-6:1 regulates ferroptosis in macro-
phage. We performed transcriptome sequencing between
lnc-MRGPRF-6:1 knockdown macrophages and control.
Compared with control, transcriptome sequencing results
showed that 668 genes were upregulated and 645 genes
were downregulated as the volcano map showed (Supple-
mentary 2). Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway classification analysis of differential genes
shows that multiple metabolic processes including lipid
metabolism and amino acid metabolism which are associated
with ferroptosis could be sorted out (Figure 4(a)). Fascinat-
ingly, ferroptosis could be separated out through the KEGG
pathway enrichment analysis (Figure 4(b)). NCOA4, TFRC,
andACSL3were screened out in the transcriptome sequencing
results. Lipid metabolism, amino acid metabolism, and iron
metabolism are involved in ferroptosis. We supplemented the
key genes on the relevant pathways. Combined with literature

Control ox-LDL ox-LDL + Fer-1 Erastin

ðhÞ
FIGURE 1: ox-LDL-induced ferroptosis in macrophage. (a–e) The relative expression of MDA (a), ROS (b), LDH (c), GSH (d), IRON (e) in
macrophage. (f ) Cell viability of macrophage. (g) Images of oil red O staining. (h) Mitochondrial morphology was observed by TEM. Scale
bar: 500 nm. The data were expressed as mean with standard deviation (n= 3). ∗∗∗∗P<0:0001, ∗∗∗P<0:001, ∗∗P<0:01, and ∗P<0:05 vs.
control cells. ####P<0:0001, ###P<0:001, ##P<0:01, and #P<0:05 vs. ox-LDL-treated cells. ox-LDL, oxidized-low-density lipoproteins; Fer-1,
ferrostatin-1; TEM, transmission electron microscopy. LDH, lactate dehydrogenase; MDA, malondialdehyde; GSH, glutathione; ROS,
reactive oxygen species. Control, untreated macrophages; ox-LDL: macrophages treated with 50mg/L ox-LDL for 24 hr. ox-LDL+ Fer-1:
macrophages co-treated with 50mg/L ox-LDL and 5 μmol/L Fer-1 for 24 hr. Erastin: macrophages treated with 5 μM Erastin for 24 hr.
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FIGURE 2: Role of lnc-MRGPRF-6:1 in THP-1-derived macrophage ferroptosis. (a, b) The mRNA level of lnc-MRGPRF-6:1. (c–g, i–m) The relative
expression of MDA (c, i), ROS (d, j), LDH (e, k), GSH (f, l), and SOD (g, m). (h, n) Cell viability. The data were expressed as mean with standard
deviation (n=3). ∗∗∗∗P<0:0001, ∗∗∗P<0:001, ∗∗P<0:01, and ∗P<0:05. 50mg/L ox-LDL was used to stimulate macrophage for 24hr. Control,
negative control lentivirus-infectedmacrophages; KD, lnc-MRGPRF-6:1 knockdownmacrophages; OV, lnc-MRGPRF-6:1 overexpression ofmacro-
phages. MDA, malondialdehyde; ROS, reactive oxygen species; LDH, lactate dehydrogenase; GSH, glutathione; SOD, superoxide dismutase.
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findings, SLC7A11, GPX4, ACSL3, ACSL4, TFRC, FTH, FTL,
NCOA4 were screened out for validation (Figure 4(c)). How-
ever, the mRNA expression of SLC7A11, ACSL3, ACSL4,
TFRC, FTL, and NCOA4 was not statistically significant
between KD and control, the mRNA expression of GPX4
and FTH was statistically significant (Figure 4(c)). Further-
more, the protein expression of GPX4 and FTH was validated.
Interestingly, the expression of GPX4 was upregulated accor-
dantly in mRNA and protein level after lnc-MRGPRF-6:1
knockdown. The protein expression of FTH was not statisti-
cally significant through western blot validation between KD
and control. RSL-3 was used to suppress the expression of
GPX4. It was demonstrated that the knockdown of lnc-
MRGPRF-6:1 could rescue the reduction of GPX4 induced
by RSL-3 (Figures 4(d) and 4(e)). It was indicated that lnc-
MRGPRF-6:1 could suppress GPX4 to accelerate ox-LDL-
induced macrophage ferroptosis.

3.5. lnc-MRGPRF-6:1 Is Highly Expressed in CAD Patients
and Is Negatively Correlated with the Expression of GPX4.
Furthermore, 40 subjects were recruited including 20 CAD

patients and 20 controls in our study. Clinical and biochem-
ical characteristics of them are shown in Table 2. It was
shown that the expression of lnc-MRGPRF-6:1 in CAD
patients was significantly higher than those of the control
group (Figure 5(a)). In contrast to that, the expression of
GPX4 in CAD patients was significantly less than those of
the control group (Figure 5(b)). The further Spearman cor-
relation analysis showed that the expression of lnc-
MRGPRF-6:1 was negatively correlated with the expression
of GPX4 (Figure 5(c)).

4. Discussion

The pathophysiological basis of AS is chronic inflammation
response involving endothelial cells, macrophages, and
smooth muscle cells [29]. Macrophage-mediated inflamma-
tion was involved in ferroptosis [30]. The formation of
macrophage-derived foam cells participates in the initial
stage of AS and plays important role in atherosclerotic pla-
que formation and plaque rupture [31]. It was reported that
the injury of macrophages in AS was associated with
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FIGURE 3: Role of lnc-MRGPRF-6:1 in human monocyte-derived macrophage ferroptosis. (a) CD14 immunofluorescence staining of human
monocyte. (b, c) The mRNA level of lnc-MRGPRF-6:1. (d–h, j–n) The relative expression of MDA (d, j), ROS (e, k), LDH (f, l), GSH (g, m),
and SOD (h, n). (i, o) Cell viability. The data were expressed as mean with standard deviation (n= 3). ∗∗∗∗P<0:0001, ∗∗∗P<0:001, ∗∗P<0:01,
and ∗P<0:05. 50mg/L ox-LDL was used to stimulate macrophage for 24 hr. Control, negative control lentivirus-infected macrophages; KD,
lnc-MRGPRF-6:1 knockdown macrophage; OV, lnc-MRGPRF-6:1 overexpression of macrophage. MDA, malondialdehyde; ROS, reactive
oxygen species; LDH, lactate dehydrogenase; GSH, glutathione; SOD, superoxide dismutase.
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ferroptosis [32]. In our previous study, it was demonstrated
that lnc-MRGPRF-6:1 was highly expressed in CAD patients
and could mediate macrophage polarization to promote
inflammation progression in AS [5]. In the present study,
it was demonstrated that ox-LDL-induced macrophage fer-
roptosis and lnc-MRGPRF-6:1 could promote ox-LDL-
induced macrophage ferroptosis in AS.

ox-LDL has a great contribution to the formation and
rupture of atherosclerotic plaques [33]. Firstly, to verify
macrophages treated with ox-LDL were involved in ferrop-
tosis, we established a common macrophage-derived foam
cell model with ox-LDL and explored the expression of
MDA, ROS, LDH, GSH, and iron and observed the mito-
chondrial morphology in ox-LDL-treated macrophages.
Results indicated that ox-LDL could promote iron accumu-
lation, lipid accumulation, and lipid peroxidation which are
consistent with the characteristics of ferroptosis. The most
important characteristic of ferroptosis is the variation of
mitochondrial morphology. Mitochondrial shrinkage,
increased membrane density, reduced mitochondrial cristae
and rupture of the outer membrane [7]. Likewise, the mito-
chondrial cristae reduced and the mitochondrial outer mem-
brane densified in ox-LDL-treated macrophages.
Dramatically, all the above induced by ox-LDL could be
reversed by Fer-1. These suggested that ferroptosis partici-
pates in the formation of ox-LDL-induced macrophage-
derived foam cells.

Subsequently, we explored the role of lnc-MRGPRF-6:1
in ox-LDL-induced macrophage ferroptosis. We established
the lnc-MRGPRF-6: knockdown and overexpression of mac-
rophage models. Then, the expression of ferroptosis-related
biomarkers was assessed. Results show that the knockdown

of lnc-MRGPRF-6:1 could reduce ox-LDL-induced lipid
accumulation and lipid peroxide. Simultaneously, ox-LDL-
induced lipid accumulation and lipid peroxidation were
aggravated after lnc-MRGPRF-6:1 overexpression. Similarly,
these results could be observed in human monocyte-derived
macrophages. It was demonstrated that lnc-MRGPRF-6:1
could promote ox-LDL-induced macrophage ferroptosis.

However, how lnc-MRGPRF-6:1 regulates ox-LDL-induced
macrophage ferroptosis remained to be investigated. Tran-
scriptome sequencing was applied to lnc-MRGPRF-6:1 knock-
down macrophages and control macrophages. Fascinatingly,
lnc-MRGPRF-6:1 was associated with lipid metabolism path-
way, amino acidmetabolism pathway, and ferroptosis pathway
through KEGG pathway classification and enrichment analysis
of differential genes. Combined transcriptome sequencing
results with literature findings, SLC7A11, GPX4, ACSL3,
ACSL4, TFRC, FTH, FTL, NCOA4 were screened out for
RT-qPCR validation. SLC7A11 is known as a transmembrane
amino acid transporter which can transport extracellular cys-
tine to intracellular and transport intracellular glutamate to
extracellular [21, 34, 35]. Intracellular cystine is involved in
the synthesis of GSH. GSH cooperated with GPX4 to suppress
ferroptosis [36]. GPX4, a unique intracellular antioxidant
enzyme, suppresses ferroptosis by neutralizing lipid peroxides
and extinguishing lipoxygenase [37, 38]. The inactivation and
knockdown of GPX4 generated the accumulation of LPO [39],
activated ferroptosis, and further promoted the progression of
AS [40, 41]. Likewise, the overexpression of GPX4 could reduce
lipid peroxidation and inhibit the progression of AS [42]. Acyl-
CoA synthase long-chain family (ACSL) is involved in lipid
metabolism pathway. ACSL4 participates in the synthesis of
polyunsaturated fatty acids (PUFAs) which can be peroxided
easily [43, 44]. It was demonstrated that inactivation of ACSL4
could inhibit ferroptosis obviously. In addition, the overexpres-
sion of ACSL4 could promote sensitivity to ferroptosis [45].
However, ACSL3 is involved in the resistance to ferroptosis
through increasing the synthesis of monounsaturated fatty
acids (MUFAs) which can competitively inhibit the activity
of PUFAs [46]. TFRC recognizes the binding of trivalent iron
(Fe3+) to transferrin tomediate iron transport. TFRC can accel-
erate iron uptake and ferritin synthesis [47, 48]. As is known to
all, ferritin is an important iron storage protein including ferri-
tin heavy chain (FTH) and ferritin light chain (FTL). Increased
ferritin synthesis reduces iron accumulation and thus inhibits
ferroptosis [49]. Nuclear receptor coactivator 4 (NCOA4) is an
important gene that mediates ferritin autophagy. Overexpres-
sion of NCOA4 increased iron release through promoting fer-
ritin autophagy. Excess iron accumulation generates ROS in
the Fenton reaction and promotes ferroptosis [50]. Fascinat-
ingly, it was demonstrated that the genes with statistic differ-
ences were GPX4 and FTH at the mRNA expression level.
However, further validation revealed that there was no statistic
difference in the protein expression level of FTH, which could
be involved in relevant post-transcriptional regulation. Inter-
estingly, western blot validated that GPX4 was still significantly
different at the protein level. Furthermore, it was demonstrated
that the knockdown of lnc-MRGPRF-6:1 could alleviate RSL-
3-induced decrease of GPX4 partly. Accordingly, we speculate

TABLE 2: Clinical and biochemical characteristics of patients with
coronary artery disease (CAD) and controls.

CAD (n= 20) Control (n= 20)

Gender (male) 13 (65%) 12 (60%)
Age (years) 64.35Æ 8.16 60.25Æ 7.87
Smoking 13 (65%) 12 (60%)
Drinking 14 (70%) 12 (60%)
BMI (kg/m2) 25.64Æ 3.37 25.27Æ 4.03
Hypertension 15 (75%) 13 (65%)
Diabetes 7 (35%) 6 (30%)
WBC (109/L) 6.2Æ 1.72 6.50Æ 1.39
Hemoglobin (g/L) 130.45Æ 10.96 127.7Æ 18.60
Platelet (109/L)∗ 173.75Æ 47.63 205.65Æ 48.74
ACEI/ARB 6 (30%) 5 (25%)
β-Blocker 5 (25%) 3 (15%)
CCB 10 (50%) 12 (60%)
Statin∗∗ 5 (25%) 4 (20%)
Aspirin 5 (25%) 3 (15%)
Clopidogrel 5 (25%) 1 (5%)
Warfarin 5 (25%) 1 (5%)

Note: Categorical data presented as number of total, n (%). ∗P<0:001,
∗∗P<0:05. BMI, body mass index; WBC, white blood cell; ACEI/ARB,
angiotensin-converting enzyme inhibitor, angiotensin receptor antagonist;
CCB, calcium channel blocker.
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that lnc-MRGPRF-6:1 can promote macrophage ferroptosis
through inhibiting GPX4.

Eventually, we also investigated the relationship between lnc-
MRGPRF-6:1 and GPX4 in subjects. It was demonstrated that

lnc-MRGPRF-6:1 was highly expressed in the monocyte-derived
macrophages of CAD patients, while the expression of GPX4was
opposite. Furthermore, lnc-MRGPRF-6:1 showed a significant
negative correlation with GPX4 through correlation analysis.
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FIGURE 5: The relative expression and relevance of lnc-MRGPRF-6:1 and GPX4 in the monocyte-derived macrophages of CAD patients and
healthy controls. (a) The relative expression of lnc-MRGPRF-6:1 in subjects. (b) The relative expression of GPX4 in subjects. (c) Spearman’s
correlation analysis of the expression of lnc-MRGPRF-6:1 and GPX4. The data were expressed as mean with standard deviation.
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with coronary artery disease; control (n= 20), human monocyte-derived macrophages from controls. GPX4, glutathione peroxidase 4.

12 Mediators of Inflammation



In summary, our results clarify that ox-LDL-induced cell
damage was involved in ferroptosis. Meanwhile, the ferroptosis
inhibitor could alleviate lipid peroxidation and the decrease of
cell viability induced by ox-LDL. Furthermore, it is demon-
strated that lnc-MRGPRF-6:1 can promote ox-LDL-induced
macrophage ferroptosis through inhibitingGPX4.Ourfindings
may contribute to the study of pathophysiology in AS and
provide new insights into the treatment of AS.
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