
768  |  Nature  |  Vol 620  |  24 August 2023

Article

An analog-AI chip for energy-efficient
speech recognition and transcription

S. Ambrogio1 ✉, P. Narayanan1, A. Okazaki2, A. Fasoli1, C. Mackin1, K. Hosokawa2, A. Nomura2,
T. Yasuda2, A. Chen1, A. Friz1, M. Ishii2, J. Luquin1, Y. Kohda2, N. Saulnier3, K. Brew3, S. Choi3,
I. Ok3, T. Philip3, V. Chan3, C. Silvestre3, I. Ahsan3, V. Narayanan4, H. Tsai1 & G. W. Burr1

Models of artificial intelligence (AI) that have billions of parameters can achieve high
accuracy across a range of tasks1,2, but they exacerbate the poor energy efficiency of
conventional general-purpose processors, such as graphics processing units or
central processing units. Analog in-memory computing (analog-AI)3–7 can provide
better energy efficiency by performing matrix–vector multiplications in parallel on
‘memory tiles’. However, analog-AI has yet to demonstrate software-equivalent (SWeq)
accuracy on models that require many such tiles and efficient communication of
neural-network activations between the tiles. Here we present an analog-AI chip that
combines 35 million phase-change memory devices across 34 tiles, massively parallel
inter-tile communication and analog, low-power peripheral circuitry that can achieve
up to 12.4 tera-operations per second per watt (TOPS/W) chip-sustained performance.
We demonstrate fully end-to-end SWeq accuracy for a small keyword-spotting network
and near-SWeq accuracy on the much larger MLPerf8 recurrent neural-network
transducer (RNNT), with more than 45 million weights mapped onto more than 140
million phase-change memory devices across five chips.

The past decade has seen AI techniques spread to a wide range of appli-
cation areas, from the recognition and classification of images and
videos9 to the transcription and generation of speech and text10–16, all
driven by a relentless progression towards deep neural network (DNN)
models with ever more parameters. In particular, transformer1 and
recurrent neural-network transducer (RNNT)12,13,16 models containing
up to one billion parameters2 have produced a marked decrease in
word error rate (WER) (and therefore much better accuracy) for the
automated transcription of spoken English-language sentences, as
shown in Fig. 1a for two widely used datasets, Librispeech17 and Switch-
Board18. Unfortunately, hardware (HW) performance has not kept pace,
leading to longer training and inference times and greater energy con-
sumption19. Large networks are still trained and implemented using
general-purpose processors such as graphics processing units and
central processing units, leading to excessive energy consumption
when vast amounts of data must move between memory and processor,
a problem known as the von Neumann bottleneck.

Analog-AI HW avoids these inefficiencies by leveraging arrays of
non-volatile memory (NVM) to perform the ‘multiply and accumu-
late computation’ (MAC) operations which dominate these workloads
directly in the memory3–7. By moving only neuron-excitation data to
the location of the weight data, where the computation is then per-
formed, this technology has the potential to reduce both the time
and the energy required. These advantages are further enhanced for
DNN models that have many large fully connected (FC) layers, such
as the RNNT or transformer models used for state-of-the-art natural
language processing (NLP). In conventional digital implementation,
such layers require enormous movement of data but provide scant

opportunity for amortization over subsequent computing. For analog
AI, by contrast, such layers are efficiently mapped onto analog crossbar
arrays and computed in parallel using a single integration step. Given
the finite endurance and the slow, power-hungry programming of
NVM devices, such analog-AI systems must be fully weight stationary,
meaning that every weight must be preprogrammed before inference
workload execution begins.

A highly heterogeneous and programmable accelerator architec-
ture for analog AI has been introduced20 for which system-level per-
formance assessments have predicted energy efficiencies 40–140
times higher than those of cutting-edge graphics processing units.
However, this simulation study required several design assump-
tions that have yet to be demonstrated in HW, two of which are
directly addressed below. The first is the use of a dense and efficient
circuit-switched 2D mesh to exchange massively parallel vectors of
neuron-activation data over short distances. The second is the suc-
cessful implementation of DNN models that are large enough to
be relevant for commercial use and are demonstrated at sufficiently
high accuracy levels.

In this paper, we present experimental results using a 14-nm infer-
ence chip leveraging 34 large arrays of phase-change memory (PCM)
devices4, digital to analog input, analog peripheral circuitry, analog to
digital output and massively parallel-2D-mesh routing. Our chip does
not include on-chip digital computing cores or static random access
memory (SRAM) to support the auxiliary operations (and data staging)
needed in an eventual, marketable product. However, we can use it
to demonstrate the accuracy, performance and energy efficiency
of analog AI on NLP inference tasks, either by implementing simple

https://doi.org/10.1038/s41586-023-06337-5

Received: 13 December 2022

Accepted: 16 June 2023

Published online: 23 August 2023

Open access

 Check for updates

1IBM Research – Almaden, San Jose, CA, USA. 2IBM Research – Tokyo, Kawasaki, Japan. 3IBM Research – Albany NanoTech Center, Albany, NY, USA. 4IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, USA. ✉e-mail: stefano.ambrogio@ibm.com

https://doi.org/10.1038/s41586-023-06337-5
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-023-06337-5&domain=pdf
mailto:stefano.ambrogio@ibm.com

Nature  |  Vol 620  |  24 August 2023  |  769

operations such as rectified linear unit (ReLU) non-linear function
directly in the analog domain or by performing small amounts of aux-
iliary computing off-chip.

To demonstrate the flexibility of the chip, we chose two neural-network
models from the MLPerf standard benchmark8, a suite of industry-
relevant use cases. We first targeted the tiny-model task of keyword-
spotting network (KWS) on the Google speech-commands dataset.
For this we used a HW-aware (HWA) trained network, retrained using
a variety of techniques available in the open-source IBM analog HW
acceleration kit (https://aihwkit.readthedocs.io/en/latest/) (Fig. 1b).
We then implemented the MLPerf version of RNNT, a large data-center
network, on Librispeech without any additional HWA retraining. This
model has 45 million weights, which we implement using more than
140 million PCM devices across five packaged chip modules, demon-
strating near-SWeq accuracy (ours is 98.1% of that exhibited by the base
software (SW)-only model) and executing about 99% of the operations
on the analog-AI tiles.

Chip architecture
A micrograph of the chip is shown in Fig. 1c, highlighting the 2D grid
of 34 analog tiles, each of which has its own 512 × 2,048 PCM crossbar

array. Tiles are grouped into six power domains, labelled as north,
centre or south followed by west or east. Each power domain contains
one input landing pad (ILP) (Fig. 1d) and one output landing pad (OLP),
each associated with a large SRAM. The ILP receives digital input vec-
tors (each vector has 8-bits unsigned integer (UINT8) × 512 entries)
from off-chip, converting these inputs into pulse-width-modulated
(PWM) durations onto 512 wires situated in parallel at the edge of the
2D mesh running over all the tiles4,20. Conversely, the OLP receives PWM
durations on 512 wires, digitizing these durations back into UINT8 for
off-chip data transport.

Analog-tile to analog-tile communication is performed using
durations, eliminating the area, power and latency associated with
analog-to-digital conversion at the tile periphery4 for situations in
which integration on the rows of each destination tile can be performed
synchronously with the readout of the columns of one or more source
tiles, including FC layers with simple activation functions. When dura-
tion vectors are sent from a tile to the OLP, the chip is effectively imple-
menting a ramp-based analog-to-digital converter (ADC), except that
the shared ramp circuits and dedicated comparators are located at the
tiles and the digital counters are at the OLP. Digitization becomes a
necessity for transformer attention and models that require internal
data staging.

2013
2014

2015
2016

2017
2018

2019
2020

2021
2022

2023

Year

0

2

4

6

8

10

12

14

W
E

R
 (%

)

c

Single-row read–write

W
es

t

South

512 × 512
weights

e

Heater

Input-wide (2,048 × 512) layer

South

W
es

t

South

i

4 PCMs
per weight

2 PCMs
per weight

G+ G– g+ g–

In
p

ut
fr

am
e

In
p

ut
fr

am
e

A

G+ G–

g
WP1 = G+ – G–

WP2 = G+ – G–

h

+ – + – + – + –

f

b

d

255
40

102
122

5
140

PWM scheme

W
es

t

IL
P

O
LP

South

W
es

t

12
30
94
160
32
64

Chip

a

Model size

1B 100M 10M

Human limit on
Librispeech Human limit

on SWB

South

MLPerf RNNT
(this work)

PE

NW NE

CW
PCM
tile

CE

SW SE

PE

512 output512 input durations

SwitchBoard
Librispeech test-clean

Not
available

Librispeech dev-clean

MLPerf RNNT
(full precision)

Phase Change
Memory

20 nm

W = F(G+ – G–) + g+ – g–

In
p

ut
fr

am
e

B

G+ G–

WP1 = G+ – G–

WP2 = G+ – G–

G+ G– G+ G–

W
es

t

In
p

ut
In

p
ut

In
p

ut
O

ut
p

ut
O

ut
p

ut
O

ut
p

ut

In
p

ut
In

p
ut

O
ut

p
ut

In
p

ut
O

ut
p

ut
O

ut
p

ut

Fig. 1 | Chip architecture. a, Speech recognition has improved markedly
over the past 10 years, driving down the WER for both the Librispeech and
SwitchBoard (SWB) datasets, thanks to substantial increases in model size and
improved networks, such as RNNT or transformer. For comparison with our
results, the MLPerf RNNT full-precision WER is shown for two Librispeech
datasets (‘test-clean’ and ‘dev-clean’)8, along with this work’s WER, which was
computed on Librispeech dev-clean. For model size: B, 1 billion; M, 1 million.
b, Inference models are trained using popular frameworks such as PyTorch
or TensorFlow. Further optimization for analog AI can be achieved with the
IBM analog HW acceleration kit (https://aihwkit.readthedocs.io/en/latest/).
c, Trained model weights are then used on a 14-nm chip with 34 analog tiles, two
processing elements (PE, not used for this work) and six ILP–OLP pairs. Tiles are
labelled as north (N), centre (C) or south (S) followed by west (W) or east (E).
d, Each ILP converts 512 8-bit inputs into 512 element vectors of pulse-modulated
durations, which are then routed to the analog tiles for integration using a fully

parallel 2D mesh that allows multi-casting to multiple tiles. After MAC, the
charge on the peripheral capacitors is converted into durations4 and sent
either to other tiles, leading to new MACs, or to the OLP, where durations
are reconverted into 8-bit representations for off-chip data-processing.
e, Transmission Electron Microscopy (TEM) image of one PCM. f, Each tile
contains a crossbar array with 512 × 2,048 PCMs, programmed using a parallel
row-wise algorithm4. g, PCMs can be organized in a 4-PCM-per-weight
configuration, with G+, g+ adding and G−, g− subtracting charge from the
peripheral capacitor, with a significance factor F (which is 1 in this paper).
h, Alternatively, they can have a 2-PCM-per-weight configuration, which
achieves a higher density. By reading different input frames through weights
WP1 or WP2, a single tile can map 1,024 × 512 weight layers. i, Finally, two adjacent
tiles can share their banks of 512 peripheral capacitors, enabling integration in
the analog domain across 2,048 input rows.

https://aihwkit.readthedocs.io/en/latest/
https://aihwkit.readthedocs.io/en/latest/

770  |  Nature  |  Vol 620  |  24 August 2023

Article

PCM devices are integrated in the back-end wiring above 14-nm
front-end circuitry (Fig. 1e) and can encode analog conductance states
by tuning, with electrical pulses, the relative volume of crystalline-phase
(highly conductive) and amorphous-phase (highly resistive) material
at the narrow bottom electrode. To program PCM devices, a parallel
programming scheme is used (Fig. 1f) so that all 512 weights in the same
row are updated at the same time4.

Weights can be encoded using a variable number of PCM devices.
Figure 1g shows a 4-PCM-per-weight configuration, where each of the
four PCM devices contributes equally to the read current and thus to
the charge stored on the peripheral capacitor. A second, denser scheme
uses a 2-PCM-per-weight set-up (Fig. 1h), encoding one weight, WP1 =
G+ - G−, on the first two PCM devices and a different weight, WP2 = g+ - g−,
on the second pair of devices. In this way, two different input vectors
can be multiplied with WP1 and WP2 in two separate time steps, on the
same capacitor, allowing analog MAC across 1,024 rows. Finally, two
analog tiles can share one bank of peripheral capacitors (Fig. 1i), further
extending the analog integration up to 2,048 analog input rows across
512 columns per pair of tiles.

All weight configurations, MAC operations and routing schemes are
defined with a user-configurable local controller (LC) available on each
tile (Fig. 2a). A local SRAM stores all the instructions defining the time
sequence of several-hundred control signals, allowing for a highly flex-
ible test and simplifying design verification, with a small area penalty
when compared with predefined-state machines.

The 2D mesh comprises 512 east–west wires and 512 north–south
wires sitting over each tile, with a diagonal set of 512 metal vias to con-
nect each corresponding pair of wires. ‘Borderguard’ circuits at the
four edges of each tile can block or propagate each duration signal

using tri-state buffers, mask bits and digital logic. This allows com-
plex routing patterns to be established and changed when required by
the LC, including a multi-cast of vectors to multiple destination tiles,
and a concatenation of sub-vectors originating from different source
tiles20 (Fig. 2c). Finally, Fig. 2d verifies that durations can be reliably
transmitted across the entire chip, with a maximum error equal to 5 ns
(3 ns for shorter durations).

KWS task
To demonstrate the performance of the chip in an end-to-end network,
we implemented a multi-class KWS task21. MLPerf classifies KWS as a
‘tiny’ inference model8 and proposes a convolutional-neural-network
architecture trained on the Google Speech Commands dataset compris-
ing 12 keywords (Fig. 3a). For this implementation, we instead adopted
an FC network22. Both networks require upstream digital preprocessing
to convert incoming audio waveforms into suitable input data vectors
using a feature-extraction algorithm21,22. The FC model achieves a clas-
sification accuracy of 86.75%, compared with 90% for the MLPerf con-
volutional neural network, but offers a simpler architecture and faster
performance (several KWS open submissions to MLPerf use FC-type
networks, sometimes reporting even lower accuracy around 82.5%)8.
Because an FC network matches our chip topology and exploits our
large tiles, our goal is to match the available SW accuracy of 86.75%.

To enable a fully end-to-end implementation on our chip, we first
modified the audio-spectrum digital preprocessing to produce 1,960
inputs and increased the size of each hidden layer from 128 to 512 for
our tiles (in 4-PCM-per-weight mode). To make the network more resil-
ient to analog noise23–26, we retrained it while including weight and

Top tile south
border guards

Concatenated
vector of
activations

tramp

Vramp

tramp

512
durations

c

a

1

1

0

0

1

0

South

W
es

t

SRAM instruction table

0

Instruction 2

Instruction 3

1 1 0 0 1

Analog tile
control signals

South

W
es

t

Duration generation
and communication
from out to north

South

W
es

t

From west
to the tile
and MAC
operation

b

+_

+_

+_

SW

NW

CW

Output

NE

SE

CE

Output

NW NE

CW CE

SW SE

Time (ns)

0–50
0–100

0–150

0–200
0–250

1 million
durations
data transfer

0–50 ns
0–100 ns
0–150 ns
0–200 ns
0–250 ns0

25
50
75

100

0
25
50
75

100

C
D

Fs
 (%

)

–6 –4 –2 0 2 4

Error (ns)

0
25
50
75

100

Error (ns)

Masked
column

Masked
column

Masked
column

Masked
column

Bottom tile
south border
guards

Output Output

d

Output

Output

Intput

–6 –4 –2 0 2 4 6

Fig. 2 | Reconfigurable architecture and routing. a, For maximum test-time
flexibility, each tile contains a user-programmable LC that defines all timing
sequences. b, LC controls signal routing through the 2D mesh from ILP to the
tile, MAC, output duration generation through ramp plus comparator circuitry
and borderguard tile routing configuration. c, As an example, LC can implement
2D-mesh concatenation such as merging the durations originating from the
even columns on one tile with the durations coming from the odd columns of

another tile. d, To test the communication, 1 million random input durations
are multi-cast, in parallel, to all 6 OLPs. Durations randomly vary between 0 and
50 ns (dark-blue lines) or between 0 and either 100, 150, 200 or 250 ns (lighter
shades of blue) with 1-ns granularity. Cumulative distribution functions (CDFs)
reveal that the communication error never exceeds 5 ns, demonstrating high
transport accuracy.

Nature  |  Vol 620  |  24 August 2023  |  771

activation noise, weight clipping, L2 regularization and bias removal
(https://aihwkit.readthedocs.io/en/latest/). We then pruned this trained
network down to 1,024 inputs (Fig. 3b) to fit the first layer into a two-tile
mapping configuration (Fig. 3c), using the shared-capacitor-bank
approach shown in Fig. 1i. Our end-to-end implementation uses four
tiles in total: two for the first weight layer and two for the next two
weight layers.

To improve the MAC accuracy and compensate for asymmetries
in the peripheral circuits, we introduce a MAC asymmetry balance
(AB) method (Fig. 3d). Actual weights, W, are programmed on the first
PCM pair, WP1, and opposite-signed weights, −W, are encoded on the
second PCM pair, WP2. By first multiplying the actual input on WP1 = W
and then −input on WP2 = −W, we computed the desired MAC (scaled
by ×2) while cancelling out fixed asymmetries in the peripheral circuitry
for current collection.

Each audio frame requires 2.4 μs in total, in the form of 8 time
steps of 300 ns each (Fig. 3e); this is 7 times faster than the best-case
latency currently reported by MLPerf8. Experimentally measured
MAC-plus-Activation function (ReLU for layers L0 and L1, linear for
Output) correlations with the expected SW result are shown in Fig. 3f
for all three layers. The measured KWS accuracy is 86.14% (Fig. 3g), well
within the MLPerf SWeq ‘iso-accuracy’ limit of 85.88% (defined as 99%
of the accuracy of the original SW model).

RNNT
Although KWS represents an excellent benchmark for very small
models, we can also use our chip to demonstrate much larger and
more-complex networks. As an example, the NLP task of speech-to-text
transcription enables applications such as agent assist, media con-
tent search, media subtitling, clinical documentation and dicta-
tion tools (https://aws.amazon.com/what-is/speech-to-text/). We
therefore implemented the MLPerf Datacenter network RNNT as an

industry-relevant workload demonstration. To further simplify model
use, we programmed the MLPerf weights directly with no additional
HWA retraining.

The MLPerf RNNT showcases all the important building blocks, such
as a multilayer encoder (Enc), decoder (Dec) and joint subnetwork
blocks (Fig. 4a). The network is slightly simplified with respect to
state-of-the-art RNNTs; the long short-term memory (LSTM) blocks
are unidirectional, rather than bidirectional, and the decoding
scheme is greedy rather than beam-search, which increases the WER
slightly but makes online continuous-streaming use much more
straightforward27.

RNNT mapping on chip
As with KWS, digital preprocessing first converts raw audio queries
into a sequence of suitable input data vectors. At each sequence
time step, the encoder cascades data vectors through five successive
LSTMs (Enc-LSTM0, 1, 2, 3, 4) and one FC layer (Enc-FC). At each LSTM,
the local input vector for that layer is concatenated with a local ‘hid-
den’ vector, followed by vector–matrix multiplication through a very
large FC weight layer, producing four intermediate sub-vectors. These
sub-vectors are then processed and combined using a relatively small
amount of vector–vector computing, generating an output vector
that is sent forward to become the input to the next LSTM or FC layer
for that same time step, and also recursively fed back to become its
own hidden vector for the next time step. Time-stacking, performed
immediately after preprocessing, as well as between Enc-LSTM1 and
Enc-LSTM2 (Fig. 4), scales down the effective number of time steps in
the local sequence by concatenating multiple arriving data vectors
into one departing data vector.

The Dec block, which operates in parallel with the encoder, consists
of one embedding FC layer (Dec-Emb), two LSTMs (Dec-LSTM0, 1) and
one FC layer (Dec-FC). Finally, the joint layer sums the Enc and Dec
signals, applies a ReLU activation function and selects the predicted

–1.0 –0.5 0 0.5

SW MAC L0

0

50

100

150

200

250

H
W

 M
A

C
 (t

ic
k)

–1.0 –0.5 0 0.5

SW MAC L1

–1.0 –0.5 0 0.5 1.0

SW MAC output

536,460 parameters

792,576 parameters

3,
92

0
in

p
ut

12
8

la
ye

r

12
8

la
ye

r

12
8

la
ye

r

12
 o

ut

A
ud

io
 in

p
ut

P
re

p
ro

ce
ss

in
g

Spoken
word

Yes
No
Up

Down
Left

Right
On
Off

Stop
Go

Silence
unknown

1,
02

4
in

p
ut

51
2

la
ye

r

51
2

la
ye

r

12
 o

ut

A
ud

io
 in

p
ut

P
re

p
ro

ce
ss

in
g

MAC asymmetry
balance

G+

In
p

ut

WP2 = –WWP1 = W

86
.7

5%

86
.1

4%

SWeq

85.88%

Time (ns)
300 2,400

D genWP2
–Input–

WP2
–Input+

D gen

D genWP1
Input+

D gen

Asymmetry
balance

Layer 0

Layer 1

Output

WP1
Input–

WP1
Input+

WP2
–Input+

WP1
Input+

KWS chip mapping

0

103

102

P
D

F

≈ ≈
100

101

a d
SW model

HWA model on chip

b

c

f g

A
cc

ur
ac

y
(%

)

88

87

86

85

84

83
SW Chip

–I
np

ut

G–G+ G– G+ G–G+ G–

Asymmetry
balance

e

Fig. 3 | End-to-end KWS task. a, To classify spoken words into one of the 12
highlighted classes for KWS, an FC baseline is used as a reference. b, The
network is then retrained using HWA techniques. c, The end-to-end
implementation uses four analog tiles. d, An AB method is used to increase
MAC accuracy. Weights W and −W are programmed on WP1 and WP2 respectively.
By inferencing the desired input x on WP1 and then −x on WP2, the MAC is
collected twice (xw + (−x) × (−w)), cancelling out any fixed peripheral circuitry
asymmetries and improving MAC accuracy. e, A timing diagram shows that a

full frame is processed in 2.4 μs. Because the ReLU activation (implemented
on-chip in the analog domain) generates positive-only outputs, the second
layer requires only two integration steps, rather than the four needed in the
first layer. f, Experimental activations after layers L0, L1 and output correlate
closely with ideal SW MACs calculated using HW input. PDF, probability
distribution function. g, This leads to SWeq accuracy for this fully end-to-end
demonstration.

https://aihwkit.readthedocs.io/en/latest/
https://aws.amazon.com/what-is/speech-to-text/

772  |  Nature  |  Vol 620  |  24 August 2023

Article

output letter (including the possibility of a ‘blank’ character) for that
time step using a 512 × 29 FC layer with a greedy decoding scheme. The
predicted output letter is both the model output and the next input
to the Dec block. The joint block alternates between emitting blanks,
at which point the next encoder output is consumed, and emitting
letters, which then triggers Dec processing. As a result, the number of
Dec iterations will not usually match the input sequence length seen
by the encoder.

When large DNNs such as RNNT are implemented with reduced
digital precision, optimal precision choices may vary across the net-
work28–30. Similarly, implementation in analog-AI HW also requires
careful layer-specific choices to balance accuracy and performance.

Although dense 2-PCM-per-weight mapping (Fig. 1h) can improve energy
efficiency (increasing the number of operations per second per watt,
OPS/W) or areal efficiency (the number of operations per mm2), higher
accuracy can be achieved using techniques such as AB, in exchange for
increased area, energy and/or time. Therefore, before mapping RNNT on
HW, we need to find out which network layers are particularly sensitive
to the presence of weight errors and other analog noise.

We perform this initial assessment in SW, not by adding random
noise (on either weights or activations) and repeating ad nauseam to
obtain stable results through Monte Carlo sampling, but by introduc-
ing increasingly stronger weight quantization on the whole, or just
a portion, of the RNNT network (Fig. 4b). Any parts of the network

1

2

3

4

5

6

n b
its

at
 S

W
eq

Enc-
LSTM0

Enc-
LSTM1

Enc-
LSTM2

Enc-
LSTM3

Enc-
LSTM4

Enc-
FC

Dec-,
Emb-LSTM0

Dec-
LSTM1

Dec-
FC

Full mapping
105

106

107

108

W
ei

gh
ts

 o
r

P
C

M
s

RNNT text output
S

p
ac

e a b c d e … w x y z ’

B
la

nk

w→ Predicted
character

Greedy
decoding

Decoder

Dec-FC
320 × 512

Dec-LSTM0
hid = 320

Dec-embedding
28 × 320

Dec-LSTM1
hid = 320

Joint

Predicted character

ReLU

Joint-FC
512 × 29

Chip
5

Encoder

Input = 240

Input = 2,048

Enc-LSTM0
hid = 1,024

Enc-LSTM1
hid = 1,024

2× time
stacking

Enc-LSTM2
hid = 1,024

Enc-LSTM3
hid = 1,024

Enc-LSTM4
hid = 1,024

3× time
stacking

Speech
features

Enc-FC
1,024 × 512

Chip
1

Chip
2

Chip
3

Preprocessing

Chip
4

33
,5

54
,4

32

33
,5

54
,4

32

33
,5

54
,4

32

16
,7

77
,2

16

16
,7

77
,2

16 52
4,

28
8

1,
04

8,
57

6

82
8,

16
0

2,
92

8,
64

0

81
9,

20
0

3,
27

6,
80

0

16
3,

84
0

65
5,

36
0

14
2,

12
7,

10
4

g

14
1,

07
8,

52
8

32
,5

05
,8

56

Using
Wexp

Using
Wexp

5.
43

7

4.
47

2

4.
35

2

2.
96

5

2.
36

2

2.
75

4

2.
66

3

2.
60

3

2.
87

4

2.
09

0

2.
75

4

4.
89

4

SWeq 8.378

Fu
ll

ne
tw

or
k

Fu
ll

ne
tw

or
k

(n
o

jo
in

t-
FC

)

E
nc

-L
S

TM
0

E
nc

-L
S

TM
1

E
nc

-L
S

TM
2

E
nc

-L
S

TM
3

E
nc

-L
S

TM
4

E
nc

-F
C

D
ec

-,
E

m
b

-L
S

TM
0

D
ec

-L
S

TM
1

D
ec

-F
C

Jo
in

t-
FC

Full network

SW 7.452

Minimum
required
precision

Full network
(no joint-FC)

Enc-LSTM0
Dec-LSTM1

Joint-FC

Chip 4 Chip 5Chip 1 Chip 2 Chip 3

Weights

45
,2

61
,5

68

5,
17

7,
34

4

8,
38

8,
60

8

12
,5

82
,9

12

8,
38

8,
60

8

8,
38

8,
60

8

Chip 4 Chip 5Chip 1 Chip 2 Chip 3

MLPerf
weights

WER ≈ MLPerf

MLPerf W

SW WER > MLPerf WER >> MLPerf

Large nbits Increasing WER degradation from MLPerf baseline Small nbits

LSTM0h

LSTM0x

LSTM2h

LSTM2x

Enc-FCLSTM4

LSTM3

Dec-FCLSTM1

Emb, LSTM0

LSTM1h

LSTM1x

PCMs

2 3 4 5 6 7 8
nbits

7.0

7.5

8.0

8.5

9.0

9.5

10.0

W
E

R
 (%

)

a b

c d

W

e

f

Fig. 4 | MLPerf RNNT network for speech transcription. a, MLPerf RNNT
model, trained on the Librispeech dataset, comprises encoder (Enc), decoder
(Dec) and joint blocks. The input signal is digitally preprocessed and stacked to
generate the input of Enc-LSTM0 (chip 1) and Enc-LSTM1 (chip 2). The resulting
output vectors are again time-stacked before feeding a 2,048-input Enc-LSTM2
(chip 3), followed by two 1,024-input Enc-LSTM3,4 and an Enc-FC linear layer
(chip 4). The resulting encoder output is then merged with the vectors received
from the Dec (chip 5). Finally, a joint-FC calculates the next-letter probability (in
SW), which feeds back to the Dec. This entails greedy decoding in which the
highest probability selects the output letter. b, SW-based sensitivity analysis
performed by progressively quantizing the FP32 MLPerf weights. c, The WER
increases beyond the SWeq limit when weights are excessively quantized.
d, There is a threshold nbits at which the WER is still SWeq for the full network, the
full network without joint-FC quantization, and for each individual layer. While
Dec-LSTM1 is the most resilient to noise, joint-FC exhibits significant
sensitivity and is small in size, so it is not mapped in analog to preserve high

accuracy. e, All the other layers are mapped to analog tiles (mapping details in
Extended Data Figs. 5, 7). All arrows show the input signal routing and are
operating at the same time, each performing a simultaneous multi-cast to all
tiles that show the same-colour MAC arrow. Note that the borderguard circuits
can enable duration data arriving at the west side of a tile to deliver durations
onto the rows of that tile, and a completely different duration-vector passes
over the centre of that tile on its routing wires at the same time. Small arrows
indicate how MACs are aggregated in the analog domain across tile pairs. f, The
output duration routing. Each arrow colour requires its own time slot: three for
chips 1, 2, 3 and 4, and one for chip 5. Output routing from tiles to OLPs can
involve implicit concatenation (chip 5). More details are given in the Methods.
The joint block and all LSTM vector–vector operations are computed off-chip.
g, More than 45 million weights are mapped using more than 140 million PCMs,
with an average of 2.9 (3.1 with Wexp) PCMs per weight. Coloured bars show
PCMs, white bars show weights.

Nature  |  Vol 620  |  24 August 2023  |  773

outside the portion being stress-tested are evaluated using the original
32-bit floating point (FP32) precision. The resulting degradation in WER
can be plotted as a function of the effective precision, nbits. Layers or
entire network blocks that are less susceptible will still deliver a low
WER even with aggressive quantization (small values of nbits), whereas
highly sensitive blocks will exhibit a high WER even for small amounts
of weight quantization.

Figure 4c shows this simulated WER as a function of nbits for various
cases, using the 99% SWeq limit (an 8.378% WER) of the network base-
line (7.452% WER) to identify a threshold nbits (arrows). When weights
across the full network are all quantized, WER is no longer SWeq once
nbits < 5.4 (42 levels).

Repeating this process for each individual layer identifies the
most-sensitive layers (those exhibiting a higher nbits threshold (Fig. 4d)),
such as the joint-FC and Enc-LSTM0, followed by Enc-LSTM1. Given
the small size (512 × 29 weights) but large WER impact of the joint-FC,
we chose to implement this layer within the digital processing. Again,
because the chip does not contain any explicit digital processing, this
joint-FC, all vector–vector products and the activation functions are
computed off-chip on a host machine. The OLPs (and ILPs) are used to
send data from the chip(s) to the host (and back).

Now that we have identified which layers are most sensitive, we are
ready to map the MLPerf weights onto 142 tiles distributed across 5
chips. Because Enc-LSTM0 and Enc-LSTM1 are sensitive to noise, the AB
method is used on these layers, together with a careful treatment of the

first matrix, Wx, of Enc-LSTM0, which helps to improve MAC accuracy
and decrease WER (see Methods for details). In summary, of a total of
45,321,309 network weight and bias parameters, 45,261,568 are mapped
into analog memory (99.9% of the weights). A single chip can hold only
17,825,792 weights in a 2-PCMs-per-weight scheme, so we used 5 differ-
ent chips. Specific mapping details are shown in Fig. 4e,f. Coloured tiles
encode weights and perform MAC operations; grey tiles are unused.

Figure 4e shows how input data reach each tile from an ILP, with fully
parallel routing. After all the necessary integrations, duration vectors
representing MAC results are sent from tiles to OLPs as shown in Fig. 4f.
In total, more than 45 million weights are encoded using more than
140 million PCM devices, with an average of around 3 PCM devices for
each weight (Fig. 4g).

Accuracy results
Figure 5a shows the experimental WER after weight mapping and pro-
gramming for the full Librispeech validation dataset of 2,513 audio
queries. Here a single layer of the RNNT network is mapped on a chip,
and everything else is calculated in SW. It is worth noting that individual
layers of the network are SWeq by themselves. As predicted in Fig. 4d,
Enc-LSTM0 shows the largest WER, with other layers being more resil-
ient to noise. Finally, the full inference experiment on all five chips is
shown in Fig. 5b. From left to right, each bar reports the overall WER
obtained by implementing increasingly more layers on chip. The total
WER is given by the last Dec bar, 9.475%, with an overall degradation of

8

9

10

7

8

9

10

W
E

R
 (%

)
W

E
R

 (%
)

Enc-
LSTM0

Enc-
LSTM1

Enc-
LSTM2

Enc-
LSTM3

Enc-
LSTM4

Enc-
FC

Dec-,
Emb-LSTM0

Dec-
LSTM1

Dec-
FC

0

0.2

0.4

0.6 Impact of PCM drift after >1 week

W
E

R
 a

t
1

w
ee

k
–

W
E

R
 a

t
d

ay
 0

 (%
)

x [240,1]
vector

Wx 240 × 4,096

Wh 1,024 × 4,096

D
ig

ita
l

Wx2 1,024 × 4,096

Wh 1,024 × 4,096

D
ig

ita
l

Digital
preprocessing

M240 × 1,024

x [240,1]
vector x2

Wh, Wx and Wx2
with 3.5 bits
quantization

Original MLPerf quantized Wx

d

e

Baseline

Moore-Penrose quantized Wx2

Original MLPerf,
1 copy Wx

Moore-
Penrose Wx2

f

Baseline

b

a

SWeq 8.378

SW 7.452

8.
28

7

8.
19

9

7.
86

5

9.
17

9

9.
47

5

8.
71

9

8.
97

2

SWeq 8.378

SW 7.452
7.6357.529

7.
86

5 7.504 7.4757.698 7.687

9.
36

7

9.
21

8

7.531 7.414

Encoder
2×3×

Decoder
SW

7.
73

4
7.

73
4

7.
94

4

8.
08

6

9.
08

3

9.
25

8

8.
82

1

9.
00

8

9.
28

3

9.
16

4

c

Original MLPerf,
4 copies Wx

0.
41

8

Day 0: 9.475

>1 week: 9.894

After >1 week

7.
86

5
7.

73
4

Used
in b

Full
network

One layer MAC on-chip, all other layers in SW

Increasingly all layers MACs on-chip,
remaining layers in SW

Wx × pinv(M) × M × x Wx2 × x2=Wx × x =y =Weight-expansion method

Wx2 x2

Encoder
2×3×

Decoder

7

10

20

30

40
50

W
E

R
 (%

)

200 400 600 800 1,000 1,200
Wx, Wx2 num rows

7.4

7.5

7.6

7.7

7.8

7.9

8.0

W
E

R
 (%

)

Using Wx Using Wx2

Single-layer WER

Cumulative WER

7.
86

5
7.

73
4

Fig. 5 | Experimental WER using Librispeech on MLPerf RNNT. a, Single-layer
WER. The graph shows an experimental sensitivity analysis obtained by
implementing one layer on-chip and all the others in SW at FP32 precision.
The most critical layer is Enc-LSTM0. b, Cumulative WER. Full RNNT inference
using all five chips on the full Librispeech validation dataset. The bars from left
to right show the cumulative WER obtained when implementing increasingly
more layers on-chip. The full RNNT WER, using the original MLPerf weights,
achieved across five chips (right-most bar) is 9.475%. c, After one week of PCM
drift, the cumulative WER slightly increases to 9.894%, just 0.4% more than
day-0 WER. d, To further improve the accuracy, a weight-expansion technique
is introduced for Enc-LSTM0. Given a MAC Wx × x, the insertion of a random
normal matrix M and its pseudoinverse pinv(M) leads to the same MAC output.

However, now Wx2 = Wx × pinv(M) contains more rows N, with an increased
signal-to-noise ratio. Whereas signal increases linearly with N, the aggregate
noise across the larger number of rows increases sub-linearly (N∝ if noise
sources are independent Gaussians). e, Simulation results. When quantizing
Enc-LSTM0 to nbits = 3.5 bits, the WER is 42%. Weight expansion greatly
improves the resilience, even for only slightly expanded Wx2 matrices, with the
WER reduced to 7.9%, well below SWeq. f, Similar accuracy benefits are observed
experimentally when implementing weight expansion on Enc-LSTM0 on-chip,
revealing stronger WER reduction with respect to weight averaging. M × x is
digitally preprocessed. Wx2 expansion to 1,024 rows enables a 9.258% WER on
the full RNNT, 1.81% from the SW baseline, 0.88% from SWeq.

774  |  Nature  |  Vol 620  |  24 August 2023

Article

2.02% from the 7.452% SW baseline. For this experiment, we inference
the full Librispeech validation dataset through chip 1 and save the out-
put results. These are then input into chip 2, and so on across all 5 chips.
Even when repeated after more than 1 week of PCM drift31,without any
recalibration or weight reprogramming, the RNNT WER has degraded
by only 0.4% (Fig. 5c).

We observe that the layer-to-layer WER degradation in Fig. 5b is
steeper than expected from simple aggregation of the single-layer WER
degradations (Fig. 5a). Intuitively, Enc-LSTM0 and other early layers
have a bigger cumulative impact owing to error propagation. We can
further improve the WER of Enc-LSTM0 with a new weight-expansion
method involving a fixed matrix M with normal random values, and
its Moore-Penrose pseudo-inverse, pinv(M) (Fig. 5d). The resultant
noise-averaging helps to improve the accuracy of the MAC operation
and the overall resilience of the network layer, with no additional
retraining required. On analog HW, as long as the number of tiles
remains unchanged, the additional cost of using more or even all of
the rows in each tile is almost negligible. However, more preprocessing
is needed to implement M × x in digital, although it is much less than if
the entire Enc-LSTM0 layer were implemented in digital.

Using our SW-based assessment method from Fig. 4c,d, Fig. 5e shows
that quantizing the Enc-LSTM0 weights to 3.5 bits leads to an exces-
sive WER (42%). However, after weight expansion, the WER greatly
decreases, even for a small Wx2 expansion, saturating at a SWeq value
of 7.9% WER when Wx2 contains 1,024 rows. The same behaviour is

observed in experiments (Fig. 5f), with the WER for on-chip Enc-LSTM0
decreasing as weight expansion is increased up to a Wx2 containing
1,024 rows, exceeding the improvement shown by simply programming
multiple weight copies. Figure 5b shows that when the entire RNNT
network is run on five chips, starting with expanded Wx2 on Enc-LSTM0,
WER improves to 9.258%, which is 1.81% from the SW baseline, and only
0.88% from the SWeq threshold.

Power and system performance
We also measured the full power consumption for every chip during
inference operations. The chip has various power supplies. It uses 1.5 V
to drive the row activation and column integration on the tiles during
analog computation. All control and communication circuits, including
ILP, OLP, LC and 2D mesh, are driven at 0.8 V. As shown in Fig. 6a, the
1.5 V and 0.8 V supplies dominate power consumption. By contrast,
the 1.8 V supply that drives the clock phase-locked loop (PLL) and the
off-chip drivers and receivers, and some other analog voltage sources,
have a negligible impact. The corresponding sustained TOPS/W val-
ues are reported in Fig. 6a. Chip 4 has the best power performance
(12.40 TOPS/W) because it has the most on-chip weights. In general,
the reported TOPS/W values correlate well with the number of weights
encoded on-chip: chips 1 and 2 use an AB technique and have 4 PCMs
per weight, whereas chip 4 uses a denser mapping of 2 PCMs per weight.
Finally, the Dec chip, chip 5, has the lowest TOPS/W value because this
chip implements only around 1.8 million weights across only 13 of the

Fu
ll

ne
tw

or
k

E
nc

-
LS

TM
0

E
nc

-
LS

TM
1

E
nc

-
LS

TM
2

E
nc

-
LS

TM
3

E
nc

-
LS

TM
4

E
nc

-
FC

D
ec

-,
E

m
b

-L
S

TM
0

D
ec

-
LS

TM
1

D
ec

-
FC

Jo
in

t108

109

1010

1011

1012

1013

1014

O
n-

ch
ip

 a
nd

 o
ff

-c
hi

p
op

er
at

io
ns

101

102

103

S
am

p
le

s
p

er
 s

p
er

 W

Dell This work
10−1

100

101

TO
P

S
/W

Analog
tile

Full
chip

All
142 tiles

All
5 chips

Digital
processing

Full
system

0

5

10

15

20

TO
P

S
/W

11 12 13 14 15 16 17
TOPS/W

7

8

9

10

W
E

R
 (%

)

1.20
W

1.14
W

1.33
W1.5 V

0.8 V

1.8 V
Other

1.23
W

4.02
TOPS/W

6.68
TOPS/W

10.47
TOPS/W

12.40
TOPS/W

2.77
TOPS/W

0.8 V
Byte-to-D/D-to-byte conversions
Local controller
D transport, Clock tree

1.8 V
Always-on
power domain
PLL

On-chip operations
Off-chip operations
Off-chip operations (Wx2)

Process
time

Actual
speech

time

MLPerf
constraint

for real-time
processing

a b

d e f

SWeq 8.378

SW 7.452

Maximum input:

Power
performance

System
performance

122 ns
80 ns

60 ns

Chip 1 Chip 2 Chip 3 Chip 4 Chip 5

1.5 V
MAC operation
Row activation
Column integration

Digital processing

Digital
core Chip 1 Chip 2 Chip 3 Chip 4 Chip 5

WordsInput
frames

0.87
W

c

100 ns

~14×

~14×

20
.0

12
.4

12
.2

7.
09

0.
90

6.
94

28
.4

5

27
.2

7

22
.4

1

38
.8

8

56
5.

7
54

6.
6

Wx Wx2

0.
35

0.
34

0.
28

0.
48

6.
94

6.
70

TOPS/W

Weights on-chip

0

5

10

15

TO
P

S
/W

0

5

10

15

20

W
ei

gh
ts

 (×
10

6)

10−5 10−4 10−3 10−2 10−1 100 101 102

Time (s)

0

20

40

60

80

100

C
D

F

NVIDIAH3CFujitsu

Other
Analog voltage supplies
(DAC, ramp, capacitor
pre-charge)

Fig. 6 | MLPerf RNNT power and system performance. a, Measured power and
TOPS/W are shown for each chip. TOPS/W (coloured bars) correlate with the
number of weights used on each chip (white bars). D, duration; DAC, digital-to-
analog converter; PLL, phase-locked loop. b, Reducing the maximum input
duration leads to an improvement in TOPS/W with only a small amount of WER
degradation (chip 4 is measured, other layers in SW at FP32). c, Energy efficiency
at various levels: analog integration only (1.5 V power domain), full chip, all
5 chips for RNNT (analog integration only and full chip), and full system level
including estimated digital processing energy20. d, Simulated performance for

an integrated system shows that the average processing time for each sample
is 500 μs, more than 104 times faster than the input speech sentence, thus
enabling real-time transcription. Total processing time = 1.29 s and total real
audio = 4 h 20 min, so the real-time factor ≈ 8 × 10−5 ≪ 1. e, Number of operations
performed on-chip versus off-chip in the RNNT experiment, with a 325:1 ratio
for the original MLPerf weights (Wx) and 88:1 with weight expansion (Wx2)
(Fig. 5d). f, Samples per second per watt and TOPS/W performance for
comparison with MLPerf submissions, showing a 14-fold improvement for
our system.

Nature  |  Vol 620  |  24 August 2023  |  775

34 tiles, yet the data communication is still extensive, requiring a large
number of tiles and ILPs/OLPs to be active to implement the routing
network (Fig. 4e,f).

Figure 6b shows that another 25% improvement in TOPS/W (from 12.4
to 15.4 TOPS/W) for chip 4 can be obtained by halving the integration
time, albeit with an additional 1% degradation in the WER. Figure 6c
shows how the costs of data communication, incomplete tile usage
and inefficient digital computing bring the large peak TOPS/W of the
analog tile itself (20.0 TOPS/W) down to the final sustained value of 6.94
TOPS/W. Given the actual chip processing times (1.5 μs for chip 5 and
2.1 μs for the other four; see Methods), we can estimate the full process-
ing time for an overall analog–digital system (Fig. 6d). This includes the
estimated computation time (and energy) if on-chip digital computing
were added at the physical locations of the OLP–ILP pairs. Given the
500-μs average processing time for each audio query, the real-time fac-
tor (the ratio between processing and real audio time) is only 8 × 10−5,
well below the MLPerf real-time constraint of 1. Although the digital
compute is inefficient, the enormous ratio between the number of
analog and digital operations (Fig. 6e; 325-fold for conventional weight
mapping and 88-fold with the weight-expansion technique, owing to
the increased digital preprocessing) makes the analog-only and pro-
jected full-system energy efficiencies similar (Fig. 6c; 7.09 TOPS/W
and 6.94 TOPS/W using conventional weight mapping). With weight
expansion, an analog-AI system using the chips reported in this paper
could achieve 546.6 samples per second per watt (6.704 TOPS/W) at
3.57 W, a 14-fold improvement over the best energy-efficiency submit-
ted to MLPerf (Fig. 6f), at 9.258% WER.

Conclusions
In this paper we demonstrate the implementation of industry-relevant
inference applications on analog-AI chips, specifically for speech
recognition and transcription within the domain of NLP. We used a
14-nm analog inference chip to demonstrate SWeq end-to-end KWS
on the Google Speech dataset using a fully analog set-up and a novel
AB technique. We then targeted the MLPerf RNNT on Librispeech, a
data-center model with more than 45 million weights, mapped on more
than 140 million PCM devices distributed over 5 different chip modules.
By using a new weight-expansion method, we demonstrated a WER
of 9.258% with an on-chip sustained performance that varies with tile
usage, reaching a maximum of 12.4 TOPS/W and delivering an estimated
system sustained performance of 6.7 TOPS/W.

These are, to our knowledge, the first demonstrations of commer-
cially relevant accuracy levels on a commercially relevant model com-
bining more than 140 analog-AI tiles, with neural-network activations
being moved between those tiles with efficiency and massive paral-
lelism. Our work indicates that, when combined with time-, area- and
energy-efficient implementation of the on-chip auxiliary compute20,
the high energy efficiency and throughput delivered during matrix–
vector multiplication on individual analog-AI tiles can be extended to an
entire analog-AI system, offering excellent sustained energy efficiency
and throughput.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions
and competing interests; and statements of data and code availability
are available at https://doi.org/10.1038/s41586-023-06337-5.

1.	 Vaswani, A. et al. Attention is all you need. In NIPS17: Proc. 31st Conference on Neural
Information Processing Systems (eds. von Luxburg, U. et al.) 6000–6010 (Curran
Associates, 2017).

2.	 Chan, W. et al. SpeechStew: simply mix all available speech recognition data to train one
large neural network. Preprint at https://arxiv.org/abs/2104.02133 (2021).

3.	 Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training using
analogue memory. Nature 558, 60–67 (2018).

4.	 Narayanan, P. et al. Fully on-chip MAC at 14 nm enabled by accurate row-wise programming
of PCM-based weights and parallel vector-transport in duration-format. IEEE Trans.
Electron. Devices 68, 6629–6636 (2021).

5.	 Khaddam-Aljameh, R. et al. HERMES-core—a 1.59-TOPS/mm2 PCM on 14-nm CMOS
in-memory compute core using 300-ps/LSB linearized CCO-based ADCs. IEEE J.
Solid-State Circuits 57, 1027–1038 (2022).

6.	 Yao, P. et al. Fully hardware-implemented memristor convolutional neural network.
Nature 577, 641–646 (2020).

7.	 Wan, W. et al. A compute-in-memory chip based on resistive random-access memory.
Nature 608, 504–512 (2022).

8.	 Better Machine Learning for Everyone. ML Commons https://mlcommons.org (2023).
9.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
10.	 Dahl, G. E., Yu, D., Deng, L. & Acero, A. Context-dependent pre-trained deep neural

networks for large-vocabulary speech recognition. IEEE Trans. Audio Speech Lang.
Process. 20, 30–42 (2011).

11.	 Graves, A., Fernández, S., Gomez, F. & Schmidhuber, J. Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks. In
ICML ’06: Proc. 23rd International Conference on Machine Learning (eds Cohen, W. &
Moore, A.) 369–376 (ACM, 2006).

12.	 Graves, A. Sequence transduction with recurrent neural networks. Preprint at https://
arxiv.org/abs/1211.3711 (2012).

13.	 Graves, A., Mohamed, A.-R. & Hinton, G. Speech recognition with deep recurrent neural
networks. In Proc. 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing 6645–6649 (IEEE, 2013) .

14.	 Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning to align
and translate. Preprint at https://arxiv.org/abs/1409.0473 (2014).

15.	 Hsu, W.-N. et al. HuBERT: self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM Trans. Audio Speech Lang. Process. 29, 3451–3460
(2021).

16.	 Gulati, A. et al. Conformer: convolution-augmented transformer for speech recognition.
Preprint at https://arxiv.org/abs/2005.08100 (2020).

17.	 Panayotov, V., Chen, G., Povey, D. & Khudanpur, S. Librispeech: an ASR corpus based on
public domain audio books. In 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP) 5206–5210 (IEEE, 2015).

18.	 Godfrey, J., Holliman, E. & McDaniel, J. SWITCHBOARD: telephone speech corpus for
research and development. In ICASSP-92: Proc. International Conference on Acoustics,
Speech and Signal Processing 517–520 (IEEE, 1992).

19.	 Gholami, A., Yao, Z., Kim, S., Mahoney, M. W. & Keutzer, K. AI and memory wall. RiseLab
Medium https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8 (2021).

20.	 Jain, S. et al. A heterogeneous and programmable compute-in-memory accelerator
architecture for analog-AI using dense 2-D mesh. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 31, 114–127 (2023).

21.	 Chen, G., Parada, C. & Heigold, G. Small-footprint keyword spotting using deep neural
networks. In 2014 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP) 4087–4091 (2014).

22.	 Zhang, Y., Suda, N., Lai, L. & Chandra, V. Hello edge: keyword spotting on microcontrollers.
Preprint at https://arxiv.org/abs/1711.07128 (2018).

23.	 Gokmen, T., Rasch, M. J. & Haensch, W. The marriage of training and inference for scaled
deep learning analog hardware. In 2019 IEEE International Electron Devices Meeting
(IEDM) 22.3.1–22.3.4 (2019).

24.	 Spoon, K. et al. Toward software-equivalent accuracy on transformer-based deep neural
networks with analog memory devices. Front. Comput. Neurosci. 15, 675741 (2021).

25.	 Kariyappa, S. et al. Noise-resilient DNN: tolerating noise in PCM-based AI accelerators via
noise-aware training. IEEE Trans. Electron Devices 68, 4356–4362 (2021).

26.	 Joshi, V. et al. Accurate deep neural network inference using computational phase-change
memory. Nat. Commun. 11, 2473 (2020).

27.	 Macoskey, J., Strimel, G. P., Su, J. & Rastrow, A. Amortized neural networks for low-latency
speech recognition. Preprint at https://arxiv.org/abs/2108.01553 (2021).

28.	 Fasoli, A. et al. Accelerating inference and language model fusion of recurrent neural
network transducers via end-to-end 4-bit quantization. In Proc. Interspeech 2022 2038–2042
(2022).

29.	 Ding, S. et al. 4-bit conformer with native quantization aware training for speech
recognition. Proc. Interspeech 2022 1711–1715 (2022).

30.	 Sun, X. et al. Ultra-low precision 4-bit training of deep neural networks. Adv. Neural Inf.
Process. Syst. 33, 1796–1807 (2020).

31.	 Lavizzari, S., Ielmini, D., Sharma, D. & Lacaita, A. L. Reliability impact of chalcogenide-
structure relaxation in phase-change memory (PCM) cells—part II: physics-based
modeling. IEEE Trans. Electron Devices 56, 1078–1085 (2009).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution
4.0 International License, which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence,
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

https://doi.org/10.1038/s41586-023-06337-5
https://arxiv.org/abs/2104.02133
https://mlcommons.org
https://arxiv.org/abs/1211.3711
https://arxiv.org/abs/1211.3711
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2005.08100
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/2108.01553
http://creativecommons.org/licenses/by/4.0/

Article
Methods

Chip fabrication and testing
Our experimental results were measured on chips built from 300-mm
wafers with a 14-nm complementary metal-oxide-semiconductor front
end, fabricated at an external foundry. PCM devices were added in the
‘back-end-of-line’ at the IBM Albany NanoTech Center. Mushroom-cell
PCM devices were built with a ring heater with a diameter of approxi-
mately 35 nm and a height of around 50 nm (Fig. 1e) as the bottom
electrode, a doped Ge2Sb2Te5 layer and a top electrode. Wafer char-
acterization before packaging was performed on both 1-resistor
macros and 1,024 × 2,048 array diagnostic monitors with on-chip sense
amplifiers. After selection of high-yield dies, the wafer was diced and
packaged into testable modules at IBM Bromont, as shown in Extended
Data Fig. 1a,b.

Experiments were run by mounting the module on a socket con-
nected to a custom-designed board driven by three Xilinx Virtex-7
VC707 field-programmable gate arrays (FPGAs) (Extended Data Fig. 1c).
Four Keysight E36312A power supplies were used to power up the
boards and the chip. In addition to the 1.5 V, 0.8 V and 1.8 V supplies
mentioned in the main text, a 3.0 V power supply was provided but
only during PCM device programming (not during inference). Finally,
a supply of 0.75 V precharged the peripheral capacitors and set the
lower limit for the on-chip digital-to-analog converters (DACs) used in
PCM programming, and 0.3 V set the PCM read voltage and the ramp
start voltage. These supplies were measured and reported in Fig. 6a
as ‘Other’ voltage supplies. The three FPGAs were connected through
the custom board and controlled by an x86 machine with a Peripheral
Component Interconnect Express connector. All experiments were run
using Xilinx MicroBlaze Soft Processor code and x86 MATLAB software
wrapper (Extended Data Fig. 1c).

The off-chip combined transfer bandwidth on our chip is 38.4 Gbps,
with a total of 384 input–output pins capable of operating at 100 MHz.
Extended Data Fig. 1d shows that routing precision, KWS and RNNT
power measurements were run without any additional intermediate
data being sent back to the x86 machine. The RNNT accuracy results
used the x86 for vector–vector operations and tile calibration. To model
such digital operations in terms of performance, we simulated a digital
circuitry just outside the ILP–OLP, based on a foundry 14-nm process
design kit to implement optimized digital pipelines, control logic and
registers. A future chip will eventually include the digital circuitry close
to the analog tiles20.

On-chip data conversion, analog periphery and 2D mesh routing
Inputs were encoded as 8-bit digital words stored on an SRAM within
each ILP. Conversion of 512 such digital words to 512 PWM durations
was performed using clock-driven counter circuitry within each ILP.
Data were then retrieved from the chip using the OLP, which internally
performed the conversion from time to digital using 512 counters plus
falling-edge detectors (Extended Data Fig. 2a).

Each analog tile consists of 512 × 512 unit cells (Extended Data Fig. 2b),
each containing four PCM devices. Circuitry can implement a signifi-
cance factor F > 1 but we adopted F = 1, meaning that G+/− and g+/− are
the same, apart from intrinsic stochasticity. This enabled the imple-
mentation of 2-PCM-per-weight and AB methods, both requiring equal
contribution from WP1 and WP2. Word lines and select lines were con-
trolled by the west circuitry, selecting whether two or four PCM devices
were connected to the edge capacitor. During weight programming,
signals VSIG1 and 2 were kept at ground. Only one of the four PCM
devices was programmed each time, by selecting the word, select and
return lines. Weight programming was done in an iterative row-wise
fashion4. During inference, VSIG1 and 2 were biased at a read voltage,
Vread, of 0.3 V, while signals RL1 and 2 were at ground.

Inference was achieved in two steps (Extended Data Fig. 2c). During
the integration phase, PWM pulses activated in each row for a time

proportional to the desired input magnitude (unlike ref. 32, these
durations were not converted to analog voltages using DACs). Vread
was forced by a per-column operational amplifier, which biased the
entire bit line. These pulses were buffered along the row to maintain
pulse-width integrity. Although IR drops did occur along columns, the
wide wires stopped them being critical to degradation of MAC accuracy,
especially when compared with other more-important factors such as
peripheral circuit linearity and saturation effects. Current was then
mirrored into a per-column capacitor, which could be tuned by the LC
by connecting up to 8 parallel metal-oxide-semiconductor capacitors,
where each capacitor was 50 fF (we typically chose 250 fF). The choices
of capacitor size and range of tunability were based on the available
column area, the expected current in the array, the integration time and
the mirror ratios achievable. The summation over an entire 512-row tile
was performed fully in analog, without the need for partial summation
in the digital domain. In the wide-input case involving two vertically
neighbouring tiles (Fig. 1i), summation over 1,024 rows (or even 2,048 in
the two 2-PCM-per-weight case) was still fully performed in the analog
domain, without any intermediate digitization. For layers that used
wide input, the read operation during closed-loop tuning used this
combined configuration, allowing an individual weight to experience
and correct for the same non-idealities that it would experience in the
eventual inference MAC. This provided significant mitigation from addi-
tional MAC error induced by combining tiles. Depending on the sign
of the input, the current could be steered to either charge or discharge
the capacitor. After current integration, the tile was disconnected and
the output duration was generated. During this step, a tunable ramp
circuit, shared among all columns, set a linear voltage ramp that was
compared with the voltage on the 512 peripheral capacitors (Extended
Data Fig. 2d). For each column, the output voltage started high, and
when the comparator switched, the output duration ended, determin-
ing the duration of that particular output pulse, which is similar to the
approaches in refs. 33,34. Finally, an AND port enabled or disabled
the pulse output. With proper enable signal timings controlled from
the LC, activation functions such as ReLU or hard sigmoid could be
implemented on chip. The 512 durations were produced in parallel,
exiting the tile on 512 individual wires. Area-efficient design choices
(such as the use of a common ramp generator circuit shared across all
the columns, the elimination of a conventional ADC and associated
digital registers, as well as optimized full-custom layouts) enabled
dedicated per-column circuitry at pitch, without the need for column
multiplexers.

These generated durations left the tile and propagated towards
the next tiles or the OLPs using the OUT-from-col path in Extended
Data Fig. 2e. Per-column south–north routing circuitry allowed for
full parallel duration processing, enabling either N–S or S–N connec-
tion (without entering the corresponding tile), collecting durations
from the tile (OUT-from-col) or sending durations into the tile col-
umns (IN-to-col) as used during weight programming4. Per-row west–
east routing blocks enabled W–E or E–W duration propagation and
IN-to-row communication, allowing durations to reach the rows inside
an analog tile and/or to move across the tile to implement multi-casting
(Extended Data Fig. 2f).

Local Controllers
A user-configurable LC on each tile (Fig. 2a) retrieved instructions from
a local SRAM. Each very wide instruction word (128 bits) included a few
mode bits, as well as the wait duration (in cycles of around 1 ns given
the approximately 1-GHz local clock) before retrieving a next instruc-
tion. Although some mode-bit configurations allowed JUMP and LOOP
statements, most specified which bank of tile control signals to drive.
Most of the 128 bits thus represent the next state of the given subset
of tile control signals. This approach allowed for highly flexible tests
and simplified design verification, with a small area penalty compared
with predefined-state machines.

For example, the LC could configure 2D mesh routing to enable
input access to analog tiles through the west circuitry (Fig. 2b) and
MAC integration on the peripheral capacitors. The LC then configured
the ramp and comparator used to convert the voltage on the capaci-
tor into a PWM duration, avoiding energy-expensive ADCs at the tile
periphery. Finally, the LC decided which direction (north, south, west
or east) to send the generated durations, configuring the south 2D
routing circuits4,33.

The LC also configured the ‘borderguard’ circuits at the four edges
of each tile to enable various routing patterns. For example, Fig. 2c
shows how durations from odd columns in the top tile could be merged
together with durations from even columns from the bottom tile. This
configuration was used on the RNNT Dec chip (Extended Data Fig. 7c).

Measurement of reliable transmission of duration vectors
Inputs were transformed into durations in the ILP circuitry. Durations
spanned between 0 and 255 ns, encoded using 8-bit words. To verify the
reliability of these communication paths across the entire chip (Fig. 2d),
we repeatedly multi-cast 512 input PWM durations from the southwest
ILP to all six OLPs at the same time. These durations were uniformly
randomly distributed between 0 and 50 ns at 1 ns granularity (1 GHz
clock), and CDFs of the error between measured and transmitted dura-
tion across 2,048 vectors (1 million samples) are shown in Fig. 2d. This
experiment was repeated for distributions spanning from 0 to 100, 150,
200 and 250 ns. The maximum error never exceeded 5 ns, with shorter
durations exhibiting even smaller worst-case error (±3 ns), showing that
durations can be accurately communicated across the chip. Although
in this case errors were introduced by the double ILP–OLP conversion
and unusually long paths, during conventional inference tasks, the
MAC error was always dominated by the analog MAC.

KWS network training, pruning and calibration
KWS is used in a wide variety of devices, such as personal and home
assistants, to perform actions only after specific audio keywords are
spoken. Latency and accuracy are important attributes. When used in
an ‘always-ON’ configuration, raw power is also an advantage. When
gated by a much simpler two-class front end that can detect audio
input of potential relevance and wake up the multi-class KWS system,
energy per task becomes the relevant figure of merit.

The KWS network was trained using HWA techniques to make the
network more resilient to analog memory noise and circuit-based
non-idealities. We trained unitless weights on the interval (−1, 1) using
weight clipping. In addition, we added normally distributed noise to
these weights during each training mini-batch with a standard deviation
of 0.02 (Extended Data Fig. 3a). We also added similarly distributed
random noise with a standard deviation of 0.04 to output activations to
mimic the imperfections expected from layer-to-layer activation trans-
mission. We find that this simple noise model fits our analog system
well and provides effective HWA training. We performed an extensive
hyper-parameter search and picked a base learning rate of 0.0005 with
a batch size of 250 for training. We found that including bias parameters
for this network offered little benefit and therefore eliminated them
from the model. We used adaptive moment estimation as the optimizer
along with a weight decay (that is, L2 regularization) of zero. Finally,
we used cross-entropy loss as our loss metric. The dependence of HWA
accuracy for injected noise on weights and activations during training
is shown in Extended Data Fig. 3b.

The KWS network performed several preprocessing steps before
feeding the data into the FC layers. Input data (keywords) represented
1-second-interval voice recordings encoded as .wav files at a 16-kHz
sampling rate. We computed the audio spectrogram, which is a standard
way of representing audio information using the squared magnitudes of
fast Fourier transforms taken at multiple time steps, using a window size
of 30 ms and a stride of 20 ms. We then computed the Mel-frequency
cepstral coefficients (MFCCs), which are a commonly used nonlinear

transformation that accurately approximates the human perception
of sound. We used 40 cepstral coefficients or bins per time slice. We
also clipped the MFCCs to the range (−30, 30) to avoid any potential
activation-rescaling problems going into our HW. This preprocessing
resulted in a two-dimensional MFCC fingerprint for each keyword with
dimensions of 49 × 40 (Extended Data Fig. 3c), and this is then flattened
to give a 1,960-input vector. We also randomly shifted keywords by
100 ms and introduced background noise into 80% (the majority) of
the training samples to make keyword detection more realistic and
resilient.

To reduce the input size further and fit a 1,024-input-wide layer, we
pruned the input data on the basis of the average of the absolute values
of the validation input (Extended Data Fig. 3d). Pixels with average input
intensity below a certain threshold were pruned, reducing the overall
size to 1,024. Interestingly, pruning led to an accuracy improvement,
as shown in the summary table in Extended Data Fig. 3e. Although our
analog tiles can compute MAC on up to 2,048-element-wide input vec-
tors, the AB method inherently uses both WP1 and WP2. Thus the maxi-
mum input size over which fully analog summation can be supported
is reduced to 1,024.

Because the KWS network is fully on-chip, tile calibration needed
to be performed in HW. A per-column slope and offset correction pro-
cedure was achieved in three steps. Weights were first programmed
using the nominal target values. Next, 1,000 inputs taken from the
validation dataset were used as input and the single-tile MAC results
were collected to calculate the column-by-column slope scaling factors
to be applied to the target weights. The tiles were then reprogrammed
with the scaled weights. Finally, experimental MAC was shifted up or
down by programming eight additional PCM bias rows available on each
tile (Extended Data Fig. 3f). After tile calibration, the ReLU activation
function was tuned using the same validation input and comparing
the experimental result on validation data with the expected SW ReLU.
The inference experiment was then performed on the test dataset. The
calibration enabled compensation of column-to-column process varia-
tions and input-times-weight column dependencies (such as activation
sparsity and residual weight leakage). As shown in the drift results on
RNNT, tile weights typically showed good resilience to drift owing to
the averaging effect. Bias weights required more-frequent updates,
on the scale of days, to compensate for column drift, but this involved
merely running a small inference workload and reprogramming the bias
weights. Eventually, the tile weights also need to be re-programmed.
Although we have not explored temperature-dependent conditions, we
believe that the levels of PCM drift exhibited here would be sufficient to
allow operation for a few days or even weeks, which is sufficient to keep
model reprogramming for the purposes of PCM drift indistinguishable
from model refresh for other purposes (such as resource balancing
and model updates).

RNNT weights and network mapping
To encode the MLPerf RNNT weights, we used five chips. Iterative
weight programming enabled accurate tuning of the conductances
to match the target weights. Heat maps correlating the target and the
measured chip-1 weights on each of the 32 tiles are shown for WP1 and
WP2 in Extended Data Fig. 4a,b. The corresponding error for each tile,
expressed as the fraction of the maximum weight, is shown in Extended
Data Fig. 4c,d for WP1 and WP2. To compare the weight programming in
the five chips used for the RNNT experiment, we calculated the CDF on
the basis of the data shown in Extended Data Fig. 4c,d and extracted the
spread between 1% and 99%. In this way, two data points were extracted
for each tile, one for WP1 and one for WP2. The chip analog yield, meas-
ured as the fraction of weights with a programming error of less than
20% of the maximum weight magnitude, is around 99% (Extended Data
Fig. 4e). Chip 4 has a slightly lower yield because the corresponding
maximum W, defined as the coefficient used to rescale weights from
MLPerf (around [−1, 1]) to integers, is larger because more signal was

Article
required, causing greater weight saturation. Extended Data Fig. 4e
shows the spread distributions for each of the five chips.

The RNNT encoder weights were mapped using the first four
chips, as shown in Extended Data Fig. 5a. The large Wx and Wh matri-
ces used for encoder LSTMs all show a size of 1,024 × 4,096 except
for the conventional Enc-LSTM0 (Wx is 960 × 4,096) and Enc-LSTM2
(Wx is 2,048 × 4,096). Enc-LSTM0, Enc-LSTM1 and the Wh matrix of
Enc-LSTM2 implement AB. In Enc-LSTM0, Enc-LSTM1 and Enc-LSTM2,
summation of Wx and Wh MACs was performed off-chip at the x86 host,
whereas chip 4, implementing Enc-LSTM3 and Enc-LSTM4, performed
this entire summation on-chip in analog. Furthermore, blocks 1(−1),
9(−9) and 2(−2), 10(−10) of Enc-LSTM0 Wx and Enc-LSTM1 Wx, and
blocks 1(9), 17(25) (WP1(WP2)) and 2(10), 18(26) were summed in digital
after on-chip analog MAC. Finally, Enc-FC was implemented on chip 4.
Any spot where tiles were connected by sharing the peripheral capaci-
tor in the analog domain (Fig. 1i) is highlighted with a dark-blue bar.
We did not map biases in analog memory but instead incorporated
them in the already existing off-chip digital compute, by combining
them into the calibration offset with no additional cost. Thus these
biases were always applied with FP32 precision. No network retrain-
ing was applied.

To provide input data and collect MAC results in a massively par-
allel fashion from or to the ILPs–OLPs, complex routing paths were
programmed, leveraging the flexibility of the LCs (Extended Data
Fig. 5b). In the RNNT encoder, after each MAC, the data needed to go
through input–output for off-chip digital processing. Each full opera-
tion (including input, MAC, duration generation and output digitiza-
tion) took 2.1 μs. The input arrows show multi-cast in parallel to one
or more analog tiles with MAC operations occurring on those tiles.
Output MACs were provided to the OLPs in three time steps owing to
the small number of OLPs.

RNNT experiments implemented MAC on-chip, whereas tile affine
calibration (shift and scale) and LSTM vector–vector computations
were performed in SW (MATLAB SW running on x86). In particular,
the first Enc-LSTM0 Wx required careful input-signal management to
maximize the signal-to-noise ratio, owing to the large sensitivity of the
WER to any noise on its weights. Extended Data Fig. 6a shows that, in the
case of Enc-LSTM0 Wx, the input data, which naturally exhibits a wide
dynamic range, was first shifted to zero-mean, followed by normaliza-
tion to maximum input amplitude. The preprocessed input was then
used for analog MAC. The MAC results were later denormalized back
in SW, where the input mean contribution was added (which collapses
to the product of one number, the mean value of the input image, and
one vector, the sum of weights for every column) and the affine coef-
ficients for calibration were applied.

In the case of expanded weights (Extended Data Fig. 6b), the input
first underwent MAC with the random matrix M (such a matrix has ran-
dom normal weights but is fixed across all inputs). Because the product
of an input with a matrix with zero mean value generates an output with
near-zero mean value, there was no need to apply the zero-mean shift,
although normalization to maximum amplitude was still performed.
After the analog on-chip MAC, the results are denormalized and the
usual calibration was applied. For every other layer (Extended Data
Fig. 6c) in the RNNT, the inputs were used directly as tile activations
and the MAC was calibrated with the usual affine coefficients. All affine
coefficients are calculated by comparing experimental and expected
SW MAC using 2,000 input frames from the training dataset for each
Enc–Dec layer. Data were linearly fitted to obtain the slope and offset
coefficients.

Extended Data Fig. 6d shows a detailed description of all data-type
conversions. All SW computations were performed in FP32. For trans-
mission to the chip, data were converted into INT9 (UINT8 plus sign) and
UINT8 vectors were loaded into the ILP. Here, durations were generated
and sent to the tiles where the analog MAC was performed, collecting an
analog voltage on a peripheral capacitor. Once the UINT8 vectors were

loaded into the ILP, ‘negative’ durations were sent during integration
of the second or fourth time step, as shown in Extended Data Figs. 5b
and 7d. Finally, charge integrated onto column-wise capacitors was
converted by the peripheral circuitry into durations that were sent to
other tiles or to the OLP, which converted them back into UINT8. Data
were then sent off-chip and transformed back into FP32 during the
calibration stage. Extended Data Fig. 6e shows a summary of the equa-
tions, highlighting that essentially all MACs were performed on-chip,
whereas vector–vector, bias and nonlinear activations were computed
in SW. The joint layer was in SW.

Extended Data Fig. 7 shows the details of Dec mapping and signal
routing. To account for the Emb layer (Extended Data Fig. 7a), we first
collapsed Emb and Dec-LSTM0 Wx layers into a single Emb × Wx matrix
with size 28 × 1,280, which receives one-hot input vectors. This multi-
plication is perfectly equivalent in SW, but led to large weights in the
Emb  ×  Wx matrix compared with Wh, as shown in the first set of CDFs,
reporting the maximum weight for each column. Because MAC results
from Emb  ×  Wx and Wh are summed directly in the analog domain with
a shared capacitor, weight values cannot be arbitrarily scaled. To over-
come this problem, 9 copies of the 28 × 1,280 Emb × Wx matrix were
programmed and the 28 inputs duplicated onto 9 × 28 rows, leading
to a similar amount of signal with Wh. This allowed us to effectively
distribute these large weights over 9 unit cells, while ensuring that
the analog summation will aggregate both the Emb  × Wx and the Wh
contributions with the correct scaling.

Dec weight mapping used AB (Extended Data Fig. 7b) and signal
routing enabled parallel input and output of all signals (Extended Data
Fig. 7c). Here, routing concatenation was used to efficiently combine
the signal from two different tiles into the same OLP. The full input–
MAC–output processing time is 1.5 μs (Extended Data Fig. 7d).

Unlike the KWS experiment, the MLPerf repository mandates that
inference be performed with the validation dataset. The RNNT MLPerf
inference experiments shown in Fig. 5 were done by inputting the
full validation dataset into the first chip, saving the output results
on the x86 machine, swapping in the second chip and continuing
the experiment, using the previously saved outputs as new inputs.
This procedure was repeated for all five chips, ensuring a consistent
example-by-example cascading, as in a fully integrated system. Map-
ping even-larger models, using a weight-stationary configuration, can
be supported with improved memory density (including stacking of
multiple layers of PCM in the back-end-of-line), multi-chip modules
and even multi-module solutions, with careful neural-network par-
titioning to minimize inter-module communication that would be
energy expensive.

RNNT MAC and end-to-end accuracy
Experimental MAC details are shown in Extended Data Fig. 8. The error
distributions and MAC correlations are shown for every chip. In all
figures, a dashed region highlights the main regions of interest for that
MAC. For LSTM layers, the region of interest corresponds to the [−5, 5]
range, because outside that range the ensuing sigmoid or tanh function
can be expected to fully saturate (for example, the output will always
be −1 or +1, being almost completely independent of any variations on the
input). Similarly, the regions of interest for the FC layers are mostly the
positive MACs because of the ReLU activation function. In this specific
case, Enc-FC and Dec-FC are summed before ReLU, so slightly negative
contributions could also matter. We plotted the regions of interest
to be where MAC > −5. The reported standard deviation σ computes
the error for SW MAC in [−5, 5] for LSTMs and [−5, inf] for FC layers.
Comparison between the original Wx and the weight-expanded Wx2 for
Enc-LSTM0 is also provided. Extended Data Fig. 9 shows examples of
transcribed sentence output from the experiments in Fig. 5 that show an
almost iso-accuracy WER. Transcription results are in good agreement
between the MLPerf RNNT model implemented in analog HW and in
SW, indicating that the effective bit-precision of our HW demonstration

is nbits = 4.097 for 9.475% WER and nbits = 4.153 for 9.258% WER (weight
expansion), on the basis of comparison with the full network (no joint
FC) curve in Fig. 4c.

Performance simulation and power measurements
The proposed 5-chip RNNT implementation is not integrated with digi-
tal processing, but we can estimate the time needed to process the entire
dataset by combining the MAC processing times and energies from the
analog chips with the estimated digital processing times and energies
that we tabulated previously in our architecture paper20. Extended
Data Fig. 10a shows a timing simulation describing the execution of
RNNT layers for processing all 2,513 input audio samples, accounting
for all pipelining, time stacking, recurrence and Dec steps. We assume
times of 2.1 μs and 1.5 μs for the Enc and Dec layers, respectively, which
includes all duration generation, and a relatively conservative 300 ns
for the digital processing of each layer. Given these assumptions, the
entire dataset can be evaluated in 1.2877 s, corresponding to a rate of
1,951.59 samples per second. Combined with the power measurements
below, these numbers can be used to extrapolate the analog-AI RNNT
system performance.

Power measurements for RNNT were done using a set of 32 exemplar
input vectors that filled up the ILP SRAM to capacity. By overflowing
the address pointer of the ILP, it is possible to repeat the same set of
32 vectors ad infinitum. Together with JUMP instructions in the LCs
resetting the program counters to the start of program execution, this
allowed a real-time current measurement from the voltage supplies
for the inference tasks. In these measurements, all 7 (or 5) phases of
the Enc (or Dec), including 4 integration phases and 3 (or 1 for the Dec)
duration generation phases were included. This accounted not just for
the MAC integration, but also for the subsequent cost of generating,
transporting and digitizing the MAC results. The measured powers
are shown in Fig. 6a.

Using the energy and execution-time models from our architecture
study20, the total digital energy (for all the tasks performed off-chip
in SW to support the experiments shown in this paper) is estimated
to be 0.11 J for nominal Enc-LSTM0 and 0.26 J for weight-expansion
Enc-LSTM0. The total number of digital operations and a detailed
breakdown are shown in Extended Data Fig. 10c,d.

Although several compute-in-memory or near-memory approaches
based on SRAMs and digital compute35–38 have been presented in the
literature, most of these do not address the energy and time costs
of reloading weights, thus making direct side-by-side comparisons
against NVM-based weight-stationary approaches difficult. How-
ever, several NVM compute-in-memory studies have focused on the
macro-level32,34,39,40,41, without accounting for data transport, control
or chip infrastructure (such as clocking) costs. They are also usually
at a much smaller scale (sometimes less than 1 million parameters7)
than the work here, making a fair assessment of both the accuracy of
large models and the associated sustained TOPS/W values difficult.

We have instead compared our sustained power and performance
values against other reported system numbers for the same RNNT
task from MLPerf, as shown in Extended Data Fig. 10e. By weighting
the sustained power measurements for individual chips with their
corresponding activity factors from the timing simulations shown in
Extended Data Fig. 10a, the total system energy and corresponding
aggregate TOPS/W values for our system are calculated to be 4.44 J and
6.94 TOPS/W, respectively (4.60 J and 6.70 TOPS/W for Wx2). Although
our evaluations in Fig. 6 do not include some external components
used in real systems, such as system buses and voltage regulators, this
TOPS/W energy efficiency is still more than an order of magnitude
better than the best published result for this task.

The relatively small number of digital operations in the network
implies that considerable benefits may yet be obtained by improving
the raw analog MAC energy efficiency (currently 20 TOPS/W). This
could be enabled by shorter integration times, more-efficient analog

opamps and/or lower-conductance devices. Instead, a substantial
drop-off in energy efficiency, down to 12.4 TOPS/W for chip 4 (Fig. 6c),
occurs as a result of the on-chip infrastructure, such as the landing pads,
which need to be exercised at the end of each MAC. This highlights the
need for on-chip digital compute cores, potentially in proximity to
the same chip, and using the same local 2D mesh for data transport as
described in our architecture study20.

MLPerf submissions for RNNT exhibit performance efficiencies
ranging between 3.98 and 38.88 samples per second per watt, using
system power that ranges from 300 to 3,500 W, assuming the use of
large batches to maximize efficiency. Our work inherently assumes
a mini-batch size of 1. Although we assume that additional samples
are available to keep the pipeline full, our projections are effectively
independent of mini-batch size. Under these conditions, an analog-AI
system using the chips reported in this paper could achieve 546.6 sam-
ples per second per watt (6.704 TOPS/W) at 3.57 W, a 14-fold improve-
ment over the best energy-efficiency results submitted to MLPerf.
Reduction in the total integration time through precision reduction,
hybrid PWM40 or bit-serial schemes can improve both throughput and
energy-efficiency, but these could suffer from error amplification in
higher-significance positions. Future efforts will need to address their
impact on MAC accuracy for commercially relevant large DNNs.

Data availability
The MLPerf RNNT model is available from the MLPerf repository8.

Code availability
The KWS weight-programming pseudo-code is available from Zenodo
(https://zenodo.org/7992452).

32.	 Biswas, A. & Chandrakasan, A. P. Conv-RAM: an energy-efficient SRAM with embedded

convolution computation for low-power CNN-based machine learning applications.
In Proc. 2018 IEEE International Solid-State Circuits Conference (ISSCC) 488–490
(IEEE, 2018).

33.	 Chang, H.-Y. et al. AI hardware acceleration with analog memory: microarchitectures for
low energy at high speed. IBM J. Res. Dev. 63, 8:1–8:14 (2019).

34.	 Jiang, H., Li, W., Huang, S. & Yu, S. A 40nm analog-input ADC-free compute-in-memory
RRAM macro with pulse-width modulation between sub-arrays. In 2022 IEEE Symposium
on VLSI Technology and Circuits (VLSI Technology and Circuits) 266–267 (IEEE, 2022).

35.	 Jia, H. et al. A programmable neural-network inference accelerator based on scalable
in-memory computing. In 2021 IEEE International Solid-State Circuits Conference (ISSCC)
236–238 (IEEE, 2021).

36.	 Dong, Q. et al. A 351TOPS/W and 372.4GOPS compute-in-memory SRAM macro in 7nm
FinFET CMOS for machine-learning applications. In 2020 IEEE International Solid-State
Circuits Conference (ISSCC) 242–244 (IEEE, 2020).

37.	 Chih, Y.-D. et al. An 89TOPS/W and 16.3TOPS/mm2 all-digital SRAM-based full-precision
compute-in memory macro in 22nm for machine-learning edge applications. In 2021 IEEE
International Solid-State Circuits Conference (ISSCC) 252–254 (IEEE, 2021).

38.	 Su, J.-W. et al. A 28nm 384kb 6T-SRAM computation-in-memory macro with 8b precision for
AI edge chips. In 2021 IEEE International Solid-State Circuits Conference (ISSCC) 250–252
(IEEE, 2021).

39.	 Yoon, J.-H. et al. A 40nm 64Kb 56.67TOPS/W read-disturb-tolerant compute-in-memory/
digital RRAM macro with active-feedback-based read and in-situ write verification. In 2021
IEEE International Solid-State Circuits Conference (ISSCC) 404–406 (IEEE, 2021).

40.	 Xue, C.-X. et al. A 22nm 4Mb 8b-precision ReRAM computing-in-memory macro with 11.91
to 195.7TOPS/w for tiny AI edge devices. In 2021 IEEE International Solid- State Circuits
Conference (ISSCC) 245–247 (IEEE, 2021).

41.	 Marinella, M. J. et al. Multiscale co-design analysis of energy, latency, area, and accuracy
of a ReRAM analog neural training accelerator. IEEE J. Emerg. Select. Topics Circuits Syst.
8, 86–101 (2018).

Acknowledgements We thank staff at the IBM Research AI Hardware Center for support, the
IBM Albany NanoTech Center and IBM Bromont for device and module fabrication, and
W. Wilcke, S. Narayan, S. Munetoh, S. Yamamichi, C. Osborn, J. Burns, R. Divakaruni and M. Khare
for logistical and management support.

Author contributions G.W.B. and P.N. designed the chip architecture, including the
ramp-based duration concept. G.W.B. and P.N. developed the 2D mesh concept in
collaboration with K.H. and M.I. P.N. developed the LC concept and designed the peripheral
analog circuits using DACs designed by T.Y. G.W.B. designed the unit-cell and array layout, in
consultation with N.S. and I.A. G.W.B. implemented all the custom layouts, in collaboration
with A. Friz. K.H., M.I., T.Y., Y.K. and A.O. implemented the digital blocks, including OLP, ILP, LC
and all global synchronization and clocking circuits. K.H. and Y.K. performed top-level chip

https://zenodo.org/7992452

Article
integration. A.O., A.N. and T.Y. designed the custom testing printed circuit board. A.O. designed
the module socket. N.S., K.B., S.C., I.O., T.P., V.C., C.S., I.A. and V.N. developed the PCM process
using array-yield vehicles designed by G.W.B. and P.N. and PCM yield criteria designed by
G.W.B., A. Fasoli and S.A. A.O., A.N. and Y.K. performed FPGA bring-up. P.N. and S.A. performed
chip bring-up with LC firmware and SW support from A.O., M.I., T.Y., A.N. and Y.K. S.A. designed
and refined the PCM programming scheme in collaboration with P.N. S.A., A. Fasoli and G.W.B.
designed the SW-based sensitivity analysis in collaboration with J.L. and A.C. S.A. and C.M.
designed the KWS network implementation. C.M. and S.A. developed the KWS preprocessing
and performed the HWA training. S.A. developed the AB and weight-expansion methods. S.A.
and A. Fasoli ported the RNNT network and preprocessing from MLPerf. S.A. designed the
over-arching MATLAB-based implementation. S.A. and P.N. designed and implemented all

accuracy experiments. A.O., A.N. and T.Y. designed and implemented all power experiments
with support from P.N. and S.A. S.A. wrote the text of the paper and C.M., H.T., P.N. and G.W.B.
helped to revise it. S.A. generated the figures.

Competing interests The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S. Ambrogio.
Peer review information Nature thanks Wei Lu, Hechen Wang and the other, anonymous,
reviewer(s) for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

http://www.nature.com/reprints

Extended Data Fig. 1 | Analog in-memory computing chip and test platform.
(a) Packaged modules used in the experiments. (b) Micrograph of the chip at H3
metal level, showing all analog tiles and the corresponding area breakdown.
(c) The test platform is based on a chip socket mounted on a custom board driven
by 3 Xilinx Virtex-7 VC707 FPGAs. Power is supplied by four Keysight E36312A.
The three FPGAs are connected through the board, and the overall system is
controlled by an x86 machine using a PCIe connector. (d) For routing precision,
end-to-end KWS, and RNNT power measurements, the chip is run without any

need to send intermediate data back to an x86 machine during the experiment.
KWS models are trained for chip deployment using HWA methods. For RNNT
accuracy measurements, intermediate data moves between the chip and an
x86 machine. To predict the RNNT performance, we assume digital circuitry
would be integrated on the chip next to the ILP/OLP pair, leading to predictions
that should be very close to a fully integrated chip in which both analog tiles
and digital compute cores are tightly integrated20.

Article

Extended Data Fig. 2 | Analog circuits and routing configurations. (a) Input
Landing Pad circuitry receives an 8-bit word, which is converted to a duration
using a counter. Output Landing Pad circuitry receives one duration and
converts it into an 8-bit word using 512 counters plus falling edge detectors.
(b) Each tile has 512x512 unit cells, each consists of 4 PCM devices controlled by
Word Lines and Select Lines driven by the tile West circuitry. During weight
programming, Return Lines (RL) are driven at higher voltage (max 3V) and VSIG
are grounded to enable PCM write. (c) During inference, in the integration phase,
RL are grounded and one or both VSIG are biased at read voltage Vread = 0.3 V
using a per-column operational amplifier. Current is then mirrored into a
per-column capacitor. (d) For duration generation phase, capacitor voltage is

compared against a shared and tunable ramp-voltage. The output of the
comparator is a pulse with duration proportional to the voltage on the capacitor,
gated by an EN signal using an AND gate. By properly tuning the timing of this
EN signal with the Local Controller, activation functions such as ReLU or hard
sigmoid can be implemented. (e) 512 durations are then sent into the parallel 2D
mesh using a per-column South-North routing circuit. (This same circuit is
also used to send pulses onto each column for PCM programming purposes).
(f) Finally, West-East Routing enables durations to access another tile and/or to
simply move across the tile. Since each borderguard can independently block
or pass signals, complex routing patterns including multi-cast and even
concatenation are supported.

Extended Data Fig. 3 | Keyword Spotting (KWS) Pre-processing and
calibration. Hardware-aware (HWA) training was applied to improve model
robustness against hardware imperfections, primarily due to programming
errors. (a) Weight programming correlation for the HWA model. (b) Dependence
of model accuracy on injected noise on weights and intermediate activations
during training. (c) Mel-frequency cepstral coefficients (MFCC), representing
the fingerprint for each keyword, are flattened and truncated before input to
the fully-connected network. (d) The full input would require 1960 rows, however,
to reduce the model to 1024-inputs, pruning is performed by removing all the

inputs exhibiting a mean absolute validation input value lower than the
indicated threshold. (e) The table shows a comparison of the KWS models and
accuracies. (f) Since KWS is fully end-to-end on-chip, an on-chip calibration
process is performed at the tile, leveraging 8 additional PCM bias rows to shift
the MAC up/down to compensate for any intrinsic column-wise offsets. Slope
of the MACs is compensated by re-scaling weights per-column. Calibration is
performed using validation input data; inference results are reported for the
test dataset.

Article

Extended Data Fig. 4 | Experimental MLPerf RNNT weight programming.
Experimental correlation between target and programmed weights on chip-1
over 32 tiles for both (a) WP1 and (b) WP2. (c),(d) The corresponding probability
distribution functions (PDF) of errors, expressed as percentage of the maximum
weight, reveal high-yield chips with very few erroneous weights. (e) Table
showing the analog yield, or the fraction of weights with programming error
within 20% of the maximum weight. After integration of the PDFs in (c,d), the

corresponding cumulative distribution functions (CDFs) are computed and the
1%-99% spread is collected, providing 2 data points (one for WP1 and one for WP2)
for each tile. The plot shows the corresponding CDFs for each of the five chips
used in RNNT experiments. To control the peripheral circuitry saturation,
some tiles have weights mapped into a smaller conductance range (Max W
equal to 80), leading to a different 1%-99% spread, e.g. the points with increased
spread on chip-1 CDF in (e).

Extended Data Fig. 5 | MLPerf RNNT Encoder mapping and signal routing on
chip. (a) RNNT Encoder LSTMs weights are represented by two large matrices,
Wx which multiplies the LSTM input, x, and Wh which multiplies the LSTM
recurrent signal, h. Depending on the sizes of x and h, a variable number of tiles
is required. Both conventional and weight expansion mappings are shown for
Enc-LSTM0. In addition, Enc-LSTM0, Enc-LSTM1 and the Wh of Enc-LSTM2
implement Asymmetry Balance. Tiles connected with a dark blue line have
shared capacitors, enabling 2048-wide analog MAC. In Enc-LSTM0, Enc-LSTM1

and Enc-LSTM2, MACs from tiles 1,9 and 2,10 are summed in digital, while all the
other pairs are summed on-chip in analog. (b) Every analog MAC on the encoder
chips requires seven 300 ns time steps to process, including digitization of the
output. During the first four steps, MAC operations are performed, providing
input signals from ILPs as indicated in the figure. In cases where AB is used
(Enc LSTM0, Enc LSTM1, Wh portion of Enc LSTM2), opposite-signed inputs are
provided in two of the four MAC time steps. During the last three time steps,
MAC results are sent out to the OLPs.

Article

Extended Data Fig. 6 | MLPerf RNNT Enc-LSTM0 input processing. Due to
the large sensitivity of the first Encoder LSTM Wx matrix, input data is digitally
pre-processed to increase the MAC signal-to-noise ratio. (a) Using the original
MLPerf weights, input data is first shifted to zero-mean and normalized to a
common maximum input amplitude. Then, on-chip MAC is performed,
followed by MAC digital denormalization and addition of mean Input*ΣW.
This last operation collapses to a simple single number (mean Input) times one
4096-vector represented by the column-wise sum of weights, not requiring
a full digital 1024*4096 MAC operation. Only after these steps the affine
coefficients (slope and offset correction) are applied. (b) When using
expanded weights, the mean removal is no longer needed since the random
matrix M introduced in the main paper has zero mean, leading to naturally near
zero-mean input values, thus simplifying input pre-processing. (c) All the other
RNNT blocks (rest of Encoder and Decoder) only apply affine coefficients,

without any normalization or mean removal. (d) Data-type conversion during
the MLPerf RNNT inference: software computation is performed in FP32.
Before access to the chip, data is converted into a pair of UINT8 vectors, one
for each polarity of the incoming activations. This data is loaded on-chip in the
ILP, then converted into time duration and used as MAC input (‘negative’ inputs
are durations sent during the second and fourth integration steps, as shown in
Extended Data Figs. 5b and 7d). MAC output is represented as analog voltage
on a capacitor, then converted into time duration by the peripheral circuitry
(details in Extended Data Fig. 2d). Finally, the OLP converts durations into
UINT8. Data is sent off-chip and converted in FP32 during the calibration phase.
(e) Overall view of the equations solved in the RNNT: essentially, all MACs are
performed on chip, while all vector-vector operations, non-linear activations
and biases are computed in software. The joint layer is implemented in
software, as explained in Fig. 4.

Extended Data Fig. 7 | MLPerf RNNT Decoder mapping and signal routing
on chip. Instead of processing Embedding Emb and Dec-LSTM0 Wx layers
separately, we first compress in one single matrix the product Emb * Wx. At
this point, the first Dec-LSTM0 shows Emb * Wx matrix with a (28*1280) size,
contrasting with the (320*1280) Wh size to sum directly in analog. To balance
signal magnitude, nine copies of Emb * (Wx/9) are programmed, achieving

comparable weight absolute magnitudes. (b) Weight mapping and (c) signal
routing implementing Asymmetry Balance. Routing from tiles to Output
Landing Pads utilizes implicit vector concatenation on the 2D mesh, enabling
more efficient data transport. (d) The processing of one full frame requires 5
time steps of 300 ns each.

Article

Extended Data Fig. 8 | Experimental MLPerf RNNT MAC. (a) Error histogram
and (b) correlation between experimental and target MAC are shown for every
chip used during the RNNT inference experiment. On each correlation, white
dotted lines highlight the main region of interest, since MACs are followed by
sigmoid, tanh or ReLU which naturally filter out portions of MAC. The spread,
σ, is calculated only within the highlighted Regions Of Interest (ROI). Data from
both original Enc-LSTM0 and weight-expanded Enc-LSTM0 are reported,

showing a better sigma for the weight expanded case. Enc-LSTM2, Enc-LSTM3,
and Enc-LSTM4 show larger spread due to partial (Enc-LSTM2) or no (Enc-LSTM3,
Enc-LSTM4) application of Asymmetry Balance. In addition, Enc-LSTM2 MAC is
calculated on larger (3072 instead of 2048) inputs. Finally, decoder layers show
larger σ, maybe caused by higher capacitor/Output Landing Pad saturation
effects, which however have little impact on the overall WER, as revealed by the
accuracy results in the main paper (Fig. 5a,b).

Extended Data Fig. 9 | Librispeech transcribed sentences. First ten
transcribed sentences from the Librispeech validation dataset. The first line
shows the reference sentence, the second line corresponds to the MLPerf

baseline prediction (WER 7.452%), and the third line shows the sentences
produced by our five-chips experiment including the weight expansion
technique (WER 9.258%).

Article

Extended Data Fig. 10 | System performance estimation. To calculate
processing time for RNNT on an integrated system as described in Fig. 6, (a) a
simulator based on the MAC runtime on the actual chip and plausible digital
processing is considered based on (b) specific timing assumptions stemming
from our experiment and prior architectural work20. (c) Detailed breakdown of

operations and energy across the 5 chips, including additional digital
operations required to process activations from chips. (d) Total on-chip and
off-chip number of operations and energy, including measured analog
operations (this paper) or estimates for digital ops20. (e) Comparison with
MLPerf submissions on RNNT shows a 14 × advantage in energy-efficiency.

	An analog-AI chip for energy-efficient speech recognition and transcription

	Chip architecture

	KWS task

	RNNT

	RNNT mapping on chip

	Accuracy results

	Power and system performance

	Conclusions

	Online content

	Fig. 1 Chip architecture.
	Fig. 2 Reconfigurable architecture and routing.
	Fig. 3 End-to-end KWS task.
	Fig. 4 MLPerf RNNT network for speech transcription.
	Fig. 5 Experimental WER using Librispeech on MLPerf RNNT.
	Fig. 6 MLPerf RNNT power and system performance.
	Extended Data Fig. 1 Analog in-memory computing chip and test platform.
	Extended Data Fig. 2 Analog circuits and routing configurations.
	Extended Data Fig. 3 Keyword Spotting (KWS) Pre-processing and calibration.
	Extended Data Fig. 4 Experimental MLPerf RNNT weight programming.
	Extended Data Fig. 5 MLPerf RNNT Encoder mapping and signal routing on chip.
	Extended Data Fig. 6 MLPerf RNNT Enc-LSTM0 input processing.
	Extended Data Fig. 7 MLPerf RNNT Decoder mapping and signal routing on chip.
	Extended Data Fig. 8 Experimental MLPerf RNNT MAC.
	Extended Data Fig. 9 Librispeech transcribed sentences.
	Extended Data Fig. 10 System performance estimation.

