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Models of artificial intelligence (Al) that have billions of parameters can achieve high
accuracy across a range of tasks'?, but they exacerbate the poor energy efficiency of
conventional general-purpose processors, such as graphics processing units or
central processing units. Analog in-memory computing (analog-Al)*” can provide
better energy efficiency by performing matrix-vector multiplications in parallel on
‘memory tiles’. However, analog-Al has yet to demonstrate software-equivalent (SW,,)
accuracy on models that require many such tiles and efficient communication of
neural-network activations between the tiles. Here we present an analog-Al chip that
combines 35 million phase-change memory devices across 34 tiles, massively parallel
inter-tile communication and analog, low-power peripheral circuitry that can achieve
up to12.4 tera-operations per second per watt (TOPS/W) chip-sustained performance.
We demonstrate fully end-to-end SW, accuracy for a small keyword-spotting network

and near-SW,, accuracy on the much larger MLPerf® recurrent neural-network
transducer (RNNT), with more than 45 million weights mapped onto more than 140
million phase-change memory devices across five chips.

The past decade has seen Al techniques spread to a wide range of appli-
cation areas, from the recognition and classification of images and
videos’ to the transcription and generation of speech and text'*¢, all
drivenby arelentless progression towards deep neural network (DNN)
models with ever more parameters. In particular, transformer' and
recurrent neural-network transducer (RNNT)?"** models containing
up to one billion parameters? have produced a marked decrease in
word error rate (WER) (and therefore much better accuracy) for the
automated transcription of spoken English-language sentences, as
showninFig.1afor twowidely used datasets, Librispeech” and Switch-
Board®. Unfortunately, hardware (HW) performance has not kept pace,
leading to longer training and inference times and greater energy con-
sumption®. Large networks are still trained and implemented using
general-purpose processors such as graphics processing units and
central processing units, leading to excessive energy consumption
when vast amounts of data must move between memory and processor,
aproblemknown as the von Neumann bottleneck.

Analog-Al HW avoids these inefficiencies by leveraging arrays of
non-volatile memory (NVM) to perform the ‘multiply and accumu-
late computation’ (MAC) operations which dominate these workloads
directly in the memory®”. By moving only neuron-excitation data to
the location of the weight data, where the computation is then per-
formed, this technology has the potential to reduce both the time
and the energy required. These advantages are further enhanced for
DNN models that have many large fully connected (FC) layers, such
as the RNNT or transformer models used for state-of-the-art natural
language processing (NLP). In conventional digital implementation,
such layers require enormous movement of data but provide scant

opportunity for amortization over subsequent computing. For analog
Al, by contrast, such layers are efficiently mapped onto analog crossbar
arrays and computed in parallel using a single integration step. Given
the finite endurance and the slow, power-hungry programming of
NVMdevices, such analog-Al systems mustbe fully weight stationary,
meaning thatevery weight must be preprogrammed before inference
workload execution begins.

A highly heterogeneous and programmable accelerator architec-
ture for analog Al has been introduced?® for which system-level per-
formance assessments have predicted energy efficiencies 40-140
times higher than those of cutting-edge graphics processing units.
However, this simulation study required several design assump-
tions that have yet to be demonstrated in HW, two of which are
directly addressed below. The first is the use of a dense and efficient
circuit-switched 2D mesh to exchange massively parallel vectors of
neuron-activation data over short distances. The second is the suc-
cessful implementation of DNN models that are large enough to
be relevant for commercial use and are demonstrated at sufficiently
highaccuracy levels.

In this paper, we present experimental results using a 14-nm infer-
ence chip leveraging 34 large arrays of phase-change memory (PCM)
devices*, digital to analog input, analog peripheral circuitry, analog to
digital output and massively parallel-2D-mesh routing. Our chip does
not include on-chip digital computing cores or static random access
memory (SRAM) to support the auxiliary operations (and datastaging)
needed in an eventual, marketable product. However, we can use it
to demonstrate the accuracy, performance and energy efficiency
of analog Al on NLP inference tasks, either by implementing simple
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Fig.1| Chip architecture. a, Speech recognition hasimproved markedly

over the past10 years, driving down the WER for both the Librispeech and
SwitchBoard (SWB) datasets, thanks to substantial increasesinmodel size and
improved networks, suchas RNNT or transformer. For comparison with our
results, the MLPerf RNNT full-precision WER is shown for two Librispeech
datasets (‘test-clean’ and ‘dev-clean’)®, along with this work’s WER, which was
computed on Librispeech dev-clean. For modelssize: B, 1 billion; M, 1 million.

b, Inference models are trained using popular frameworks such as PyTorch

or TensorFlow. Further optimization for analog Al can be achieved with the

IBM analog HW accelerationkit (https://aihwkit.readthedocs.io/en/latest/).

¢, Trained model weights are then used ona 14-nm chip with 34 analog tiles, two
processing elements (PE, not used for this work) and six ILP-OLP pairs. Tiles are
labelled as north (N), centre (C) or south (S) followed by west (W) or east (E).
d,EachILP converts 512 8-bitinputsinto 512 element vectors of pulse-modulated
durations, whichare thenrouted to the analog tiles for integration usinga fully

operations such as rectified linear unit (ReLU) non-linear function
directlyin the analog domain or by performing small amounts of aux-
iliary computing off-chip.

Todemonstratetheflexibility of the chip, we chose twoneural-network
models from the MLPerf standard benchmark®, a suite of industry-
relevant use cases. We first targeted the tiny-model task of keyword-
spotting network (KWS) on the Google speech-commands dataset.
For this we used a HW-aware (HWA) trained network, retrained using
avariety of techniques available in the open-source IBM analog HW
acceleration kit (https://aihwkit.readthedocs.io/en/latest/) (Fig. 1b).
We thenimplemented the MLPerfversion of RNNT, alarge data-center
network, on Librispeech without any additional HWA retraining. This
model has 45 million weights, which we implement using more than
140 million PCM devices across five packaged chip modules, demon-
strating near-SW,,accuracy (oursis 98.1% of that exhibited by the base
software (SW)-only model) and executing about 99% of the operations
ontheanalog-Alftiles.

Chip architecture

A micrograph of the chip is shown in Fig. 1c, highlighting the 2D grid
of 34 analog tiles, each of which has its own 512 x 2,048 PCM crossbar
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parallel 2D mesh that allows multi-casting to multiple tiles. After MAC, the
charge onthe peripheral capacitorsis converted into durations* and sent
eithertoothertiles, leading to new MACs, or to the OLP, where durations
arereconverted into 8-bit representations for off-chip data-processing.

e, Transmission Electron Microscopy (TEM) image of one PCM. f, Each tile
containsacrossbar array with 512 x 2,048 PCMs, programmed using a parallel
row-wise algorithm*. g, PCMs can be organized in a4-PCM-per-weight
configuration, withG*,g"addingand G*, g subtracting charge from the
peripheral capacitor, with asignificance factor F (whichis1in this paper).

h, Alternatively, they can have a 2-PCM-per-weight configuration, which
achievesahigher density. By reading differentinput frames through weights
W, 0r Wy,, asingle tile can map 1,024 x 512 weight layers. i, Finally, two adjacent
tiles canshare their banks of 512 peripheral capacitors, enabling integration in
theanalog domainacross 2,048 input rows.

array. Tiles are grouped into six power domains, labelled as north,
centre or south followed by west or east. Each power domain contains
oneinputlanding pad (ILP) (Fig.1d) and one output landing pad (OLP),
each associated with alarge SRAM. The ILP receives digital input vec-
tors (each vector has 8-bits unsigned integer (UINT8) x 512 entries)
from off-chip, converting these inputs into pulse-width-modulated
(PWM) durations onto 512 wires situated in parallel at the edge of the
2D mesh running over all the tiles**, Conversely, the OLP receives PWM
durations on 512 wires, digitizing these durations back into UINT8 for
off-chip data transport.

Analog-tile to analog-tile communication is performed using
durations, eliminating the area, power and latency associated with
analog-to-digital conversion at the tile periphery* for situations in
whichintegration onthe rows of each destination tile can be performed
synchronously with the readout of the columns of one or more source
tiles, including FClayers with simple activation functions. When dura-
tionvectors aresentfromatile tothe OLP, the chipis effectively imple-
menting aramp-based analog-to-digital converter (ADC), except that
the shared ramp circuits and dedicated comparators are located at the
tiles and the digital counters are at the OLP. Digitization becomes a
necessity for transformer attention and models that require internal
data staging.
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Fig.2|Reconfigurable architecture and routing. a, For maximum test-time
flexibility, each tile contains a user-programmable LC that defines all timing
sequences. b, LC controls signal routing through the 2D mesh fromILP to the
tile, MAC, output duration generation through ramp plus comparator circuitry
andborderguard tile routing configuration. ¢, Asanexample, LC canimplement
2D-mesh concatenation such as merging the durations originating fromthe
even columns onone tile with the durations coming from the odd columns of

PCM devices are integrated in the back-end wiring above 14-nm
front-end circuitry (Fig. 1e) and can encode analog conductance states
by tuning, withelectrical pulses, the relative volume of crystalline-phase
(highly conductive) and amorphous-phase (highly resistive) material
at the narrow bottom electrode. To program PCM devices, a parallel
programming schemeis used (Fig. 1f) so that all 512 weightsin the same
row are updated at the same time*.

Weights can be encoded using a variable number of PCM devices.
Figure 1g shows a4-PCM-per-weight configuration, where each of the
four PCM devices contributes equally to the read current and thus to
the charge stored on the peripheral capacitor. Asecond, denser scheme
uses a 2-PCM-per-weight set-up (Fig. 1h), encoding one weight, W;, =
G'- G, onthefirsttwo PCM devices and a different weight, Wy, =g"- g7,
on the second pair of devices. In this way, two different input vectors
can be multiplied with W, and W, in two separate time steps, on the
same capacitor, allowing analog MAC across 1,024 rows. Finally, two
analog tiles can share one bank of peripheral capacitors (Fig. 1i), further
extending the analogintegration up to 2,048 analoginput rows across
512 columns per pair of tiles.

Allweight configurations, MAC operations and routing schemes are
defined with a user-configurable local controller (LC) available on each
tile (Fig.2a). Alocal SRAM stores all the instructions defining the time
sequence of several-hundred control signals, allowing for a highly flex-
ible test and simplifying design verification, with a small area penalty
when compared with predefined-state machines.

The 2D mesh comprises 512 east-west wires and 512 north-south
wires sitting over each tile, with a diagonal set of 512 metal vias to con-
nect each corresponding pair of wires. ‘Borderguard’ circuits at the
four edges of each tile can block or propagate each duration signal
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anothertile.d, To test the communication, 1 million randominput durations
aremulti-cast, in parallel, to all 6 OLPs. Durations randomly vary between O and
50 ns (dark-bluelines) or between 0 and either 100,150,200 or 250 ns (lighter
shades of blue) with 1-ns granularity. Cumulative distribution functions (CDFs)
reveal that the communication error never exceeds 5 ns, demonstrating high
transportaccuracy.

using tri-state buffers, mask bits and digital logic. This allows com-
plex routing patterns to be established and changed when required by
the LC, including a multi-cast of vectors to multiple destination tiles,
and a concatenation of sub-vectors originating from different source
tiles® (Fig. 2c). Finally, Fig. 2d verifies that durations can be reliably
transmitted across the entire chip, withamaximumerror equalto5 ns
(3 nsfor shorter durations).

KWS task

To demonstrate the performance of the chip inan end-to-end network,
we implemented a multi-class KWS task?. MLPerf classifies KWS as a
‘tiny’ inference model® and proposes a convolutional-neural-network
architecture trained onthe Google Speech Commands dataset compris-
ing12 keywords (Fig. 3a). For thisimplementation, we instead adopted
anFC network?®?. Both networks require upstream digital preprocessing
to convertincoming audio waveformsinto suitable input data vectors
using afeature-extraction algorithm®?%, The FC model achieves a clas-
sificationaccuracy of 86.75%, compared with 90% for the MLPerf con-
volutional neural network, but offers asimpler architecture and faster
performance (several KWS open submissions to MLPerf use FC-type
networks, sometimes reporting even lower accuracy around 82.5%).
Because an FC network matches our chip topology and exploits our
large tiles, our goal is to match the available SW accuracy of 86.75%.
To enable a fully end-to-end implementation on our chip, we first
modified the audio-spectrum digital preprocessing to produce 1,960
inputs and increased the size of each hidden layer from 128 to 512 for
ourtiles (in4-PCM-per-weight mode). To make the network more resil-
ient to analog noise®¢, we retrained it while including weight and
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highlighted classes for KWS, an FCbaselineisused as areference.b, The
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implementation uses four analogtiles.d, An AB methodis used toincrease
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SW MAC L,

activation noise, weight clipping, L2 regularization and bias removal
(https://aihwkit.readthedocs.io/en/latest/). We then pruned thistrained
network downto1,024 inputs (Fig.3b) tofit the first layer into atwo-tile
mapping configuration (Fig. 3¢), using the shared-capacitor-bank
approach shown in Fig. 1i. Our end-to-end implementation uses four
tiles in total: two for the first weight layer and two for the next two
weight layers.

To improve the MAC accuracy and compensate for asymmetries
in the peripheral circuits, we introduce a MAC asymmetry balance
(AB) method (Fig.3d). Actual weights, W, are programmed on the first
PCM pair, W;,, and opposite-signed weights, -, are encoded on the
second PCM pair, W;,. By first multiplying the actual input on W, = W
and then —input on W;, =-W, we computed the desired MAC (scaled
by x2) while cancelling out fixed asymmetriesin the peripheral circuitry
for current collection.

Each audio frame requires 2.4 pus in total, in the form of 8 time
steps of 300 ns each (Fig. 3e); this is 7 times faster than the best-case
latency currently reported by MLPerf®, Experimentally measured
MAC-plus-Activation function (ReLU for layers L, and L,, linear for
Output) correlations with the expected SW result are shown in Fig. 3f
forallthreelayers. The measured KWS accuracy is 86.14% (Fig. 3g), well
within the MLPerf SW, ‘iso-accuracy’ limit of 85.88% (defined as 99%
of the accuracy of the original SW model).

RNNT

Although KWS represents an excellent benchmark for very small
models, we can also use our chip to demonstrate much larger and
more-complex networks. As an example, the NLP task of speech-to-text
transcription enables applications such as agent assist, media con-
tent search, media subtitling, clinical documentation and dicta-
tion tools (https://aws.amazon.com/what-is/speech-to-text/). We
therefore implemented the MLPerf Datacenter network RNNT as an
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full frameis processedin 2.4 ps. Because the ReLU activation (implemented
on-chipinthe analog domain) generates positive-only outputs, the second
layer requires only two integration steps, rather than the four neededin the
firstlayer.f, Experimental activations after layers L, L, and output correlate
closely withideal SW MACs calculated using HW input. PDF, probability
distribution function. g, This leads to SW., accuracy for this fully end-to-end
demonstration.

industry-relevant workload demonstration. To further simplify model
use, we programmed the MLPerf weights directly with no additional
HWA retraining.

The MLPerf RNNT showcases all the important building blocks, such
as amultilayer encoder (Enc), decoder (Dec) and joint subnetwork
blocks (Fig. 4a). The network is slightly simplified with respect to
state-of-the-art RNNTs; the long short-term memory (LSTM) blocks
are unidirectional, rather than bidirectional, and the decoding
schemeis greedy rather thanbeam-search, whichincreases the WER
slightly but makes online continuous-streaming use much more
straightforward?®.

RNNT mapping on chip

As with KWS, digital preprocessing first converts raw audio queries
into a sequence of suitable input data vectors. At each sequence
time step, the encoder cascades data vectors through five successive
LSTMs (Enc-LSTMO, 1,2, 3,4) and one FC layer (Enc-FC). Ateach LSTM,
the local input vector for that layer is concatenated with a local ‘hid-
den’vector, followed by vector-matrix multiplication through a very
large FC weight layer, producing four intermediate sub-vectors. These
sub-vectors are then processed and combined using arelatively small
amount of vector-vector computing, generating an output vector
that is sent forward to become the input to the next LSTM or FC layer
for that same time step, and also recursively fed back to become its
own hidden vector for the next time step. Time-stacking, performed
immediately after preprocessing, as well as between Enc-LSTM1 and
Enc-LSTM2 (Fig. 4), scales down the effective number of time steps in
the local sequence by concatenating multiple arriving data vectors
into one departing data vector.

The Decblock, which operates in parallel with the encoder, consists
of oneembedding FClayer (Dec-Emb), two LSTMs (Dec-LSTMO, 1) and
one FC layer (Dec-FC). Finally, the joint layer sums the Enc and Dec
signals, applies a ReLU activation function and selects the predicted
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Fig.4 | MLPerfRNNT network for speech transcription.a, MLPerf RNNT
model, trained onthe Librispeech dataset, comprises encoder (Enc), decoder
(Dec) andjointblocks. Theinputsignalis digitally preprocessed and stacked to
generate theinput of Enc-LSTMO (chip 1) and Enc-LSTM1 (chip 2). The resulting
outputvectorsareagain time-stacked before feedinga2,048-input Enc-LSTM2
(chip 3), followed by two 1,024-input Enc-LSTM3,4 and an Enc-FC linear layer
(chip 4). Theresulting encoder output is then merged with the vectorsreceived
fromthe Dec (chip 5). Finally, ajoint-FC calculates the next-letter probability (in
SW), which feeds back to the Dec. This entails greedy decodinginwhich the
highest probability selects the output letter. b, SW-based sensitivity analysis
performed by progressively quantizing the FP32 MLPerfweights. c, The WER
increases beyond the SW,, limit when weights are excessively quantized.

d, Thereisathreshold n;;at which the WER is still SW,, for the full network, the
fullnetwork without joint-FC quantization, and for eachindividual layer. While
Dec-LSTM1is the most resilient to noise, joint-FC exhibits significant
sensitivity and is smallin size, soitisnot mappedinanalogto preserve high

output letter (including the possibility of a ‘blank’ character) for that
time step usinga 512 x 29 FC layer with agreedy decoding scheme. The
predicted output letter is both the model output and the next input
to the Decblock. The joint block alternates between emitting blanks,
at which point the next encoder output is consumed, and emitting
letters, which then triggers Dec processing. As aresult, the number of
Dec iterations will not usually match the input sequence length seen
by the encoder.

When large DNNs such as RNNT are implemented with reduced
digital precision, optimal precision choices may vary across the net-
work?7%, Similarly, implementation in analog-Al HW also requires
careful layer-specific choices to balance accuracy and performance.
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accuracy.e, Allthe other layers are mapped to analog tiles (mapping detailsin
Extended DataFigs.5, 7). Allarrows show the input signal routing and are
operating at the same time, each performing a simultaneous multi-cast to all
tiles that show the same-colour MAC arrow. Note that the borderguard circuits
canenabledurationdataarriving at the west side of a tile to deliver durations
onto the rows of that tile, and acompletely different duration-vector passes
over the centre of that tile onits routing wires at the same time. Small arrows
indicate how MACs are aggregated in the analog domain across tile pairs. f, The
outputdurationrouting. Each arrow colour requires its own time slot: three for
chips1,2,3and4, and oneforchip 5. Output routing fromtiles to OLPs can
involveimplicit concatenation (chip 5). More details are given in the Methods.
Thejointblock and all LSTM vector-vector operations are computed off-chip.
g, More than 45 million weights are mapped using more than 140 million PCMs,
withanaverage of 2.9 (3.1with W,,,) PCMs per weight. Coloured bars show
PCMs, white bars show weights.

Although dense 2-PCM-per-weight mapping (Fig. 1h) canimprove energy
efficiency (increasing the number of operations per second per watt,
OPS/W) or areal efficiency (the number of operations per mm?), higher
accuracy canbeachieved usingtechniques such as AB, in exchange for
increased area, energy and/or time. Therefore, before mapping RNNT on
HW, we need to find out which network layers are particularly sensitive
to the presence of weight errors and other analog noise.

We perform this initial assessment in SW, not by adding random
noise (on either weights or activations) and repeating ad nauseam to
obtainstable results through Monte Carlo sampling, but by introduc-
ing increasingly stronger weight quantization on the whole, or just
aportion, of the RNNT network (Fig. 4b). Any parts of the network
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Fig.5|Experimental WER using Librispeech on MLPerf RNNT. a, Single-layer
WER. The graph shows an experimental sensitivity analysis obtained by
implementing one layer on-chip and all the othersin SW at FP32 precision.

The mostcritical layer is Enc-LSTMO. b, Cumulative WER. FullRNNT inference
using all five chips on the full Librispeech validation dataset. The bars from left
toright show the cumulative WER obtained whenimplementingincreasingly
more layers on-chip. The fullRNNT WER, using the original MLPerf weights,
achieved across five chips (right-most bar) is 9.475%. ¢, After one week of PCM
drift, the cumulative WER slightly increases to0 9.894%, just 0.4% more than
day-O WER.d, To further improve the accuracy, a weight-expansion technique
isintroduced for Enc-LSTMO. GivenaMAC W, x x, the insertionofarandom
normal matrix Mand its pseudoinverse pinv(M) leads to the same MAC output.

outside the portion being stress-tested are evaluated using the original
32-bit floating point (FP32) precision. Theresulting degradationin WER
can be plotted as a function of the effective precision, n,;,. Layers or
entire network blocks that are less susceptible will still deliver alow
WER even with aggressive quantization (small values of n;), whereas
highly sensitive blocks will exhibit a high WER even for small amounts
of weight quantization.

Figure 4c shows this simulated WER as a function of i for various
cases, using the 99% SW,, limit (an 8.378% WER) of the network base-
line (7.452% WER) to identify a threshold ng;, (arrows). When weights
across the full network are all quantized, WER is no longer SW,, once
Nyis < 5.4 (42 levels).

Repeating this process for each individual layer identifies the
most-sensitive layers (those exhibiting a higher n; threshold (Fig. 4d)),
such as the joint-FC and Enc-LSTMO, followed by Enc-LSTML. Given
the small size (512 x 29 weights) but large WER impact of the joint-FC,
we chose toimplement this layer within the digital processing. Again,
because the chip does not contain any explicit digital processing, this
joint-FC, all vector-vector products and the activation functions are
computed off-chip onahost machine. The OLPs (and ILPs) are used to
send data from the chip(s) to the host (and back).

Now that we have identified which layers are most sensitive, we are
ready to map the MLPerf weights onto 142 tiles distributed across 5
chips. Because Enc-LSTMO and Enc-LSTMl1 are sensitive to noise, the AB
methodisused onthese layers, together witha careful treatment of the

Wx2 1,024 x 4,096

However, now W,, = W, x pinv(M) contains more rows N, withanincreased
signal-to-noiseratio. Whereas signal increases linearly with N, the aggregate
noiseacross the larger number of rows increases sub-linearly (=<-/N if noise
sources areindependent Gaussians). e, Simulation results. When quantizing
Enc-LSTMO to ny,, = 3.5 bits, the WER is 42%. Weight expansion greatly
improvestheresilience, even for only slightly expanded W,, matrices, with the
WERreduced to 7.9%, well below SW,. f, Similar accuracy benefits are observed
experimentally whenimplementing weight expansion on Enc-LSTMO on-chip,
revealing stronger WER reduction with respect to weight averaging. M x xis
digitally preprocessed. W,, expansionto 1,024 rows enables a9.258% WER on
the fullRNNT, 1.81% from the SW baseline, 0.88% from SW,,.

first matrix, W,, of Enc-LSTMO, which helps to improve MAC accuracy
and decrease WER (see Methods for details). In summary, of a total of
45,321,309 network weight and bias parameters, 45,261,568 are mapped
into analog memory (99.9% of the weights). A single chip can hold only
17,825,792 weightsin a2-PCMs-per-weight scheme, so we used 5 differ-
ent chips. Specific mapping details are shownin Fig. 4e,f. Coloured tiles
encode weights and perform MAC operations; grey tiles are unused.

Figure 4e shows howinputdatareacheachtile fromanILP, with fully
parallel routing. After all the necessary integrations, duration vectors
representing MAC results are sent from tiles to OLPs as shown in Fig. 4f.
In total, more than 45 million weights are encoded using more than
140 million PCM devices, with an average of around 3 PCM devices for
each weight (Fig. 4g).

Accuracy results

Figure 5ashows the experimental WER after weight mappingand pro-
gramming for the full Librispeech validation dataset of 2,513 audio
queries. Here asingle layer of the RNNT network is mapped on a chip,
andeverythingelseis calculated in SW. Itisworth noting that individual
layers of the network are SW,, by themselves. As predicted in Fig. 4d,
Enc-LSTMO shows the largest WER, with other layers being more resil-
ient to noise. Finally, the full inference experiment on all five chips is
shown in Fig. 5b. From left to right, each bar reports the overall WER
obtained by implementing increasingly more layers on chip. The total
WERis given by the last Dec bar, 9.475%, with an overall degradation of
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Fig. 6| MLPerfRNNT power and system performance. a, Measured power and
TOPS/W are shown for each chip. TOPS/W (coloured bars) correlate with the
number of weights used on each chip (white bars). D, duration; DAC, digital-to-
analog converter; PLL, phase-locked loop. b, Reducing the maximum input
durationleadstoanimprovementin TOPS/W with only asmallamount of WER
degradation (chip 4 is measured, other layersin SW at FP32). ¢, Energy efficiency
atvariouslevels: analogintegrationonly (1.5 V power domain), full chip, all
Schipsfor RNNT (analog integration only and full chip), and full system level
including estimated digital processing energy?. d, Simulated performance for

2.02% from the 7.452% SW baseline. For this experiment, we inference
the full Librispeech validation dataset through chip 1and save the out-
putresults. These are theninputinto chip 2,and soonacross all 5 chips.
Evenwhen repeated after more than1week of PCM drift*,withoutany
recalibration or weight reprogramming, the RNNT WER has degraded
by only 0.4% (Fig. 5c).

We observe that the layer-to-layer WER degradation in Fig. 5b is
steeper than expected from simple aggregation of the single-layer WER
degradations (Fig. 5a). Intuitively, Enc-LSTMO and other early layers
have a bigger cumulative impact owing to error propagation. We can
furtherimprove the WER of Enc-LSTMO with a new weight-expansion
method involving a fixed matrix M with normal random values, and
its Moore-Penrose pseudo-inverse, pinv(M) (Fig. 5d). The resultant
noise-averaging helps to improve the accuracy of the MAC operation
and the overall resilience of the network layer, with no additional
retraining required. On analog HW, as long as the number of tiles
remains unchanged, the additional cost of using more or even all of
therowsineachtileis almost negligible. However, more preprocessing
isneeded toimplement M x xin digital, althoughitis muchless than if
the entire Enc-LSTMO layer were implemented in digital.

Using our SW-based assessment method from Fig. 4c,d, Fig. 5e shows
that quantizing the Enc-LSTMO weights to 3.5 bits leads to an exces-
sive WER (42%). However, after weight expansion, the WER greatly
decreases, even for a small W,, expansion, saturating at a SW,, value
of 7.9% WER when W,, contains 1,024 rows. The same behaviour is
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anintegrated system shows that the average processing time for each sample

is 500 us, more than10* times faster than the input speech sentence, thus
enablingreal-time transcription. Total processing time =1.29 sand total real
audio =4 h 20 min, so thereal-time factor ~8 x 107 « 1.e, Number of operations
performed on-chip versus off-chipinthe RNNT experiment, witha 325:1 ratio
for the original MLPerfweights (W,) and 88:1with weight expansion (W,,)
(Fig.5d).f, Samples per second per watt and TOPS/W performance for
comparisonwith MLPerfsubmissions, showing a 14-fold improvement for

our system.

observedin experiments (Fig. 5f), withthe WER for on-chip Enc-LSTMO
decreasing as weight expansion is increased up to a W,, containing
1,024 rows, exceeding theimprovement shown by simply programming
multiple weight copies. Figure 5b shows that when the entire RNNT
networkisrunon five chips, starting with expanded W,, on Enc-LSTMO,
WERimproves t09.258%, whichis1.81% from the SW baseline, and only
0.88% from the SW,, threshold.

Power and system performance

We also measured the full power consumption for every chip during
inference operations. The chip has various power supplies. It uses 1.5V
todrive the row activation and column integration on the tiles during
analog computation. All controland communication circuits, including
ILP, OLP, LC and 2D mesh, are driven at 0.8 V. As shown in Fig. 6a, the
1.5V and 0.8 V supplies dominate power consumption. By contrast,
the 1.8 Vsupply that drives the clock phase-locked loop (PLL) and the
off-chip driversandreceivers, and some other analog voltage sources,
have a negligible impact. The corresponding sustained TOPS/W val-
ues are reported in Fig. 6a. Chip 4 has the best power performance
(12.40 TOPS/W) because it has the most on-chip weights. In general,
thereported TOPS/W values correlate well with the number of weights
encoded on-chip: chips1and 2 use an AB technique and have 4 PCMs
per weight, whereas chip 4 uses adenser mapping of 2PCMs per weight.
Finally, the Dec chip, chip 5, has the lowest TOPS/W value because this
chipimplements only around 1.8 million weights across only 13 of the



34tiles, yet the datacommunication s still extensive, requiring alarge
number of tiles and ILPs/OLPs to be active to implement the routing
network (Fig. 4e,f).

Figure 6b shows that another 25% improvementin TOPS/W (from12.4
to 15.4 TOPS/W) for chip 4 can be obtained by halving the integration
time, albeit with an additional 1% degradation in the WER. Figure 6¢
shows how the costs of data communication, incomplete tile usage
and inefficient digital computing bring the large peak TOPS/W of the
analogtileitself (20.0 TOPS/W) down to the final sustained value of 6.94
TOPS/W. Given the actual chip processing times (1.5 ps for chip 5 and
2.1psforthe other four; see Methods), we can estimate the full process-
ing time for an overall analog-digital system (Fig. 6d). This includes the
estimated computation time (and energy) if on-chip digital computing
were added at the physical locations of the OLP-ILP pairs. Given the
500-ps average processing time for each audio query, the real-time fac-
tor (the ratio between processing and real audio time) is only 8 x 107%,
well below the MLPerf real-time constraint of 1. Although the digital
compute is inefficient, the enormous ratio between the number of
analogand digital operations (Fig. 6e; 325-fold for conventional weight
mapping and 88-fold with the weight-expansion technique, owing to
the increased digital preprocessing) makes the analog-only and pro-
jected full-system energy efficiencies similar (Fig. 6¢; 7.09 TOPS/W
and 6.94 TOPS/W using conventional weight mapping). With weight
expansion, ananalog-Al system using the chips reported in this paper
could achieve 546.6 samples per second per watt (6.704 TOPS/W) at
3.57 W, al4-fold improvement over the best energy-efficiency submit-
ted to MLPerf (Fig. 6f), at 9.258% WER.

Conclusions

Inthis paper we demonstrate theimplementation of industry-relevant
inference applications on analog-Al chips, specifically for speech
recognition and transcription within the domain of NLP. We used a
14-nm analog inference chip to demonstrate SW,, end-to-end KWS
on the Google Speech dataset using a fully analog set-up and a novel
AB technique. We then targeted the MLPerf RNNT on Librispeech, a
data-center model with more than 45 million weights, mapped on more
than 140 million PCM devices distributed over 5 different chip modules.
By using a new weight-expansion method, we demonstrated a WER
0f 9.258% with an on-chip sustained performance that varies with tile
usage, reachingamaximum of 12.4 TOPS/W and delivering an estimated
system sustained performance of 6.7 TOPS/W.

These are, to our knowledge, the first demonstrations of commer-
cially relevantaccuracy levels onacommercially relevant model com-
bining more than 140 analog-Al tiles, with neural-network activations
being moved between those tiles with efficiency and massive paral-
lelism. Our work indicates that, when combined with time-, area- and
energy-efficient implementation of the on-chip auxiliary compute?,
the high energy efficiency and throughput delivered during matrix-
vector multiplicationonindividual analog-Al tiles can be extended to an
entire analog-Al system, offering excellent sustained energy efficiency
and throughput.
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Methods

Chip fabrication and testing

Our experimental results were measured on chips built from300-mm
wafers with a14-nm complementary metal-oxide-semiconductor front
end, fabricated at an external foundry. PCM devices were added in the
‘back-end-of-line” at the IBM Albany NanoTech Center. Mushroom-cell
PCM devices were built with a ring heater with a diameter of approxi-
mately 35 nm and a height of around 50 nm (Fig. 1e) as the bottom
electrode, a doped Ge,Sb,Tes layer and a top electrode. Wafer char-
acterization before packaging was performed on both 1-resistor
macrosand 1,024 x 2,048 array diagnostic monitors with on-chip sense
amplifiers. After selection of high-yield dies, the wafer was diced and
packagedinto testable modules at IBM Bromont, as shownin Extended
DataFig.1a,b.

Experiments were run by mounting the module on a socket con-
nected to a custom-designed board driven by three Xilinx Virtex-7
VC707 field-programmable gate arrays (FPGAs) (Extended DataFig. 1c).
Four Keysight E36312A power supplies were used to power up the
boards and the chip. In addition to the 1.5V, 0.8 Vand 1.8 V supplies
mentioned in the main text, a 3.0 V power supply was provided but
only during PCM device programming (not during inference). Finally,
asupply of 0.75V precharged the peripheral capacitors and set the
lower limit for the on-chip digital-to-analog converters (DACs) used in
PCM programming, and 0.3 V set the PCM read voltage and the ramp
start voltage. These supplies were measured and reported in Fig. 6a
as ‘Other’ voltage supplies. The three FPGAs were connected through
the customboard and controlled by an x86 machine with a Peripheral
Component Interconnect Express connector. All experiments were run
using Xilinx MicroBlaze Soft Processor code and x86 MATLAB software
wrapper (Extended Data Fig. 1c).

The off-chip combined transfer bandwidth on our chipis 38.4 Gbps,
with atotal of 384 input-output pins capable of operating at 100 MHz.
Extended Data Fig. 1d shows that routing precision, KWS and RNNT
power measurements were run without any additional intermediate
data being sent back to the x86 machine. The RNNT accuracy results
used the x86 for vector-vector operations and tile calibration. To model
such digital operationsin terms of performance, we simulated a digital
circuitry just outside the ILP-OLP, based on a foundry 14-nm process
design kit toimplement optimized digital pipelines, control logic and
registers. A future chip will eventually include the digital circuitry close
to the analog tiles®.

On-chip data conversion, analog periphery and 2D mesh routing
Inputs were encoded as 8-bit digital words stored on an SRAM within
each ILP. Conversion of 512 such digital words to 512 PWM durations
was performed using clock-driven counter circuitry within each ILP.
Datawere thenretrieved from the chip using the OLP, whichinternally
performed the conversion from time to digital using 512 counters plus
falling-edge detectors (Extended Data Fig. 2a).

Eachanalogtile consists of 512 x 512 unit cells (Extended Data Fig. 2b),
each containing four PCM devices. Circuitry can implement a signifi-
cance factor F>1but we adopted F=1, meaning that G""and g"~ are
the same, apart from intrinsic stochasticity. This enabled the imple-
mentation of 2-PCM-per-weight and AB methods, bothrequiring equal
contribution from W, and W,,. Word lines and select lines were con-
trolled by the west circuitry, selecting whether two or four PCM devices
were connected to the edge capacitor. During weight programming,
signals VSIG1 and 2 were kept at ground. Only one of the four PCM
devices was programmed each time, by selecting the word, select and
return lines. Weight programming was done in an iterative row-wise
fashion*. During inference, VSIG1and 2 were biased at a read voltage,
V,eas» Of 0.3V, while signals RL1 and 2 were at ground.

Inference was achieved intwo steps (Extended DataFig.2c). During
the integration phase, PWM pulses activated in each row for a time

proportional to the desired input magnitude (unlike ref. 32, these
durations were not converted to analog voltages using DACS). V,.q
was forced by a per-column operational amplifier, which biased the
entire bit line. These pulses were buffered along the row to maintain
pulse-widthintegrity. Although IR drops did occur along columns, the
wide wires stopped them being critical to degradation of MAC accuracy,
especially when compared with other more-important factorssuch as
peripheral circuit linearity and saturation effects. Current was then
mirroredintoa per-column capacitor, which could be tuned by the LC
by connecting up to 8 parallel metal-oxide-semiconductor capacitors,
where each capacitor was 50 fF (we typically chose 250 fF). The choices
of capacitor size and range of tunability were based on the available
columnarea, the expected currentinthe array, the integration time and
themirrorratios achievable. The summation over an entire 512-row tile
was performed fully in analog, without the need for partial summation
in the digital domain. In the wide-input case involving two vertically
neighbouring tiles (Fig. 1i), summation over 1,024 rows (or even 2,048 in
the two 2-PCM-per-weight case) was still fully performed in the analog
domain, without any intermediate digitization. For layers that used
wide input, the read operation during closed-loop tuning used this
combined configuration, allowing an individual weight to experience
and correct for the same non-idealities that it would experiencein the
eventualinference MAC. This provided significant mitigation fromaddi-
tional MAC error induced by combining tiles. Depending on the sign
oftheinput, the current could be steered to either charge or discharge
the capacitor. After currentintegration, the tile was disconnected and
the output duration was generated. During this step, a tunable ramp
circuit, shared among all columns, set a linear voltage ramp that was
compared with the voltage on the 512 peripheral capacitors (Extended
DataFig. 2d). For each column, the output voltage started high, and
when the comparator switched, the output durationended, determin-
ingthe duration of that particular output pulse, whichis similar to the
approachesinrefs. 33,34. Finally, an AND port enabled or disabled
the pulse output. With proper enable signal timings controlled from
the LC, activation functions such as ReLU or hard sigmoid could be
implemented on chip. The 512 durations were produced in parallel,
exiting the tile on 512 individual wires. Area-efficient design choices
(suchasthe use of acommon ramp generator circuit shared across all
the columns, the elimination of a conventional ADC and associated
digital registers, as well as optimized full-custom layouts) enabled
dedicated per-column circuitry at pitch, without the need for column
multiplexers.

These generated durations left the tile and propagated towards
the next tiles or the OLPs using the OUT-from-col path in Extended
Data Fig. 2e. Per-column south-north routing circuitry allowed for
full parallel duration processing, enabling either N-S or S-N connec-
tion (without entering the corresponding tile), collecting durations
from the tile (OUT-from-col) or sending durations into the tile col-
umns (IN-to-col) as used during weight programming®*. Per-row west-
east routing blocks enabled W-E or E-W duration propagation and
IN-to-row communication, allowing durations toreach the rows inside
ananalogtileand/or to move across the tile toimplement multi-casting
(Extended Data Fig. 2f).

Local Controllers

Auser-configurable LC on eachtile (Fig.2a) retrieved instructions from
alocal SRAM. Each very wide instruction word (128 bits) included afew
mode bits, as well as the wait duration (in cycles of around 1 ns given
the approximately 1-GHz local clock) before retrieving a next instruc-
tion. Although some mode-bit configurations allowed JUMP and LOOP
statements, most specified which bank of tile control signals to drive.
Most of the 128 bits thus represent the next state of the given subset
of tile control signals. This approach allowed for highly flexible tests
and simplified design verification, with asmall area penalty compared
with predefined-state machines.



For example, the LC could configure 2D mesh routing to enable
input access to analog tiles through the west circuitry (Fig. 2b) and
MAC integration onthe peripheral capacitors. The LC then configured
the ramp and comparator used to convert the voltage on the capaci-
tor into a PWM duration, avoiding energy-expensive ADCs at the tile
periphery.Finally, the LC decided which direction (north, south, west
or east) to send the generated durations, configuring the south 2D
routing circuits**,

The LC also configured the ‘borderguard’ circuits at the four edges
of each tile to enable various routing patterns. For example, Fig. 2c
shows how durations from odd columnsin the top tile could be merged
together with durations fromeven columns from the bottomtile. This
configuration was used onthe RNNT Dec chip (Extended DataFig. 7c).

Measurement of reliable transmission of duration vectors

Inputs were transformed into durationsin theILP circuitry. Durations
spanned between 0 and 255 ns, encoded using 8-bit words. To verify the
reliability of these communication paths across the entire chip (Fig.2d),
we repeatedly multi-cast 512 input PWM durations from the southwest
ILP to all six OLPs at the same time. These durations were uniformly
randomly distributed between 0 and 50 ns at 1 ns granularity (1 GHz
clock), and CDFs of the error between measured and transmitted dura-
tionacross 2,048 vectors (1 millionsamples) are shownin Fig. 2d. This
experiment was repeated for distributions spanning from 0 t0100, 150,
200 and 250 ns. Themaximum error never exceeded 5 ns, with shorter
durations exhibiting even smaller worst-case error (+3 ns), showing that
durations canbe accurately communicated across the chip. Although
inthis case errors were introduced by the double ILP-OLP conversion
and unusually long paths, during conventional inference tasks, the
MAC error was always dominated by the analog MAC.

KWS network training, pruning and calibration

KWS is used in a wide variety of devices, such as personal and home
assistants, to perform actions only after specific audio keywords are
spoken. Latency and accuracy areimportantattributes. When usedin
an ‘always-ON’ configuration, raw power is also an advantage. When
gated by a much simpler two-class front end that can detect audio
input of potential relevance and wake up the multi-class KWS system,
energy per task becomes the relevant figure of merit.

The KWS network was trained using HWA techniques to make the
network more resilient to analog memory noise and circuit-based
non-idealities. We trained unitless weights on the interval (-1,1) using
weight clipping. In addition, we added normally distributed noise to
these weights during each training mini-batch with astandard deviation
of 0.02 (Extended Data Fig. 3a). We also added similarly distributed
random noise with a standard deviation of 0.04 to output activations to
mimic theimperfections expected fromlayer-to-layer activation trans-
mission. We find that this simple noise model fits our analog system
well and provides effective HWA training. We performed an extensive
hyper-parameter search and picked abase learning rate of 0.0005 with
abatchsize of 250 for training. We found that including bias parameters
for this network offered little benefit and therefore eliminated them
from the model. We used adaptive moment estimation as the optimizer
along with a weight decay (that is, L2 regularization) of zero. Finally,
we used cross-entropy loss as our loss metric. The dependence of HWA
accuracy forinjected noise on weights and activations during training
isshown in Extended Data Fig. 3b.

The KWS network performed several preprocessing steps before
feeding the datainto the FClayers. Input data (keywords) represented
1-second-interval voice recordings encoded as .wav files at a 16-kHz
sampling rate. We computed the audio spectrogram, whichis astandard
way of representing audio information using the squared magnitudes of
fast Fourier transforms taken at multiple time steps, using awindow size
of 30 ms and a stride of 20 ms. We then computed the Mel-frequency
cepstral coefficients (MFCCs), which are acommonly used nonlinear

transformation that accurately approximates the human perception
of sound. We used 40 cepstral coefficients or bins per time slice. We
also clipped the MFCCs to the range (=30, 30) to avoid any potential
activation-rescaling problems goinginto our HW. This preprocessing
resulted in atwo-dimensional MFCC fingerprint for each keyword with
dimensions of 49 x 40 (Extended Data Fig. 3¢c), and thisis then flattened
to give a1,960-input vector. We also randomly shifted keywords by
100 ms and introduced background noise into 80% (the majority) of
the training samples to make keyword detection more realistic and
resilient.

Toreduce the inputsize further and fit a1,024-input-wide layer, we
pruned theinput dataonthe basis of the average of the absolute values
ofthevalidationinput (Extended DataFig. 3d). Pixels with average input
intensity below a certain threshold were pruned, reducing the overall
size to1,024. Interestingly, pruning led to an accuracy improvement,
asshowninthe summary tablein Extended DataFig. 3e. Although our
analogtiles cancompute MAC onup to 2,048-element-wide input vec-
tors, the AB method inherently uses both W, and W,,. Thus the maxi-
mum inputsize over which fully analog summation can be supported
isreduced to1,024.

Because the KWS network is fully on-chip, tile calibration needed
tobe performedin HW. A per-column slope and offset correction pro-
cedure was achieved in three steps. Weights were first programmed
using the nominal target values. Next, 1,000 inputs taken from the
validation dataset were used as input and the single-tile MAC results
were collected to calculate the column-by-column slope scaling factors
tobeappliedtothetarget weights. The tiles were then reprogrammed
with the scaled weights. Finally, experimental MAC was shifted up or
down by programming eight additional PCM bias rows available on each
tile (Extended Data Fig. 3f). After tile calibration, the ReLU activation
function was tuned using the same validation input and comparing
the experimental result onvalidation datawith the expected SW ReLU.
Theinference experiment was then performed on the test dataset. The
calibration enabled compensation of column-to-column process varia-
tions and input-times-weight column dependencies (such as activation
sparsity and residual weight leakage). As shown in the drift results on
RNNT, tile weights typically showed good resilience to drift owing to
the averaging effect. Bias weights required more-frequent updates,
onthescale of days, to compensate for column drift, but thisinvolved
merely running a smallinference workload and reprogramming the bias
weights. Eventually, the tile weights also need to be re-programmed.
Althoughwe have not explored temperature-dependent conditions, we
believe that the levels of PCM drift exhibited here would be sufficient to
allow operation for afew days or even weeks, whichis sufficient to keep
model reprogramming for the purposes of PCM drift indistinguishable
from model refresh for other purposes (such as resource balancing
and model updates).

RNNT weights and network mapping

To encode the MLPerf RNNT weights, we used five chips. Iterative
weight programming enabled accurate tuning of the conductances
to match the target weights. Heat maps correlating the target and the
measured chip-1weights on each of the 32 tiles are shown for W, and
Wy, in Extended Data Fig. 4a,b. The corresponding error for each tile,
expressed as the fraction of the maximum weight, is shownin Extended
DataFig.4c,d for W, and W,,. To compare the weight programmingin
thefive chips used for the RNNT experiment, we calculated the CDF on
thebasis of the datashownin Extended Data Fig. 4c,d and extracted the
spread between 1% and 99%. In this way, two data points were extracted
for eachtile, one for W, and one for W,,. The chip analog yield, meas-
ured as the fraction of weights with a programming error of less than
20% of the maximum weight magnitude, is around 99% (Extended Data
Fig. 4e). Chip 4 has a slightly lower yield because the corresponding
maximum W, defined as the coefficient used to rescale weights from
MLPerf (around [-1, 1]) to integers, is larger because more signal was
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required, causing greater weight saturation. Extended Data Fig. 4e
shows the spread distributions for each of the five chips.

The RNNT encoder weights were mapped using the first four
chips, as shown in Extended Data Fig. 5a. The large W, and W, matri-
ces used for encoder LSTMs all show a size 0f 1,024 x 4,096 except
for the conventional Enc-LSTMO (W, is 960 x 4,096) and Enc-LSTM2
(W, is 2,048 x 4,096). Enc-LSTMO, Enc-LSTM1 and the W, matrix of
Enc-LSTM2implement AB. In Enc-LSTMO, Enc-LSTM1and Enc-LSTM2,
summation of W,and W, MACs was performed off-chip at the x86 host,
whereas chip 4,implementing Enc-LSTM3 and Enc-LSTM4, performed
this entire summation on-chip in analog. Furthermore, blocks 1(-1),
9(-9) and 2(-2), 10(-10) of Enc-LSTMO W, and Enc-LSTM1 W,, and
blocks1(9),17(25) (W, (Ws,)) and 2(10),18(26) were summed in digital
after on-chip analog MAC. Finally, Enc-FC was implemented on chip 4.
Any spot where tiles were connected by sharing the peripheral capaci-
tor in the analog domain (Fig. 1i) is highlighted with a dark-blue bar.
We did not map biases in analog memory but instead incorporated
them in the already existing off-chip digital compute, by combining
them into the calibration offset with no additional cost. Thus these
biases were always applied with FP32 precision. No network retrain-
ing was applied.

To provide input data and collect MAC results in a massively par-
allel fashion from or to the ILPs-OLPs, complex routing paths were
programmed, leveraging the flexibility of the LCs (Extended Data
Fig. 5b). In the RNNT encoder, after each MAC, the data needed to go
throughinput-output for off-chip digital processing. Each full opera-
tion (including input, MAC, duration generation and output digitiza-
tion) took 2.1 ps. The input arrows show multi-cast in parallel to one
or more analog tiles with MAC operations occurring on those tiles.
Output MACs were provided to the OLPs in three time steps owing to
the small number of OLPs.

RNNT experiments implemented MAC on-chip, whereas tile affine
calibration (shift and scale) and LSTM vector-vector computations
were performed in SW (MATLAB SW running on x86). In particular,
the first Enc-LSTMO W, required careful input-signal management to
maximize the signal-to-noise ratio, owing to the large sensitivity of the
WERto any noise onits weights. Extended Data Fig. 6ashows that, inthe
case of Enc-LSTMO W,, the input data, which naturally exhibits awide
dynamicrange, was first shifted to zero-mean, followed by normaliza-
tion to maximum input amplitude. The preprocessed input was then
used for analog MAC. The MAC results were later denormalized back
inSW, where theinput mean contribution was added (which collapses
to the product of one number, the mean value of the inputimage, and
one vector, the sum of weights for every column) and the affine coef-
ficients for calibration were applied.

In the case of expanded weights (Extended Data Fig. 6b), the input
firstunderwent MAC with the random matrix M (such a matrix hasran-
domnormalweightsbutis fixed across allinputs). Because the product
of aninput withamatrix with zero meanvalue generates an output with
near-zero mean value, there was no need to apply the zero-mean shift,
although normalization to maximum amplitude was still performed.
After the analog on-chip MAC, the results are denormalized and the
usual calibration was applied. For every other layer (Extended Data
Fig. 6¢) in the RNNT, the inputs were used directly as tile activations
and the MAC was calibrated with the usual affine coefficients. All affine
coefficients are calculated by comparing experimental and expected
SW MAC using 2,000 input frames from the training dataset for each
Enc-Declayer. Datawere linearly fitted to obtain the slope and offset
coefficients.

Extended Data Fig. 6d shows a detailed description of all data-type
conversions. AllSW computations were performed in FP32. For trans-
mission tothe chip, datawere convertedinto INT9 (UINT8 plus sign) and
UINT8 vectors were loaded into the ILP. Here, durations were generated
andsenttothetileswhere the analog MAC was performed, collecting an
analogvoltage on aperipheral capacitor. Once the UINT8 vectors were

loaded into the ILP, ‘negative’ durations were sent during integration
of the second or fourth time step, as shown in Extended Data Figs. 5b
and 7d. Finally, charge integrated onto column-wise capacitors was
converted by the peripheral circuitry into durations that were sent to
othertiles or to the OLP, which converted thembackinto UINTS8. Data
were then sent off-chip and transformed back into FP32 during the
calibration stage. Extended Data Fig. 6e shows asummary of the equa-
tions, highlighting that essentially all MACs were performed on-chip,
whereas vector-vector, biasand nonlinear activations were computed
inSW. The joint layer was in SW.

Extended Data Fig. 7 shows the details of Dec mapping and signal
routing. To account for the Emb layer (Extended Data Fig. 7a), we first
collapsed Emb and Dec-LSTMO W, layers into asingle Emb x W, matrix
with size 28 x 1,280, which receives one-hot input vectors. This multi-
plication s perfectly equivalent in SW, but led to large weights in the
Emb x W, matrix compared with W,, as shownin the first set of CDFs,
reporting the maximum weight for each column. Because MAC results
fromEmb x W, and W, are summed directly inthe analog domain with
ashared capacitor, weight values cannotbe arbitrarily scaled. To over-
come this problem, 9 copies of the 28 x 1,280 Emb x W, matrix were
programmed and the 28 inputs duplicated onto 9 x 28 rows, leading
to a similar amount of signal with W,. This allowed us to effectively
distribute these large weights over 9 unit cells, while ensuring that
the analog summation will aggregate both the Emb x W, and the W,
contributions with the correct scaling.

Dec weight mapping used AB (Extended Data Fig. 7b) and signal
routing enabled parallelinput and output of all signals (Extended Data
Fig.7c). Here, routing concatenation was used to efficiently combine
the signal from two different tiles into the same OLP. The full input-
MAC-output processing time is 1.5 ps (Extended Data Fig. 7d).

Unlike the KWS experiment, the MLPerf repository mandates that
inference be performed with the validation dataset. The RNNT MLPerf
inference experiments shown in Fig. 5 were done by inputting the
full validation dataset into the first chip, saving the output results
on the x86 machine, swapping in the second chip and continuing
the experiment, using the previously saved outputs as new inputs.
This procedure was repeated for all five chips, ensuring a consistent
example-by-example cascading, as in a fully integrated system. Map-
ping even-larger models, using a weight-stationary configuration, can
be supported with improved memory density (including stacking of
multiple layers of PCM in the back-end-of-line), multi-chip modules
and even multi-module solutions, with careful neural-network par-
titioning to minimize inter-module communication that would be
energy expensive.

RNNT MAC and end-to-end accuracy

Experimental MAC details are shownin Extended DataFig. 8. Theerror
distributions and MAC correlations are shown for every chip. In all
figures, adashed region highlights the main regions of interest for that
MAC.For LSTM layers, the region of interest corresponds to the [-5, 5]
range, because outside that range the ensuing sigmoid or tanh function
can be expected to fully saturate (for example, the output will always
be-1or+1,beingalmostcompletelyindependent of any variationsonthe
input). Similarly, the regions of interest for the FC layers are mostly the
positive MACs because of the ReLU activation function. In this specific
case, Enc-FCand Dec-FC are summed before ReLU, so slightly negative
contributions could also matter. We plotted the regions of interest
to be where MAC > -5. The reported standard deviation 6 computes
the error for SW MAC in [-5, 5] for LSTMs and [-5, inf] for FC layers.
Comparisonbetweenthe original W, and the weight-expanded W,, for
Enc-LSTMO is also provided. Extended Data Fig. 9 shows examples of
transcribed sentence output from the experimentsin Fig. 5that showan
almostiso-accuracy WER. Transcription results arein good agreement
between the MLPerf RNNT model implemented in analog HW and in
SW, indicating that the effective bit-precision of our HW demonstration



is Ny = 4.097 for 9.475% WER and n,; = 4.153 for 9.258% WER (weight
expansion), on the basis of comparison with the full network (no joint
FC) curveinFig. 4c.

Performance simulation and power measurements

The proposed 5-chip RNNT implementationis not integrated with digi-
tal processing, but we can estimate the time needed to process the entire
dataset by combining the MAC processing times and energies from the
analog chips with the estimated digital processing times and energies
that we tabulated previously in our architecture paper?. Extended
Data Fig. 10a shows a timing simulation describing the execution of
RNNT layers for processing all 2,513 input audio samples, accounting
for all pipelining, time stacking, recurrence and Dec steps. We assume
timesof 2.1 usand 1.5 ps for the Encand Dec layers, respectively, which
includes all duration generation, and a relatively conservative 300 ns
for the digital processing of each layer. Given these assumptions, the
entire dataset can be evaluated in 1.2877 s, corresponding to a rate of
1,951.59 samples per second. Combined with the power measurements
below, these numbers can be used to extrapolate the analog-AIRNNT
system performance.

Power measurements for RNNT were done using aset of 32 exemplar
input vectors that filled up the ILP SRAM to capacity. By overflowing
the address pointer of the ILP, it is possible to repeat the same set of
32 vectors ad infinitum. Together with JUMP instructions in the LCs
resetting the program counters to the start of program execution, this
allowed areal-time current measurement from the voltage supplies
for the inference tasks. In these measurements, all 7 (or 5) phases of
the Enc (or Dec), including 4 integration phases and 3 (or 1for the Dec)
duration generation phases were included. This accounted not just for
the MAC integration, but also for the subsequent cost of generating,
transporting and digitizing the MAC results. The measured powers
areshowninFig. 6a.

Using the energy and execution-time models from our architecture
study?®, the total digital energy (for all the tasks performed off-chip
in SW to support the experiments shown in this paper) is estimated
to be 0.11] for nominal Enc-LSTMO and 0.26  for weight-expansion
Enc-LSTMO. The total number of digital operations and a detailed
breakdown are shown in Extended Data Fig.10c,d.

Although several compute-in-memory or near-memory approaches
based on SRAMs and digital compute®® have been presented in the
literature, most of these do not address the energy and time costs
of reloading weights, thus making direct side-by-side comparisons
against NVM-based weight-stationary approaches difficult. How-
ever, several NVM compute-in-memory studies have focused on the
macro-levelP***¥404 without accounting for data transport, control
or chip infrastructure (such as clocking) costs. They are also usually
at amuch smaller scale (sometimes less than 1 million parameters’)
than the work here, making a fair assessment of both the accuracy of
large models and the associated sustained TOPS/W values difficult.

We have instead compared our sustained power and performance
values against other reported system numbers for the same RNNT
task from MLPerf, as shown in Extended Data Fig. 10e. By weighting
the sustained power measurements for individual chips with their
corresponding activity factors from the timing simulations shown in
Extended Data Fig. 10a, the total system energy and corresponding
aggregate TOPS/W values for our systemare calculated tobe 4.44 J and
6.94 TOPS/W, respectively (4.60 Jand 6.70 TOPS/W for W,,). Although
our evaluations in Fig. 6 do not include some external components
used inreal systems, such as systembuses and voltage regulators, this
TOPS/W energy efficiency is still more than an order of magnitude
better than the best published result for this task.

The relatively small number of digital operations in the network
implies that considerable benefits may yet be obtained by improving
the raw analog MAC energy efficiency (currently 20 TOPS/W). This
could be enabled by shorter integration times, more-efficient analog

opamps and/or lower-conductance devices. Instead, a substantial
drop-offinenergy efficiency, down to12.4 TOPS/W for chip 4 (Fig. 6¢),
occursasaresultofthe on-chip infrastructure, such as thelanding pads,
whichneed tobe exercised at the end of each MAC. This highlights the
need for on-chip digital compute cores, potentially in proximity to
the same chip, and using the same local 2D mesh for data transport as
described in our architecture study?®.

MLPerf submissions for RNNT exhibit performance efficiencies
ranging between 3.98 and 38.88 samples per second per watt, using
system power that ranges from 300 to 3,500 W, assuming the use of
large batches to maximize efficiency. Our work inherently assumes
amini-batch size of 1. Although we assume that additional samples
are available to keep the pipeline full, our projections are effectively
independent of mini-batchsize. Under these conditions, an analog-Al
systemusingthe chipsreportedin this paper could achieve 546.6 sam-
ples persecond per watt (6.704 TOPS/W) at3.57 W, a14-fold improve-
ment over the best energy-efficiency results submitted to MLPerf.
Reduction in the total integration time through precision reduction,
hybrid PWM*° or bit-serial schemes canimprove both throughput and
energy-efficiency, but these could suffer from error amplificationin
higher-significance positions. Future efforts willneed to address their
impact on MAC accuracy for commercially relevant large DNNs.

Data availability
The MLPerf RNNT model is available from the MLPerf repository®.

Code availability

The KWS weight-programming pseudo-code is available from Zenodo
(https://zenodo.org/7992452).
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thatshould be very closetoafully integrated chip in which both analog tiles

and digital compute cores are tightly integrated®.
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Extended DataFig. 2 | Analog circuits and routing configurations. (a) Input
Landing Pad circuitry receives an 8-bit word, whichis converted to aduration
usingacounter. Output Landing Pad circuitry receives one duration and
convertsitintoan 8-bit word using 512 counters plus falling edge detectors.
(b) Eachtile has 512x512 unitcells, each consists of 4 PCM devices controlled by
Word Lines and Select Lines driven by the tile West circuitry. During weight
programming, Return Lines (RL) are driven at higher voltage (max 3V) and VSIG
aregroundedtoenable PCMwrite. (c) Duringinference, in theintegration phase,
RLaregrounded and one or both VSIG are biased at read voltage V,.,,=0.3V
using a per-column operational amplifier. Currentis then mirroredintoa
per-column capacitor. (d) For duration generation phase, capacitor voltage is

Return Line RL 2

Y

Unit cell , Return Line RL1

Gt
¥ _
. g g
Word Line WL1 | |
Word Line WL2l L - |
[
Select Select
Line SL1 Line SL2
‘ VSIG1 . VSIG2
Duration generation
LC-tunable
ramp }:l_
Ramp
Comparator
1x per tile ReLU is performed l EN signal

controlling EN signal
timing
OUT-from-col .
x512 columns

West-East Routing

J IN-to-row
W | E
~—— N~—

IN-to-row

N
Lo

compared againstashared and tunable ramp-voltage. The output of the
comparatorisa pulse with duration proportional to the voltage on the capacitor,
gated by an EN signal using an AND gate. By properly tuning the timing of this
ENsignal with the Local Controller, activation functions such as ReLU or hard
sigmoid canbeimplemented. (e) 512 durations are then sentinto the parallel 2D
mesh usingaper-column South-North routing circuit. (This same circuit is
alsoused to send pulses onto each column for PCM programming purposes).
(f) Finally, West-East Routing enables durations to access another tile and/or to
simply move across the tile. Since each borderguard canindependently block
or passsignals, complex routing patterns including multi-castand even
concatenationare supported.
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Extended DataFig. 3 |Keyword Spotting (KWS) Pre-processingand
calibration. Hardware-aware (HWA) training was applied to improve model
robustness against hardware imperfections, primarily due to programming
errors. (a) Weight programming correlation for the HWA model. (b) Dependence
of modelaccuracy oninjected noise on weights and intermediate activations
duringtraining. (c) Mel-frequency cepstral coefficients (MFCC), representing
thefingerprint for each keyword, are flattened and truncated before input to
the fully-connected network. (d) The fullinput would require 1960 rows, however,
toreduce the model to 1024-inputs, pruning is performed by removing all the

inputs exhibiting amean absolute validationinput value lower than the
indicated threshold. (e) The table shows acomparison of the KWS models and
accuracies. (f) Since KWSis fully end-to-end on-chip, an on-chip calibration
processis performedat the tile, leveraging 8 additional PCM bias rows to shift
the MAC up/down to compensate for any intrinsic column-wise offsets. Slope
ofthe MACs is compensated by re-scaling weights per-column. Calibrationis
performed using validationinput data; inference results are reported for the
testdataset.
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Extended DataFig. 4 |Experimental MLPerf RNNT weight programming.
Experimental correlation between target and programmed weights on chip-1
over 32 tiles for both (a) W, and (b) W,. (c),(d) The corresponding probability
distribution functions (PDF) of errors, expressed as percentage of the maximum
weight, reveal high-yield chips with very few erroneous weights. (e) Table
showing the analogyield, or the fraction of weights with programmingerror
within20% of the maximum weight. Afterintegration of the PDFsin (c,d), the

corresponding cumulative distribution functions (CDFs) are computed and the
1%-99% spread s collected, providing 2 data points (one for Wy, and one for W,,)
foreachtile. The plot shows the corresponding CDFs for each of the five chips
usedinRNNT experiments. To control the peripheral circuitry saturation,
sometiles have weights mapped intoasmaller conductance range (Max W
equal to 80), leading to adifferent1%-99% spread, e.g. the points with increased
spread on chip-1CDFin (e).
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Extended DataFig.5|MLPerfRNNT Encoder mapping and signal routingon
chip. (@) RNNT Encoder LSTMs weights arerepresented by two large matrices,
W,which multiplies the LSTMinput, x,and W, which multiplies the LSTM
recurrentsignal, h. Depending on the sizes of xand h, a variable number of tiles
isrequired. Both conventional and weight expansion mappings are shown for
Enc-LSTMO. Inaddition, Enc-LSTMO, Enc-LSTM1and the W, of Enc-LSTM2
implement Asymmetry Balance. Tiles connected with adark blue line have
shared capacitors, enabling 2048-wide analog MAC. In Enc-LSTMO, Enc-LSTM1

andEnc-LSTM2, MACs from tiles 1,9 and 2,10 are summed in digital, while all the
other pairs are summed on-chip inanalog. (b) Every analog MAC on the encoder
chipsrequiresseven300 ns time steps to process, including digitization of the
output. During the first four steps, MAC operations are performed, providing
inputsignals fromILPs asindicated in the figure.In cases where ABis used
(EncLSTMO, Enc LSTM1, W, portion of Enc LSTM2), opposite-signed inputs are
providedintwo of the four MAC time steps. During the last three time steps,
MAC results are sent out to the OLPs.
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a Enc LSTMO W, b
with original weights

Enc LSTMO W,,
with expanded weights

c All other RNNT
Encoder/Decoder layers
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Normalization Normalization
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MAC + mean Input*=W
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UINT8 vector output MACs)
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LSTM Equations Enc-LSTM1 Enc-LSTM4 Dec-FC
. . . Enc-LSTMZ2 Dec-LSTMO
— *. *
ii = sigmoid(W;*x, + Uj*h,; + b, + b;) Deo-LSTM1

f, = sigmoid(We*x, + Ug*h,; + by, + byy) On-chip
g; = tanh(Wg™x, + Ug*hy 4 + by, + bgp)

0, = sigmoid(W,*x; + Uy*hy.y + by, + byp)
C = fi"cey T i g,

h, = o..*tanh(c,)

Summation of W*x and

FC Equations U*x is performed in
—\\/* software. Tiles 1-9, 2-10
y=Wx+b are summed in software

(Fig. S5a)

Extended DataFig. 6 | MLPerfRNNT Enc-LSTMO input processing. Due to
thelarge sensitivity of the first Encoder LSTM W, matrix, input datais digitally
pre-processed toincrease the MAC signal-to-noise ratio. (a) Using the original
MLPerfweights, input datais first shifted to zero-meanand normalized to a
common maximum inputamplitude. Then, on-chip MAC is performed,
followed by MAC digital denormalization and addition of mean Input*TW.
Thislast operation collapsesto asimple single number (mean Input) times one
4096-vector represented by the column-wise sum of weights, not requiring
afull digital1024*4096 MAC operation. Only after these steps the affine
coefficients (slope and offset correction) are applied. (b) When using
expanded weights, the meanremovalis no longer needed since therandom
matrix Mintroduced in the main paper has zeromean, leading to naturally near
zero-meaninputvalues, thus simplifying input pre-processing. (c) All the other
RNNT blocks (rest of Encoder and Decoder) only apply affine coefficients,

On-chi
: Vect-vect sum
Vect-vect product
Sigmoid, tanh
Joint layer

Greedy decode
(First x*M MAC in wgt expansion)

without any normalization or mean removal. (d) Data-type conversion during
the MLPerf RNNT inference: software computationis performedin FP32.
Before accesstothe chip, datais convertedinto apair of UINT8 vectors, one
foreach polarity of theincomingactivations. This dataisloaded on-chipinthe
ILP, then converted into time duration and used as MAC input (‘negative’ inputs
aredurations sentduring the second and fourth integration steps, asshownin
Extended DataFigs.5band 7d). MAC outputis represented as analog voltage
onacapacitor, then converted into time duration by the peripheral circuitry
(detailsin Extended Data Fig. 2d). Finally, the OLP converts durations into
UINTS8. Datais sent off-chip and converted in FP32 during the calibration phase.
(e) Overall view of the equations solved in the RNNT: essentially, all MACs are
performed on chip, while all vector-vector operations, non-linear activations
and biases are computed in software. The joint layer isimplemented in
software, as explainedin Fig. 4.
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Extended DataFig.7 | MLPerfRNNT Decoder mapping and signal routing
on chip. Instead of processing Embedding Emb and Dec-LSTMO W, layers
separately, we first compress in one single matrix the product Emb *W,. At
this point, the first Dec-LSTMO shows Emb * W, matrix with a (28*1280) size,
contrasting with the (320*1280) W, size to sumdirectly inanalog. To balance
signal magnitude, nine copies of Emb * (W,/9) are programmed, achieving
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comparable weight absolute magnitudes. (b) Weight mapping and (c) signal
routingimplementing Asymmetry Balance. Routing fromtiles to Output
Landing Pads utilizes implicit vector concatenation on the 2D mesh, enabling
more efficient data transport. (d) The processing of one full frame requires 5
time steps of 300 ns each.
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Extended DataFig. 8 | Experimental MLPerfRNNT MAC. (a) Error histogram
and (b) correlation between experimental and target MAC are shown for every
chipused during the RNNT inference experiment. Oneach correlation, white
dotted lines highlight the main region of interest, since MACs are followed by
sigmoid, tanh or ReLU which naturally filter out portions of MAC. The spread,
o,is calculated only within the highlighted Regions Of Interest (ROI). Data from
bothoriginal Enc-LSTMO and weight-expanded Enc-LSTMO are reported,

Enc
LSTMO W,,

c=0.37

showing abetter sigma for the weight expanded case. Enc-LSTM2, Enc-LSTM3,
and Enc-LSTM4 show larger spread due to partial (Enc-LSTM2) or no (Enc-LSTM3,
Enc-LSTM4) application of Asymmetry Balance.Inaddition, Enc-LSTM2 MAC s
calculated onlarger (3072 instead of 2048) inputs. Finally, decoder layers show
larger o, maybe caused by higher capacitor/Output Landing Pad saturation
effects, whichhowever havelittleimpact on the overall WER, asrevealed by the
accuracyresultsinthe main paper (Fig.5a,b).



well now said meekin with asperity i don't agree with you Reference
well now said mikin with a sperity i don't agree with you MLPerf baseline (WER 7.452%)
well now said meekin with a sperity i don't agree with you 5 chips experimental result (WER 9.258%)

with entrees serve clarets or other red wines such as swiss bordeaux hungarian or italian wines
with untrees serve clarets or other red wines such as swiss bore deaux hungarian or italian wines
with entrees served clarets or other red wines such as swiss ordeau hungarian or italian wines

under the same quiet moonlight and only six hundred yards away from us also lay the victorious rebel army
under the same quiet moonlight and only six hundred yards away from us also lay the victorious rebel army
under the same quiet moonlight and only six hundred yards away from us also lay the victorious rebel army

on the roof from a tube painted green like the rest smoke arose
on the roof from a too painted green like the rest smoke arose
on the roof from a two painted green like the rest smoke arose

the third day it was reported that the yankees had taken position on the murfreesboro pike
the third day was reported that the yankees had taken position on the murphrey's borough pike
the third day was reported that the yankees had taken position on the murphysborop

orestes complained but his just complaints were too quickly forgotten by the ministers of theodosius and too deeply remembered by a priest who affected to pardon and continued to hate the praefect of egypt
arrested his complaint but his just complaints were too quickly forgotten by the ministers of the edosius and two deeply remembered by a priest who affected to pardon and continued to hate the prefective Egypt
arrested is complained but his just complaints were too quickly forgotten by the ministers of theodosias and to deeply remembered by a priest who affected up harden and continued to hate the prefective egypt

what true things are told in stories
what true things are told in stories
what true things are told in stories

that's macklewain's business
that's manicle wains business
that's manacle wains business

never had any act seemed so impossible
never had any act seemed so impossible
never had any act seemed so impossible

s0 lonely and so solemn with the sad grey clouds above and no sound save a lost lamb bleating upon the mountain side as though its little heart were breaking
s0 lonely and so solemn with the sad grey clouds above and no sound save lost lamb bleeding upon the mountain side as though its little heart were breaking
so lonely and so solemn with the sad great clouds above and no sound save lost lamb bleeding upon the mountain side as though its little heart were breaking

the mule deer are nearly as heavy
the mule deer our nearly as heavy
the mule deer are nearly as heavy

sixty eight bishops twenty two of metropolitan rank defended his cause by a modest and temperate protest they were excluded from the councils of their brethren
sixty eight bishops twenty two of metropolish and rank defended his cause by a modest and temperate protest they were excluded from the councils of their brethren
sixty eight bishops twenty two of metropolish in rank defended his cause by a modest and temperate protest they were excluded from the councils of their brethren

and ever since he had never managed to get his weight down as much as an ounce
and ever since he had never managed to get his weight down as much as announce
and never since he had never managed to get his weight down as much as announce

we range wider last longer and escape more and more from intensity towards understanding
we range wider last longer and escape more and more from intensity towards understanding
we range wider last longer and escape more and more from intensity towards understanding

Extended DataFig. 9 |Librispeech transcribed sentences. Firstten baseline prediction (WER 7.452%), and the third line shows the sentences
transcribed sentences from the Librispeech validation dataset. The firstline producedby our five-chips experiment including the weight expansion
shows the reference sentence, the second line corresponds to the MLPerf technique (WER 9.258%).
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Del ?g}';‘:gﬁ{ Edge XR12 (1x A2, MaxQ, 1lintel(R) Xeon(R) Gold 6312U CPU @ 2.40GHz 1,166.32 292.9 3.98 0.049
Dell PowerEdge XE8545 (4x A100-
Dell SXM-80GB, MaxQ, TensorRT) 1JAMD EPYC 7763 45,521.60 1,600.32 28.45 0.350
. PRIMERGY GX2570M6 (8x A100-SXM- .
Fujitsu 80GB, TensorRT) 1[intel(R) Xeon(R) Platinum 8352V CPU @ 2.10GHz|  95,851.80 3,514.45 27.27 0.336
Hac H3C UniServer R4900 G5(3x A30, 1lintel(Ry Xeon(R) Platinum 8380 CPU @ 2.30GHz |  20,767.20 926,52 2241 0276
[TensorRT, MaxQ)
Gigabyte G482-Z54 (8x A100-PCle- ]
NVIDIA 50GB, MaxQ, TensorRT) 1JAMD EPYC 7742 64-Core Processor 78,749.60 2,025.31 38.88 0.479
NVIDIA DGX A100 (8x A100-SXM-
NVIDIA 80GB, MaxQ, TensorRT) 1|AMD EPYC 7742 84,507.80 3,041.09 27.79 0.342
This work 1,951.59 3.45 565.71 6.939
This work, weight expansion 1,951.59 3.57 546.60 6.704
e

Extended DataFig.10 | System performance estimation. To calculate

processing time for RNNT on anintegrated system as described inFig. 6, (a) a
simulator based on the MAC runtime on the actual chip and plausible digital
processingis considered based on (b) specific timing assumptions stemming
from our experimentand prior architectural work®. (c) Detailed breakdown of

operations and energy across the 5 chips, including additional digital

operations required to processactivations from chips. (d) Total on-chip and
off-chip number of operations and energy, including measured analog
operations (this paper) or estimates for digital ops?. (¢) Comparison with
MLPerfsubmissionson RNNT shows al4 x advantage in energy-efficiency.
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