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Single cell transcriptomic analyses
implicate an immunosuppressive tumor
microenvironment in pancreatic cancer liver
metastasis
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Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease
refractory to all targeted and immune therapies. However, our understanding
of PDAC microenvironment especially the metastatic microenvironment is
very limited partly due to the inaccessibility to metastatic tumor tissues. Here,
we present the single-cell transcriptomic landscape of synchronously resected
PDAC primary tumors and matched liver metastases. We perform comparative
analysis on both cellular composition and functional phenotype between
primary and metastatic tumors. Tumor cells exhibit distinct transcriptomic
profile in liver metastasis with clearly defined evolutionary routes from cancer
cells in primary tumor. We also identify specific subtypes of stromal and
immune cells critical to the formation of the pro-tumor microenvironment in
metastatic lesions, including RGS5" cancer-associated fibroblasts, CCL18" lipid-
associated macrophages, SI00A8" neutrophils and FOXP3" regulatory T cells.
Cellular interactome analysis further reveals that the lack of tumor-immune
cell interaction in metastatic tissues contributes to the formation of the
immunosuppressive microenvironment. Our study provides a comprehensive
characterization of the transcriptional landscape of PDAC liver metastasis.

Pancreatic ductal adenocarcinoma (PDAC) persists as one of the high incidence of distant metastasis (>80%) at initial diagnosis. The
world’s most formidable and lethal malignancies, with a 5-year survival liver emerges as the predominant location for distant metastasis in
rate below 10%". Often detected at a late stage, PDAC exhibits a PDAC cases. Presently, therapeutic approaches for PDAC patients with
staunch resistance to existing therapies, in part due to an exceedingly liver metastases remain markedly scarce’. Consequently, there is an
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urgent need to elucidate the molecular mechanisms that drive hepatic
metastasis in PDAC, which could pave the way for the development of
more efficacious treatments and ultimately enhance the survival rates
for patients suffering from advanced stages of the disease.

PDAC is one of the least immune-infiltrated cancers, and is char-
acterized by a complex tumor microenvironment (TME), defined by
the interactions among multiple cell types, including malignant,
immune, and stromal cells*®. Tumor metastasis is a multistep process
driven by both the intrinsic properties of tumor cells like mutational
burdens, and the crosstalk between cancer cells and other cell types in
the TME, including lymphoid cells, tumor-associated macrophages
(TAM), cancer-associated fibroblasts (CAF), and components of the
extracellular matrix (ECM)’'°. Understanding the interplay of various
cell types in the TME is crucial to understanding tumor development,
metastasis, and prognosis. Recent studies have reported mutational
and transcriptional signatures in PDAC metastases through bulk
genomic and transcriptomic sequencing;'> however, these datasets
provide limited information on the molecular events driving the
metastatic microenvironment in advanced PDAC.

Single-cell RNA sequencing (scRNA-seq) is a powerful tool that
can delineate the gene expression pattern of each individual cell and
decode the interactions among diverse cellular components in the
TME"™, Single-cell transcriptomic profiling of PDAC primary tumors
has been systematically investigated, revealing that the immune and
stromal landscapes in each patient are highly heterogeneous*”, and
that cytotoxic T cells with exhausted gene expression patterns might
contribute to the immunosuppressive TME . However, because
metastatic PDAC are generally unresectable according to the NCCN
Clinical Practice Guidelines, few studies have looked into the single-cell
transcriptomic features of metastatic lesions. Two recent studies
reported the differences in the TME of primary and metastatic PDAC
lesions using limited number of unpaired biopsy tissues"", However, a
comprehensive transcriptomic profiling of the TME in matched pri-
mary tumor and liver metastases of the same PDAC patient at single-
cell resolution is still lacking. Emerging evidences have shown that
synchronous surgeries of primary PDAC tumor and hepatic oligome-
tastasis may achieve encouraging survival outcomes in highly selective
PDAC cases”.

In this work, we comprehensively analyze the TME landscape of
synchronously resected PDAC primary tumors and matched liver
metastases. Using scRNA-seq, we characterize the differential cell
population distribution and intercellular interactions between primary
tumors and liver metastases. We not only uncover the distinct tran-
scriptomic properties of tumor cells between primary and metastatic
sites, but also identify specific subtypes of stromal and immune cells
that might contribute to the formation of the immunosuppressive
microenvironment in metastatic lesions. These results provide useful
mechanistic information for the understanding of PDAC liver metas-
tasis and the development of personalized therapies for metastatic
PDAC patients.

Results

Single-cell transcriptomic atlas and cell typing in PDAC primary
tumors and liver metastatic lesions

To comprehensively understand the role of TME in PDAC metastasis,
single-cell RNA sequencing (scRNA-seq, 10X Genomics) was carried
out in eight fresh tissues collected from four PDAC patients (P1-P4),
including three surgically resected primary pancreatic tumors (PT) and
their respective paired hepatic metastases (HM), as well as one normal
pancreatic tissue (NT) from one of the three patients (1 NT-PT-HM trio
and 2 PT-HM pairs). Besides, one hepatic metastasis biopsy obtained
by endoscopic ultrasound-guided fine needle aspiration (EUS-FNA)
from a fourth patient was also included (Fig. 1a and Supplementary
Table 1). The patients P1-P3 showed detectable KRAS mutation based
on whole-exome sequencing (WES) and/or target gene sequencing.

Patient P1 did not show KRAS mutation in WES data probably due to
the low sequencing depth used (-100x coverage; Supplementary
Fig. 1a). The KRAS mutation status of patient P4 was not determined
because of no available samples. Notably, the expression levels of the
inflammation-response genes were significantly higher in both PT and
HM tissues than in the NT tissue, which was consistent with reanalyzed
data from a previous study’, validating the tissue inflammation of the
PT and HM samples (Fig. 1b). Following multiple quality control steps,
we acquired single-cell transcriptomes in a total of 57,702 cells from all
samples for downstream analysis. These cells were partitioned into 29
clusters of twelve main cell types, including ductal cells, T cells, natural
killer (NK) cells, B cells, mast cells, plasma cells, endothelial cells,
fibroblasts, myeloid cells, acinar cells, endocrine cells, and MKI67*
cycling ductal cells (Fig. 1c, Supplementary Fig. 1b and Supplementary
Data 1), which were annotated by known markers (Fig. 1d and Sup-
plementary Fig. 1c) and verified in an independent dataset consisted of
primary pancreatic tumors’ (Supplementary Fig. 1d). Notably, the
abundance of major cell types determined from the scRNA analysis
was comparable to that estimated from immunofluorescence staining
experiments (Supplementary Fig. 1e, f). To confirm the robustness and
accuracy of data integration across different tissues, we performed
dataintegration for PT and HM samples independently, and annotated
cell types for each cell map separately. We observed that cell typing is
quite consistent between the integrated cell map and the map of each
tissue subset (Supplementary Fig. 1g). For example, two unique cell
types, namely acinar cells and endocrine cells (collectively referred to
as secretory cells), were identified in normal and cancerous pancreatic
tissues but not hepatic metastasis tissues (Fig. 1e), further confirming
the unbiased data integration and cell type annotation in our analysis.

Although nearly all cell clusters (except for secretory cells) were
presented in all samples (Supplementary Fig. 1h, i), the proportion of
each cell type was not evenly distributed across specimens (Fig. 1e and
Supplementary Fig. 1i). We noticed that the proportion of ductal cells
and fibroblasts was quite different in each patient (Fig. 1f), which is
consistent with previous findings in other cancer types”"*%. In con-
trast, the composition of immune cells was less heterogeneous among
patients within the same tissue group. However, immune cells exhib-
ited significant heterogeneity across different tissue types (Fig. 1le).
Particularly, although the proportion of myeloid cells (mainly macro-
phages and monocytes) was similar across all patients within the same
tissue group (Supplementary Fig. 1i), the fraction of myeloid cells in
HM tissues was significantly higher than that in PT and NT tissues
(Fig. 1e), raising an interesting question on the origin and function of
these cells in the metastasis microenvironment that warrants future
studies. Interestingly, the three cell types discussed above—ductal
cells, fibroblasts and myeloid cells—that showed high heterogeneity
among patients or tissue types, were also the cell types that harbored
the most differentially expressed genes (DEGs) (Fig. 1g and Supple-
mentary Fig. 1c), indicating highly dynamic transcriptional states of
these cell types in different environment. Furthermore, we verified the
above findings in the bulk RNA-seq data of a larger cohort of paired
primary and metastatic PDAC samples™ using deconvolution analysis
by CIBERSORTX?'. We observed that the relative abundance of stromal
cells and myeloid cells in our samples is consistent with the estimation
from the published bulk RNA-seq data, while ductal cells and T cells
show discordant patterns (Fig. 1le).

Ductal cells show highly heterogeneous CNV patterns

Since tumor cells are of ductal origin in PDAC, we first investigated
the difference in tumor cells between PT and HM tissues by ana-
lyzing the gene expression profile in the ductal cell population. Of
note, like ductal cells, we found that the majority of the MKI67" cell
cluster co-expressed the classical epithelial cell marker EPCAM
(Fig. 2a), suggesting that the annotated MKI67* cells are also of
ductal origin. We therefore considered both EPCAM® cells and
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Fig. 1| Single-cell transcriptomic analysis in primary and matched metastatic
PDAC tissues. a Workflow of sample collection and data analysis in this study.

b Boxplots showing the scaled mean expression of inflammation signatures (n = 42)
in cells from different sample groups. The boxes indicate the median (horizontal
line), second to third quartiles (box), and Tukey-style whiskers (beyond the box).
The points indicate individual signatures. Similar patterns were observed in the
PDAC scRNA-seq dataset from Peng et al.’. ¢ Uniform Manifold Approximation and
Projection (UMAP) plot displaying the integrated cell map, which consists of 29 cell
clusters from 12 annotated cell types. Cells are colored by clusters. d Dot plot
showing representative marker genes across cell clusters. Dot size is proportional
to the fraction of cells expressing specific genes. Color intensity corresponds to the

relative expression of specific genes. e Bar plot showing the cell type abundance for
samples from different groups, as measured by scRNA-seq data in this study or
deconvoluted bulk RNA-seq data from Yang et al.">. The error bar indicates standard
error of the mean (s.e.m.). The p values are calculated using two-sided Wilcoxon
rank-sum test. *p < 0.05; **p < 0.01. The boxes indicate the median (horizontal line),
second to third quartiles (box), and Tukey-style whiskers (beyond the box). f Bar
plot displaying the heterogenicity of cell types among different patients based on
Jensen-Shannon divergence (JSD) score. g UMAP showing the distribution of major
cell types (above) and the number of differentially expressed genes (DEGs) in each
cell type.
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MKI67* cells as ductal cells and identified a total of 10,014 ductal tissues but not in NT control, suggesting that these are tumor cells
cells from all 8 samples. The ductal cells were further divided into  of high proliferative capabilities (Fig. 2a and Supplementary Fig. 2c).
6 subclusters through re-clustering analysis, including RPS3*, TFF1*, In contrast, cluster O cells (RPS3") were the major ductal cell
CEACAM6', CEACAMS', MALATI', and MKI67* ductal cells, defined population present in NT tissues, suggesting that these cells were
by a unique subset of highly expressed genes in each subcluster the least malignant (termed “benign ductal cells”). The other four
(Fig. 2a, b, Supplementary Fig. 2 and Supplementary Data 2). Cluster  clusters were also predominantly present in tumor tissues (Fig. 2a
5 ductal cells (MKI67*) were almost exclusively present in tumor and Supplementary Fig. 2c).
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Fig. 2 | Transcriptional signatures and CNV heterogeneity of ductal cells.

a UMAPs showing the distribution of ductal cells expressing the indicated maker
genes (top left), ductal cell subtypes (n = 6; top right), the percentage of cells from
different sample groups (bottom left) or at different CNV levels (bottom right) for
each subcluster. b Heatmap showing the expression of marker genes in the six
ductal cell subtypes. Selected marker genes are highlighted. ¢ Ductal cells are
grouped into different categories based on CNV score. Joyplots show the dis-
tribution of CNV score in different samples. Dashed lines in red indicate the
threshold values. d CNV inferred by scRNA-seq and whole-exome sequencing (WES)
data in patient P3. e The percentage of cells from HM samples is positively corre-
lated with the proportion of cells with high level of CNVs. Fitted line and standard

errors with 95% confidence intervals are shown. f Heatmap showing the scaled
expression level of differentially expressed genes among cells with different CNV
levels. Genes highlighted in red are also subtype-specific as shown in (b). g Heatmap
showing functional pathways activated in cells with different CNV levels using GSVA
analysis. h Association of relative cell abundance (estimated by CIBERSORTx) and
patient survival using the TCGA PDAC cohort (n=178) by COX regression analysis.
The p value is calculated with two-sided log-rank test. i Kaplan-Meier curves of
TCGA PDAC patients (n=178) showing the survival rates grouped by the cell
abundance in ductal cell clusters 2 and 4. The p value is calculated with two-sided
log-rank test.

To further define the malignant state of the ductal cell
subpopulations?, we inferred the single-cell CNV profile in ductal cells
with inferCNV* using myeloid cells as the reference (Fig. 2c). As
expected, almost no CNV events were observed in the NT sample
(Supplementary Fig. 3a). CNV in tumor samples exhibited high het-
erogeneity, with different degree of CNV accumulation across differ-
ent patients and different tissue types (Fig. 2c). For instance, high CNV
accumulation was enriched in certain chromosomes, such as chr7,
chr8 and chrll, as validated by WES data in matched tumors (Fig. 2d
and Supplementary Fig. 3b). We then divided all ductal cells into four
groups based on the level of CNV: normal, low, medium and high
(Fig. 2a, ¢ and Supplementary Fig. 3c). Compared with NT and PT
tissues, ductal cells from HM tissues exhibited remarkably higher CNV
levels, indicative of more malignant phenotype (Fig. 2¢, d and Sup-
plementary Fig. 3a, b). This was also the case when the ductal cells in
each HM sample were compared to the matched PT sample (Fig. 2¢, d
and Supplementary Fig. 3a, b). We also noticed that CNV patterns were
highly subcluster-specific (Fig. 2a). In general, the percentage of
CNV"e" cells in each ductal cell subcluster was positively correlated
with the percentage of HM cells in that cluster (Fig. 2e). We then
compared the transcriptome among ductal cells with different levels
of CNV (Fig. 2f). We observed that CNV"e" ductal cells of HM tissues
exhibited distinctive gene expression patterns from CNV*" ductal cells
of PT tissues. Notably, a specific set of genes was almost exclusively
expressed in the CNV"" ductal cells of HM tissues, including the
kallikrein-related peptidase KLK7, carcinoembryonic antigen-related
cell adhesion molecule CEACAMS, epidermal growth factor receptor
kinase EPS8LI, extracellular matrix protein ECM1, lymphocyte antigen
LY6K, cysteine proteinase inhibitor CST6, and small proline rich repeat
proteins SPRR3 and SPRRIB (Fig. 2b, f, highlighted in red). Further-
more, pathway enrichment with gene set variation analysis (GSVA)
demonstrated that TGF-p signaling, NOTCH signaling, MYC targets
and epithelial-mesenchymal transition pathways were enriched in the
CNVMe" group (Fig. 2g).

To explore the clinical significance of the ductal cell subtypes
identified in our study, we estimated the percentage of each ductal cell
subcluster in patient samples from the TCGA PDAC cohort using
CIBERSORTX?. Interestingly, the abundance of cluster 2 (CEACAM6")
and cluster 3 (CEACAMS’) ductal cells were both significantly corre-
lated to poor overall survival (OS) (Fig. 2h, i and Supplementary
Fig. 4a). In addition, the expression of these two marker genes as well
as the abundance of these two clusters were higher in advanced-stage
PDAC patients in the TCGA cohort (Supplementary Fig. 4b, c). In
contrast, the abundance of cluster 4 (MALAT1") was correlated with
better OS, which is in line with the observation that this cluster highly
expressed genes associated with “leukocyte mediated immunity”,
“positive regulation of immune system process” and “positive regula-
tion of lymphocyte activation” (Supplementary Fig. 4d).

Developmental trajectory defines distinct ductal cell states and
evolutionary dynamics from primary to metastatic PDAC

As noted above, MKI67" ductal cells (cluster 5) may function as a type
of regenerative/proliferative tumor cell since they were exclusively

found in tumor but not normal tissues, while CEACAMS5" ductal cells
(cluster 3) may represent a class of malignant metastatic cells with high
level of CNV that dominate the HM tissues (Fig. 2a). Across the six
ductal cell subclusters, we observed an opposite trend of gene
expression between proliferating markers (e.g., MKI67) and malignant
metastatic markers (e.g., CEACAMS5/6 and KLK7) (Fig. 3a), suggestive of
orchestrated differentiation of tumor cells during metastasis. To
delineate the evolutionary dynamics of pancreatic ductal cell lineages
during PDAC progression and metastasis, we performed unsupervised
cell trajectory analysis using both RNA velocity** and Monocle2”. Both
analyses revealed similar differentiation paths of ductal cells origi-
nating from stem-like/proliferating cells with two major branches
(Fig. 3b, c), confirming the accuracy of trajectory prediction. Besides,
the predicted pseudotime based on unsupervised RNA velocity ana-
lysis was similar in the three patients with paired tissues (P1-P3;
Fig. 3d), indicating conserved differentiation trajectories among these
patients. The pseudotime trajectory analysis based on Monocle2
defined five cell states (S1-S5) (Fig. 3c). Tissue-wise, ductal cells from
the NT tissue were confined to S1, while ductal cells from PT and HM
tissues were scattered among other states (S2-S5). Cell cluster-wise,
MALATL" ductal cells (cluster 4) and MKI67" ductal cells (cluster 5)
dominate the S1 state, and showed up at the earliest stage during
pseudotime in both PT and HM tissues, indicating their highly pro-
liferative characteristics (Fig. 3c and Supplementary Fig. 5a, b). Of note,
ductal cells in cluster 5 spanned over two distinct states with
MKI67'EPCAM™ ductal cells enriched in state S1 and MKI67'EPCAM"*
ductal cells enriched in state S3, indicating the existence of two dif-
ferent cell substates in cluster 5 (Supplementary Fig. 5c). Moreover,
CEACAMS5/6" ductal cells (clusters 2/3) were the predominant sub-
clusters in the S5 state, and only emerged at the latest stage in tumor
tissues, demonstrating their highly malignant properties. Therefore,
the ductal cells in clusters 2 and 3 are termed “pancreatic ductal ade-
nocarcinoma cells”.

Two differentiation trajectories (routes 1 and 2; Fig. 3c) were
identified, both rooted from S1. To recapitulate the transcriptomic
characteristics of each trajectory, we overlayed the meta information
about cell cluster, sample origin and CNV status with the predicted
trajectory (Fig. 3d). The route 1 trajectory branched toward cell state S5
with high expression of oncogenes (CST6, LITAF, CRCT1, SPRRIB,
SPRR3, and KLK?7) (Fig. 3¢, e and Supplementary Fig. 5d) and the ductal
cell state transition along this trajectory was highly conserved among
the patients (Fig. 3f). This trajectory showed an increased proportion
of CNV"e" ductal cells mostly derived from HM samples but a decrease
in MKI67* proliferative cells along the pseudotime. Therefore, route 1
resembled the development of metastatic cells along with the
increased expression of genes regulated by KRAS activation (KLK7,
EROIA, SPRR3, TFF2, and AKR1BI10) as well as hypoxia response and
pro-inflammatory signaling genes (ATF3, JUN, EGRI, IER2, LITAF, FOS,
LAMB3, EROI1A, S100A4, and KLF2). To rule out the potential influence
of genetic variance on trajectory inference (Supplementary Fig. 3c), we
performed RNA velocity analysis in each of the three patients with
paired samples (P1-P3; Fig. 3g). We confirmed that the route 1 trajec-
tory was independently validated in all the investigated patients.
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Fig. 3 | Pseudotime trajectory analysis reveals diverse ductal cell differentia-
tion states. a Violin plots displaying the expression of representative genes asso-
ciated with PDAC proliferation or malignancy across ductal cell subtypes. Color key
from blue to red indicates relative marker genes expression pattern from pro-
liferation to malignancy. b Unsupervised pseudotime trajectory of ductal cell
subtypes by RNA velocity. Arrowhead direction represents the trend of cell pseudo-
temporal differentiation. ¢ Semisupervised pseudotime trajectory of ductal cell
subtypes inferred by Monocle2. Trajectory is colored by pseudotime (top left), cell
states (bottom left), cell subtypes (top middle), CNV levels (bottom middle),
sample groups (top right) and the expression dynamics of a selected marker gene
KLK7 (bottom right). d Boxplot showing the latent time of ductal cell subtypes by
RNA velocity in patients P1-P3. The number of cells in each category is indicated in
the left of boxplot. The boxes showing the median (horizontal line), second to third
quartiles (box), and Tukey-style whiskers (beyond the box). e Heatmap showing the
scaled expression of differentially expressed genes across pseudotime trajectory in
(c). Bar plots at the top of the heatmap are scale diagrams of different cell states,

sample groups, CNV levels and cell subtypes during pseudotime differentiation
trajectory. f Distribution of ductal cells along the Monocle2-estimated trajectories
for patients P1-P3. g RNA velocity analysis of ductal cells for each patient (P1-P3).
Arrowhead direction represents a conserved differentiation trajectory (from ductal
cell subtype 5 to subtypes 2 and 3) among the patients. The number of ductal cells
in PT and HM from the start subtype (cluster 5) and end subtypes (clusters 2 and 3)
of the conserved trajectory (route 1) is shown on the right. The p value was cal-
culated using the y° test. h Venn diagrams showing the overlap of the DEGs in high
level CNV, cell state S5, and HM ductal cells. i Kaplan-Meier curves of patients in the
TCGA PDAC cohorts (n=178). The p value was calculated using the two-sided log-
rank test. j Immunohistochemistry analysis (left) of LITAF expression in PT and HM
groups. Violin plots (right) displaying immunohistochemical scores across the
patients (n =11). Scale bars, 100 pm. The boxes indicate the median (horizontal
line), second to third quartiles (box), and Tukey-style whiskers (beyond the box).
The error bar indicates standard error of the mean (s.e.m.). The p value is calculated
with one-sided Wilcoxon rank-sum test.
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Interestingly, we observed a significant association (x? test, p < 0.001)
of state transition of ductal cells along trajectory 1 (from cluster 5 to
clusters 2/3) and between the PT and HM groups (Fig. 3g), suggesting
that trajectory 1 might recapitulate the state transition of ductal cells
from PT to HM. In contrast, the route 2 trajectory was bifurcated into
either S3 or S4, both states showing a mixture of cells with low-to-
moderate CNV from PT and HM tissues (Fig. 3c). Interestingly, we
found that genes associated with antigen processing and presentation
of endogenous antigen were highly expressed in S3 and S4 (Supple-
mentary Fig. 5e and Supplementary Data 3). We speculated that route 2
may reflect a differentiation progress related to antigen presentation.

Since S5 represented an end-point ductal cell state related to
pancreatic cancer metastasis, we overlapped genes highly expressed in
S5, genes that were overexpressed in ductal cells derived from HM
tissues, and highly expressed marker genes in CNV"e" cells. The Venn
diagram showed eleven differentially expressed genes in common
(Fig. 3h). This gene set may be used as a potential molecular signature
for malignant metastatic cells. We then validated the expression pat-
tern of these eleven genes using a published dataset”? with paired
primary and metastatic PDAC samples and a PDAC scRNA-seq dataset’
(Supplementary Fig. 6a, b). Notably, the expression of LITAF and
SPRR1B was much higher in metastatic than primary PDAC samples
and the high expression of these two genes was significantly associated
with poor prognosis in the TCGA dataset (Fig. 3i and Supplementary
Fig. 6¢, d). We also confirmed the upregulated protein expression of
LITAF in HM tissues than in matched PT tissues using immunohis-
tochemistry (IHC) in a cohort of PDAC patients (n=11) from Nanjing
Drum Tower Hospital (Fig. 3j). Besides, IHC analysis demonstrated
elevated expression of LITAF in HM tissues than in paired PT tissues in
another independent cohort of PDAC patients (n=10) from the First
Affiliated Hospital of Soochow University (Supplementary Fig. 6e).
Moreover, we performed IHC staining of LITAF in a third cohort con-
taining 46 PDAC tissues (PT) and adjacent normal pancreas (NT) col-
lected at Nanjing Drum Tower Hospital. We found that LITAF
expression was obviously higher in PT than in NT tissues (Supple-
mentary Fig. 6f). Interestingly, we also noticed that LITAF expression
was significantly increased in PDAC patients with lymph node metas-
tasis compared with those without lymph node metastasis (Supple-
mentary Fig. 6g). All these data suggest that LITAF expression is
associated with the metastatic progression of PDAC.

Cancer-associated fibroblasts subtyping and their contribution
to the metastatic PDAC microenvironment

Next, we analyzed the stromal compartment in the tumor micro-
environment (Supplementary Fig. 7a and Supplementary Data 4),
with an emphasis on fibroblasts (Fig. 4a). We found that all the
fibroblast clusters showed a high expression of the well-defined
panCAF markers including COLI1A1, DCN, VIM, FAP, and PDPN’,
indicating the identified fibroblasts are likely cancer-associated
fibroblasts (CAFs) (Fig. 4b). CAFs are known to constitute the
majority of the desmoplastic stroma and promote tumor growth and
invasion through regulating extracellular matrix components in
many cancer types including PDAC?*, we thus focused on the
expression signatures of CAFs in PDAC metastases. CAFs have been
previously divided into inflammatory CAFs (iCAFs), myofibroblastic
CAFs (myCAFs), and antigen-presenting CAFs (apCAFs) in pancreatic
cancer*. We identified all three subtypes in our data based on known
marker genes (Fig. 4a and Supplementary Fig. 7b). Clusters 0-5 were
defined as myCAFs due to the expression of classical myofibroblastic
markers such as ACTA2 (aSMA) and COL3AI; cluster 6 preferentially
expressed CLU, Cllorf96, and MT1M, representing an apCAF sub-
type; cluster 7 was identified as an iCAF subtype expressing the iCAF
signature genes including CFD, C3, and C7.iCAFs and apCAFs are rare
cell types and were mostly present in NT tissue in our data (Fig. 4c).
Of the six myCAF clusters, cluster 5 (RGS5" myCAF) was

predominantly present in HM tissues, while the other five myCAF
clusters showed similar distribution between PT and HM tissues
(Fig. 4c and Supplementary Fig. 7c). All myCAF clusters, but not iCAFs
and apCAFs, showed high expression of the fibronectin gene FNI
(Fig. 4d), whose high expression is reported to be associated with
aggressive pancreatic cancer”. We then compared the differentially
expressed genes (DEG) among CAF clusters and the DEGs within
CAFs among different tissues. We observed a significant overlap
(p < 0.0001 by ¥ test) between these two gene sets, suggesting these
genes (n=35) are the major contributors to transcriptional hetero-
geneity between CAFs of primary and metastatic tumors (Fig. 4e and
Supplementary Fig. 8a). Notably, most of the upregulated DEGs in
myCAFs, especially those related to cluster 5 RGS5" myCAFs,
including integrin (ITGA1), autoantigen (UACA), smooth muscle actin
(RGSS5), matrix Gla protein (MGP), collagen subunits (COL4Al,
COL4A2, COL18Al), cell-surface biomarker (THY1) and fibronectin
(FN1), were also highly expressed in HM tissues. The existence of
RGS5" myCAFs in PDAC was confirmed in a published scRNA-seq
dataset® (Supplementary Fig. 8b, c). Besides, the co-expression of
aSMA and RGSS5 was validated by multi-color immunofluorescence
staining in both PT and HM tissues, confirming the existence of RGS5*
myCAFs in PDAC (Fig. 4f). Importantly, the accumulation of RGS5*
myCAFs surrounding ductal cells was remarkably higher in HM than
in PT tissues, highlighting the potential biological significance of
RGS5" myCAFs in the metastatic microenvironment of PDAC.

To explore the development mechanisms and the potential role of
these distinct CAF subpopulations in pancreatic cancer metastasis, we
performed cell trajectory analysis to dissect their route of progression.
Unsupervised trajectory analysis based on RNA velocity revealed that
the CFD" iCAF (cluster 7) was the earliest and most naive CAF popu-
lation, and the RGS5" myCAF (cluster 5) was the most mature CAF
population (Fig. 4g). Subsequently, we reordered the CAFs into pseu-
dotime trajectories using Monocle2 by defining the CFD* iCAF cluster
as the starting point. This revealed five distinct cell states (S1-S5) and
two major trajectory routes (routes 1 and 2; Fig. 4h). Interestingly, we
noticed that both trajectories differentiated through intermediate
CAFs derived from PT tumors and branched toward cell states enri-
ched for myCAFs derived from HM tumors, suggesting both differ-
entiation trajectories are related to pancreatic cancer metastasis
(Fig. 4h). Route 1 consisted of states S1 and S2, where CAFs transitioned
from the iCAF subtype to an intermediate state of apCAFs then to the
RGS5* myCAFs. This trajectory showed increased expression of the
pericyte marker RGS5 and hypoxia-inducible factor EPASI1 (Fig. 4i) and
enriched pathways related to mesenchymal cell apoptosis and hypoxia
response (Fig. 4j). In contrast, CAFs in route 2 developed from iCAFs to
myCAFs of distinct states which then bifurcated into either S4 or S5
states expressing high FN1 (Fig. 4h, i and Supplementary Fig. 9). Dif-
ferent from route 1, functional enrichment of gene markers in states
from route 2 was highlighted by pathways related to granulocyte
macrophage colony stimulating factor production (for S4) and meso-
dermal cell fate specification (for S5) (Fig. 4j). Taken together, our
analysis reveals the accumulation of specific myCAF subclusters dur-
ing PDAC metastatic progression.

Lipid-associated macrophages (LAMs) play an important role in
PDAC liver metastasis

Because the fraction of macrophage/monocytes in HM tissues was
significantly higher than that in PT tissues (Fig. 1e), we investigated the
composition and gene expression of myeloid-derived cells in PDAC
liver metastases. Re-clustering of all 10062 myeloid cells revealed ten
cell populations with varying frequencies in different tissues (Fig. 5a-c,
Supplementary Fig. 10a and Supplementary Data 5). The monocyte
population (cluster 6) was characterized by high expression of FCNI1,
S100A9, EREG, and THBSI (Fig. 5c). We also identified a cluster of
classical dendritic cells (DCs) expressing CDIC, CST7, and FCERIA,
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which most likely originated from normal pancreatic tissues (Fig. 5Sb). macrophage marker CD68 and lipid metabolism genes such as APOE,
For the macrophage population (CD68" cells, Fig. 5c, d), in additionto  APOC1, and FABP5 (Fig. 5c, d). LAM1 and LAM2 both had high
the conventional ‘MI-like’ (cluster 0) and ‘M2-like’ (cluster 1) cells, we  expression of SPP1, which has been reported to be secreted by TAMs to
discovered four macrophage clusters (clusters 2/3/7/9) that can allbe  promote cancer progression®’; while LAM3 and LAM4 showed high
classified as the recently discovered lipid-associated macrophages expression of CCL18 which has immune-suppressive and tumor-
(LAMs)®. The four LAM clusters (LAMI-4) shared similar tran- promoting functions® (Fig. 5c). Moreover, we observed a sub-
scriptomic characteristics including high expression of the stantially increased proportion of LAM1/2/3 cells in tumor tissues, of
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Fig. 4 | Transcriptional profiling of fibroblasts in the tumor microenvironment
of primary and metastatic PDAC tissues. a UMAP showing the subtypes of cancer-
associated fibroblasts (CAFs), including iCAF, apCAF and myCAF, colored by sub-
clusters. b Violin plots (left) displaying the representative expression pattern across
different subtypes of fibroblasts. Dot plot (right) showing the expression of the top
five subtype-specific gene markers in each subtype. ¢ Distribution of CAFs in dif-
ferent sample groups on the UMAP. Pie chart showing the proportion of three
sample groups in each CAF subcluster. d Feature plots showing the expression of
selected cluster-specific genes. Cells with the highest expression level are colored
red. e Venn diagram (bottom) showing the overlap of DEGs between subclusters
and sample groups of CAFs. The p value was calculated using the x2 test. Dot plot
(top) showing the expression of these 35 DEGs across all stroma cell subclusters and
sample groups. f Immunofluorescent staining showing co-localization of RGS5
(green), a-SMA (red), PanCK (purple), and DAPI (blue) in PT and HM samples. Scale
bars, 50 pum (left) and 20 pm (right). The bar plots show the quantification results,
n =3 patients with paired PT and HM samples. The error bar indicates standard

error of the mean (s.e.m.). The p value is calculated with one-sided Wilcoxon rank-
sum test. g Boxplot showing the latent time of CAF subtypes by RNA velocity.The
number of cells in each category is indicated in the left of boxplot (0: n=1108; 1:
n=1016;2:n=383;3:n=272;4:n=446;5:n=264; 6:n=397; 7: n=560). The boxes
showing the median (horizontal line), second to third quartiles (box), and Tukey-
style whiskers (beyond the box). h Semisupervised pseudotime trajectory of CAF
subtypes by Monocle2. Trajectory is colored by pseudotime (top left), cell states
(bottom left), cell clusters (top middle), sample groups (bottom middle), and
expression dynamics of two marker genes FNI and RGSS (right). i Heatmap showing
the scaled expression of differentially expressed genes across pseudotime from h.
Genes (listed to the right of the heatmap) are assigned to specific cell states based
on their expression levels. Bar plots above the heatmap are scaled diagrams of
different cell states, sample groups and cell clusters during pseudotime differ-
entiation trajectory. j Heatmap showing the functional pathways enriched in five
cell states (S1-S5) of CAFs by GSVA analysis.

which the CCL18" LAM3 cells were predominantly present in HM tis-
sues (Fig. 5b). A closer look at the gene expression prolife of LAM3
among different tissue types showed the higher expression of lipid
metabolism-associated genes like APOC1, APOE, and FABP5 and
immune-related genes like CCL18 in HM than in PT and NT tissues,
which was validated in a published dataset by Yang et al.”* (Fig. Se,
upper part; Supplementary Fig. 10b, c¢). The existence of CCL18"
macrophages was also verified in a published dataset by Peng et al. °
(Supplementary Fig. 10d, e). Moreover, multi-color immuno-
fluorescence staining confirmed the remarkably enhanced infiltration
of CCL18" macrophages (CD68") in HM than PT tissues (Fig. 5f).

Gene ontology (GO) analysis revealed the enrichment of certain
pathways in LAM cells such as regulation of lipid localization, fatty acid
transport, triglyceride metabolism, inflammatory response, and reg-
ulation of immune system process, highlighting LAM as an important
source of lipid metabolism and immunoregulatory molecules (Sup-
plementary Fig. 10f and Supplementary Data 6). To understand the
metabolic landscape of LAMs in PDAC metastasis, we utilized
scMetabolism® to systematically quantify the metabolic activities
using our scRNA-seq data. We computed the metabolic pathway
activity score for all 76 metabolic pathways annotated in scMetabo-
lism, and found the metabolic score of LAMs in HM tissues was sig-
nificantly higher than that in PT and NT tissues (Supplementary
Fig. 10g). Surprisingly, the CCL18" LAM3 cells enriched in HM tissues
exhibited the highest metabolic activities among all LAMs, demon-
strating that they were exceedingly vital and energetic at metastatic
sites (Fig. 5g). Additionally, unsupervised clustering of all the
metabolism-related genes within LAM3 cells identified more than 50
metabolic pathways that were markedly upregulated in HM tissues
(Supplementary Fig. 11a). Among them, numerous lipid metabolism-
associated pathways including glycerolipid metabolism, glyceropho-
spholipid metabolism, fatty acid elongation and fatty acid degradation
were highly enriched in HM-infiltrated LAM3 cells. We further investi-
gated into the differentially expressed metabolic genes, and found that
a large number of these genes, such as PLD3 (related to glyceropho-
spholipid metabolism), LDHB (related to propanoate metabolism) and
GSTO1 (an enzyme involved in metabolism of xenobiotics by cyto-
chrome P450), were remarkably upregulated in HM-associated LAM3
(Supplementary Fig. 11a, b).

Neutrophils, which have been reported as an important compo-
nent of the metastatic tumor microenvironment®’, were prominently
enriched in HM tissues (Fig. 5a, b and Supplementary Fig. 11c). We
identified two populations of neutrophils: one (cluster 4, SLPI' neu-
trophils) highly expressing SLPI, C150rf48, TNFAIP3, and the other
(cluster 8, SIOOA8' neutrophils) expressing IFITM2, SI00A8, NAMPT,
CXCR4, SRGN, and CXCLS (Fig. 5a-c). Of note, the expression of most
S100A8" neutrophil markers were substantially elevated in HM tissues
compared with PT and NT tissues, and SI00A8 was almost exclusively

expressed in HM tissues (Fig. 5e, bottom part). Consistent with our
scRNA-seq data, the published dataset by Yang et al."” also confirmed
the high expression of most cluster 8 marker genes in metastatic
PDAC, including S1I00A8, SGRN, NAMPT, CXCLS, and IFITM2 (Fig. 5e,
right; Supplementary Fig. 11d). We further confirmed the increased
infiltration of SI100A8' neutrophils in HM tissues by immuno-
fluorescence staining (Supplementary Fig. 1le), indicating that the
infiltration of SI00A8" neutrophils is closely linked to the metastatic
progression of PDAC.

Myeloid cells have been reported as an important source of
immune checkpoints in tumors®, we therefore analyzed the expres-
sion of immune checkpoint genes within the myeloid compartment in
our samples. In general, the expression of immune checkpoint genes
and their ligands showed distinctive patterns between myeloid cell
subsets (Fig. 5h). Interestingly, we observed marked upregulation of a
series of immune checkpoint genes including VISR, TNFRSF14, NEC-
TIN2, CD40, CD86, CD276, HAVCR2, and LGALS9 in most tumor-
infiltrating myeloid cells (Fig. 5h). We closely looked at the differen-
tially expressed checkpoint genes in LAM3 cells; among them CD40,
CD86, CD276, HAVCR2, and LGALS9 were highly expressed in HM
tissues (Supplementary Fig. 12a). Most of these genes were specific for
myeloid cells and regarded as immunosuppressive molecules (Sup-
plementary Fig. 12b). Subsequent survival analysis demonstrated that
high expression of CD276, CD40, and LGALS9 was significantly asso-
ciated with poor prognosis in the TCGA PDAC dataset (Supplementary
Fig. 12c). Collectively, these data suggest a crucial function of CCL18"
LAM3 cells in PDAC microenvironment especially in the metastatic
microenvironment.

Lymphoid reprogramming towards a metastatic microenviron-
ment in PDAC

We next characterized the transcriptional properties of the lymphoid
cell population. Unsupervised clustering of lymphoid cells resulted in
twelve subclusters, including seven CD4" T cell clusters (CD4 CD69*,
CD4 CCR7*, CD4 FTHI", CD4 CCL20", CD4 LTB’, T eg FOXP3", and Tgy
CXCL13"), four CD8" T cell clusters (CD8 IFNG', CD8 GZMK®, CD8
DUSP2*, and CD8 EOMES") and one NK cell cluster (NK GNLY®)
(Fig. 6a-c and Supplementary Data 7). All these subpopulations were
shared among NT, PT, and HM tissues (Fig. 6d). Notably, NK cells,
which displayed high expression levels of GNLY, NKG7, CCL3, and
KLRD1 (Fig. 6¢), were enriched in tumor tissues, especially in HM tis-
sues (Fig. 6d, e). In addition, NK cells showed remarkable upregulation
of cytotoxic gene expression (Fig. 6f). Immunofluorescence staining
also indicated an increase of GNLY* NK cells in HM tissues compared
with PT tissues (Fig. 6g, h), implying an important role of NK cells in the
metastatic growth of PDAC. Similarly, FOXP3" T, cells were heavily
enriched in tumors, both in PT and HM tissues (Fig. 6d), demonstrating
both “co-stimulatory” and “exhausted” signatures (Fig. 6f). The Teg
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cells also expressed remarkably high levels of immune checkpoint
genes including CTLA4, TIGIT, ICOS, TNFRSF4, and TNFRSF9 (Fig. 6i).
Notably, the inhibitory molecules CTLA4 and TIGIT were pre-
dominantly expressed in T, and Tgy cells, but rarely expressed in
other T cell clusters (Fig. 6i). More importantly, we observed sig-
nificantly higher expression of all the five checkpoint genes within Tyeg
cells including CTLA4, TIGIT, ICOS, TNFRSF4, and TNFRSF9 in HM
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tissues than PT tissues (Fig. 6j). Besides, HM-enriched T.eg cells dis-
played more prominent “Treg” and “resident” features, suggesting a
potential role of FOXP3" T, cells in metastatic PDAC (Fig. 6k). The
CXCL13" Tgy cells were also enriched in tumors with high expression of
cytotoxic genes like GZMA, GZMB, TNFSF10, and GNLY (Fig. 6f).
However, the proportion of Tgy cells was lower in HM tissues than in PT
tissues (Fig. 6d). Notably, the CXCL13" Tgy cells showed high
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Fig. 5 | Transcriptional landscape of myeloid cells in the tumor micro-
environment of primary tumor and liver metastasis tissues. a UMAP showing
the subtypes of myeloid cells, colored by subtypes. b Distribution of myeloid cells
in different sample groups on the UMAP. Pie chart showing the proportion of three
sample groups in each cell subcluster. ¢ Dot plot illustrating the average expression
and frequency of representative marker genes in each myeloid cell subcluster.

d Feature plots showing the expression of selected cluster-specific genes. Cells with
the highest expression level are colored red. e Dot plot illustrating DEGs in neu-
trophils and Lipid-associated macrophages (LAMs) from three sample groups (left).
Boxplots showing the expression patterns of SI0O0AS8, CXCLS, SPP1, and APOCI
using the bulk RNA-seq dataset from Yang et al.2. The number of samples in each
group is in the legend. The boxes showing the median (horizontal line), second to
third quartiles (box), and Tukey-style whiskers (beyond the box).

f Immunofluorescent staining showing co-localization of CD68 (green), CCL18
(red), PanCK (yellow), and DAPI (blue) in PT and HM samples. Scale bars, 50 pm

(left) and 20 pm (right). The bar plots show the quantification results, n = 3 patients
with paired PT and HM samples. The error bar indicates standard error of the mean
(s.e.m.). The p value is calculated with one-sided Wilcoxon rank-sum test. g Boxplot
(top) showing the metabolic score of metabolic pathways in four LAM subclusters
(LAM1-LAM4). The points indicate individual pathways (n =76). Dot plot (bottom)
showing the metabolic activity analysis of all LAM subclusters by scMetabolism.
The circle size and color darkness both represent the scaled metabolic score. The
number of pathways in each category is indicated below the boxplot. The boxes
showing the median (horizontal line), second to third quartiles (box), and Tukey-
style whiskers (beyond the box). h Heatmap showing the scaled expression levels of
a series of immune checkpoint genes in myeloid cell subtypes. Subtypes are
grouped by sample source and myeloid cell type annotations (DC, LAM, macro-
phage, monocyte and neutrophil). Genes are grouped as receptor or ligand, inhi-
bitory or stimulatory status and expected major lineage cell types known to express
the gene (lymphocyte and myeloid).

expression of immune checkpoints proteins including PDCD1 (PD-1),
LAG3, and HAVCR2 known to enhance T cell cytotoxicity (Fig. 6f).
Together, these data suggest that multiple immune checkpoint genes
were expressed in the T,z and Tgyy cell populations. In particular, some
checkpoint genes were extremely upregulated in T, cells within the
metastatic microenvironment (HM tissues).

For CD8" T cells, the four defined subpopulations were all abun-
dantly present in PDAC tumors, and similarly distributed between HM
and PT tissues (Fig. 6a, d). Nearly all the CD8" T cells in tumor tissues
exhibited low levels of “co-stimulatory” and “exhausted” gene sig-
natures, but high levels of “resident” and “cytotoxicity” gene expres-
sion (Fig. 6f). For example, the EOMES* CD8 T cells, the proportion of
which was slightly higher in HM tissues than in PT tissues, displayed
high expression of EOMES, GZMK, and TNFRSF14, but reduced
expression of exhausted genes including CTLA4 and TIGIT (Fig. 6f).

Reprogrammed interactome landscape across immune cells and
ductal cells in the metastatic microenvironment of PDAC
Finally, to decipher the crosstalk between tumor cells and other
components in the tumor microenvironment during PDAC metastasis,
we utilized a public repository of ligand-receptor (L-R) interactions,
CellPhoneDB*, to visualize L-R-mediated intercellular interactions. In
general, the interaction among different cell types was much lower in
HM tissues than in PT tissues (Fig. 7a). In particular, the interaction
between immune cells, especially NK/T cells and other cell types, was
significantly reduced in HM tissues compared with PT and NT tissues
(Supplementary Fig. 13a, b). Strikingly, we found that NK/T cells barely
interacted with tumor ductal cells in HM tissues; the interactions
between myeloid cells and ductal cells were also significantly
decreased in HM tissues compared with PT tissues (Fig. 7a), suggesting
that metastatic tumor cells had less contact with its environment,
which might be an important mechanism responsible for the coloni-
zation of PDAC cells in the metastasis site.

We identified a total of 464 L-R pairs whose interacting fre-
quencies were significantly different across the three tissue types
(Fig. 7b). Notably, the interactions between CAFs and other cell types
were more frequently present in HM tissues than in PT and NT tissues
(Fig. 7c, d). For example, we identified increased communication
between DLL1 and NOTCH2 signals in HM tissues, especially in CAFs
(Fig. 7¢, d and Supplementary Fig. 14a). On the contrary, we observed
less interaction between ductal cells and other cell types, including
iCAFs and T cells, in HM tissues compared with PT tissues (Fig. 7c, d).
For instance, the crosstalk between WNT5a and ROR1 was only iden-
tified in PT-specific ductal cells and iCAFs (Fig. 7c, d and Supplemen-
tary Fig. 14b). In addition, a co-expression pattern was identified for
PF4/CXCR3 between ductal cells and T cells in PT tissues, suggesting a
potential mechanism by which CXCR3" T cells could be recruited to the
tumor epithelium. However, the crosstalk between ductal cells and
most subtypes of T cells was almost absent in the metastatic

microenvironment. The only exception is the FOXP3" T, cells, which
displayed a significantly higher level of interaction with ductal cells in
HM tissues than that in PT tissues, highlighting the crucial role of T,eg
cells in promoting the metastasis of PDAC (Fig. 7e). This was confirmed
by immunofluorescence staining in patient samples, showing the
enhanced accumulation of CD4"/FOXP3" T cells surrounding the
epithelium in HM tissues (Fig. 7f). Although the FOXP3" T, cells could
also be detected in PT tissues, most of them were not adjacent to the
epithelium, suggesting the lack of interaction between T,cg cells and
ductal cells in PT tissues. In contrast, the interaction between CXCL13"
Try cells and ductal cells was more apparent in PT tissues, which is
consistent with other T cell populations (Fig. 7e). Furthermore, HM
tissues showed increased expression of a series of chemokine-
encoding genes such as CCL18, CCL20, and CXCLS, which were
known to inhibit CD8" T cell infiltration and promote the recruitment
of Teg cells to bring about an immunosuppressive
microenvironment®>*" (Fig. 7g). Together, these data provide
mechanistic insights, from the perspective of intercellular interactions,
into the formation of the TME in PDAC patients with liver metastasis.

Discussion

Despite the progression in surveillance and treatment strategies, the
survival outcomes of PDAC patients remain poor due to the high
incidence of distal metastasis at initial diagnosis, and after surgical
resection®. The high degree of intra-tumoral heterogeneity and the
complex TME rich in desmoplastic stroma are widely considered the
main obstacles to effective treatment of PDAC patients®. A recent
study showed that primary PDAC tumors and hepatic metastases share
high similarities in somatic mutations, copy number variations and
transcriptomic profile'>. However, cellular differences in the TME
between primary and metastatic PDAC remain an open question. Up
until now, very limited studies have focused on exploring the cellular
ecosystems in PDAC metastases using single-cell sequencing
approaches''®, Since metastatic tissues could not be acquired through
surgical resections in most PDAC patients, these studies only collected
limited biopsies from metastases via EUS-FNA, thus hindering the
integrated understanding and assessment of the entire tumor micro-
environment in metastatic PDAC. In this study, we aim to provide a
comprehensive single-cell transcriptomic landscape for characterizing
the tumor microenvironment in primary PDAC and matched liver
metastases simultaneously using high-quality surgically resected tis-
sues. Our study not only presents a high-resolution description of the
cellular diversity in the tumor, stromal, and immune components, but
also underlines the intercellular crosstalk in primary and
metastatic PDAC.

In the present study, we dissected the cellular composition of
both primary PDAC and liver metastases tissues. Neoplastic ductal
cells are of high inter-patient heterogeneity in both human and murine
PDAC tissues™ while little is known about the intra-tumoral
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heterogeneity of metastatic PDAC. Intriguingly, we made an interest-
ing finding that the accumulation of CEACAMS5*/CEACAM6" ductal
cells was associated with poor overall survival in PDAC patients,
highlighting the tumor-promoting function of these two ductal cell
clusters. CNV-based analysis demonstrated that the proportion of
CNVmedivm and CNVIe" ductal cells was much higher in HM tissues than
PT tissues, confirming the malignant state of metastatic ductal cells.
Besides, CNV levels might contribute to the inter-patient

heterogeneity of metastatic ductal cells. For example, the percentage
of CNV"&" ductal cells in HM from patient 3 was more than 70%, while
CNVhie" ductal cells constituted less than 10% in HM from patient 1
(Fig. 2c). Recently, Lee et al.'® reported that epithelial-mesenchymal
transition and hypoxia pathways might lead to the aggressive pheno-
type of liver metastases using pseudotime analysis in a few biopsy
tissues. In our study, we identified five ductal cell states via pseudotime
trajectory analysis and further delineated the evolutionary dynamics of
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Fig. 6 | Transcriptional landscape of lymphoid cells in the tumor micro-
environment of primary tumor and liver metastasis tissues. a UMAP projection
of subclustered lymphoid cells, labeled in different colors. b Feature plots showing
the expression of selected cluster-specific genes. Cells with the highest expression
level are colored red. ¢ Dot plot illustrating the average expression and frequency
of representative marker genes in the subclusters of lymphoid cells. d Distribution
of lymphoid cells in different sample groups on the UMAP. Pie chart showing the
proportion of three sample groups in each cell subcluster. e Boxplot indicating the
proportion CD4* T, CD8' T and NK cells in three sample groups (NT; n=1,PT; n=3,
HM; n=4). The boxes showing the median (horizontal line), second to third
quartiles (box), and Tukey-style whiskers (beyond the box). The p value is calcu-
lated using one-sided Wilcoxon rank-sum test. *p < 0.05. f Heatmap indicating the
expression of selected gene sets, including naive, resident, cytotoxicity, exhausted,
co-stimulatory, transcriptional factors (TF), and cell type, in each lymphoid cell

subcluster. g Immunofluorescent staining showing co-localization of CD4 (green),
CDS8 (yellow), GNLY (red), and DAPI (blue) in PT and HM samples (n = 3). Scale bars,
55 um (left) and 25 pm (right). h The bar plots show the quantification results from
g, n=3 patients with paired PT and HM samples. The error bar indicates standard
error of the mean (s.e.m.). i Heatmap showing the scaled expression levels of a
series of immune checkpoint genes in subtypes of lymphoid cells. Subtypes are
grouped by sample source and lymphocyte cell type annotations (CD4* T, CD8" T,
and NK cell). Genes are grouped by receptor or ligand, inhibitory or stimulatory
status and expected major lineage cell types known to express the gene (lympho-
cyte and myeloid). j Dot plot illustrating the expression levels of five checkpoint
genes (CTLA4, TIGIT, ICOS, TNFRSF4, and TNFRSF9) in regulatory T cells from three
sample groups. k Heatmap indicating the expression of selected gene sets,
including cytotoxicity, naive, transcriptional factors (TF), resident, cell type,
exhausted, and co-stimulatory, in regulatory T cells from three sample groups.

pancreatic ductal cell lineages from primary to metastatic PDAC, that
is, from a high proliferative but low CNV state in PT tissues to a
malignant CNV"e" state in HM tissues. Importantly, we discovered a
panel of malignant genes responsible for PDAC progression and
metastasis, such as KLK7, LITAF, and SPRRIB. Interestingly, KLK7,
which encodes the kallikrein-related serine peptidase, was recently
reported to control the remodeling of tumor microenvironment*’,
validating the functional relevance of our bioinformatics analysis. The
functions of other identified genes in the progression of pancreatic
cancer are worth investigating in future studies.

CAFs have been shown to play critical roles in promoting tumor
growth and metastasis in multiple cancer types**>. Previous studies
have identified various CAF subpopulations in both human and
murine pancreatic tumors, including myCAF, iCAF, and apCAF*. A
recent study proved the existence of all three CAFs in biopsy tissues
from metastatic PDAC patients; however, they did not investigate
how different CAFs contribute to PDAC metastasis at single-cell
level®. Another recent study demonstrated that the major CAF
subtype within hepatic metastases appeared to have a ‘pericyte-like’
expression profile similar to myCAF signatures, suggesting the
pathophysiologic features of CAFs were different between the pri-
mary and metastatic microenvironment*. Yet the molecular events
underpinning the function of CAFs in the metastatic micro-
environment of PDAC remain poorly defined. In the current study,
we validated the accumulation of myCAF, iCAF, and apCAF in both
PT and HM tissues, the majority of which were myCAFs. Surpris-
ingly, we identified a subpopulation of myCAF (RGS5") pre-
dominantly expressed in HM tissues which was validated by
immunofluorescence staining. RGS5" myCAF has been found in
bladder cancer** but has not been linked to PDAC. Importantly,
pseudotime trajectory analysis revealed RGS5" myCAF as the most
mature and malignant CAF population in the metastatic micro-
environment, possibly arising from the CFD" iCAF cells. Therefore,
the RGS5" myCAF subpopulation could be a potential therapeutic
target for advanced PDAC patients. The precise role of RGS5*
myCAF in PDAC progression needs to be further explored.

The predominance of myeloid cells in HM tissues prompted us to
elaborate the function of myeloid cells in the metastatic micro-
environment. We identified six clusters of macrophages, including
four subtypes of lipid-associated macrophages (LAMs). Notably, the
LAM3 subpopulation was predominantly presented in HM tissues with
high expression of CCL18, which has been reported to exert immune-
suppressive functions through inhibiting the production of inflam-
matory factors®’. Wu et al.” reported that CCL18" macrophages are
enriched in metastatic sites of colorectal cancer patients and exhibit an
immune-suppressive phenotype and are sensitive to neoadjuvant
chemotherapy, emphasizing the crucial role of CCL18" LAMs in the
metastatic microenvironment. Using the scMetabolism pipeline, we
found that CCL18" LAM3 cells enriched in HM tissues exhibited the
highest metabolic activity. The function of CCL18" LAM3 cells in the

metastatic microenvironment of PDAC needs to be investigated
in depth.

Neutrophils are key components of the metastatic micro-
environment and display heterogeneity in multiple cancers*®*.
Recently, Wang et al.*® showed that a subset of P2RX-negative neu-
trophils accumulates in PDAC liver metastases, and trigger the evasion
of antitumor immunity in the metastatic microenvironment; however,
the molecular mechanisms underlying neutrophil infiltration in PDAC
hasn’t been elucidated at single-cell level. We identified two clusters of
tumor-associated neutrophils, both of which were substantially
expressed in HM tissues, especially the SI00A8" neutrophils. Of note,
CXCLS, a chemokine gene found to be highly expressed in both clus-
ters, was reported to promote the immunosuppressive
microenvironment®. These findings emphasize the role of certain
subtypes of neutrophils in promoting PDAC metastasis.

Resistance to most immunotherapies is a hallmark of PDAC, and
previous single-cell-based studies have demonstrated profound
immune suppression and T cell dysfunction in PDAC tumor
microenvironment'®*°. In this study, we observed the expression of
exhausted and inhibitory checkpoint receptors such as LAG3 in most
CD8" T cells, which is consistent with a recent study showing that CD8"
T cells in PDAC tissues have pronounced exhaustion signatures'.
Notably, we also identified a subset of GNLY* NK cells in tumor tissues,
and found that the percentage of NK cells was profoundly elevated in
HM compared with PT tissues, which is contradictory to previous
findings that the number and activity of NK cells decrease as the dis-
ease progresses in PDAC patients®. One possible explanation is that
the GNLY* NK cells exhibited increased expression of the immuno-
suppressive checkpoint molecule HAVCR2, a potential immunother-
apeutic target for metastatic PDAC. An enrichment of T, cells in
tumor-infiltrating lymphocytes is observed in many cancers, hepato-
cellular carcinoma for instance, leading to an immunosuppressive
microenvironment®. Yet the role of T, cells in PDAC progression and
metastasis is not well understood. In our analysis, the T, cells
expressed high levels of immune checkpoint genes including CTLA4,
TIGIT, ICOS, TNFRSF4, and TNFRSF9, representing both exhausted
and co-stimulatory signatures. Interestingly, we found that FOXP3" T;eg
cells exhibited a remarkably enhanced level of interaction with ductal
cells in HM compared with PT tissues through interactome prediction
analysis and validation with immunofluorescence staining, whereas
the overall interaction between total NK/T cells and ductal cells was
almost absent in the metastases, possibly due to the excessive inter-
play between T, cells and ductal cells. Our dataset a stage for
developing immunotherapeutic strategies against T.g cells for
advanced PDAC patients.

Our study has some limitations. Firstly, due to the difficulty of
acquiring matched primary and metastasis tissues from PDAC patients
via surgical resection, the sample size of this study is limited to four
patients. Because the tumor microenvironment of the metastatic
multifocal tumors is highly heterogeneous even within one patient,
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our data may not reflect the entire ecosystem of metastatic PDAC. cellular components in the tumor microenvironment of a unique set
Besides, the ligand-receptor interaction analysis among different of matched primary and metastatic PDAC tumor samples. The intra-
cellular components was derived mostly from transcriptomic predic- tumoral crosstalk between tumor and immune cells is also high-
tions. Further confirmation of these predicted interactions by high- lighted, facilitating a deeper understanding of the mechanisms
dimensional multiplex in situ profiling is required. underlying the immunosuppressive microenvironment in meta-

In summary, our study provides an in-depth characterization of  static PDAC. Although further functional validation of these ana-
the transcriptomic and functional phenotypes of the diverse lyses is warranted, our dataset can serve as a valuable resource for
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Fig. 7 | Dynamics of cell-cell interaction networks in the tumor micro-
environment of primary and metastatic PDAC tissues. a Heatmap illustrating the
cell-cell interaction patterns in NT, PT, and HM samples. b Heatmap showing the
interaction scores for 464 ligand-receptor pairs in NT, PT, and HM groups,
respectively. Group specificity is displayed on the left of the heatmap. ¢ Bar plot
showing group-specific ligand-receptor pairs in three sample groups. d Heatmap
showing the enrichment of sample-specific ligand-receptor pairs in cell subtypes.
e Boxplot indicating cell-cell interaction counts between Tgy (CXCL13) and ductal
cells, as well as between T, (FOXP3) and ductal cells. The number of
ligand-receptor pairs (n = 6) in each category is indicated below the boxplot. The

boxes showing the median (horizontal line), second to third quartiles (box), and
Tukey-style whiskers (beyond the box). The p value is calculated with one-sided
Wilcoxon rank-sum test. f Immunofluorescent staining showing co-localization of
CD4 (green), FOXP3 (red), PanCK (yellow), and DAPI (blue) in PT and HM samples.
Scale bars of each group, 50 pm (left) and 20 pm (right). The bar plots show the
quantification results, n=3 (9 view fields in total). The error bar indicates standard
error of the mean (s.e.m.). The p value is calculated with one-sided Wilcoxon rank-
sum test. g Dot plot illustrating the expression and frequency of representative pro-
inflammatory and cytotoxic-mediator genes in NT, PT, and HM samples.

the design of targeted therapies and immunotherapeutic approa-
ches for advanced PDAC.

Methods

All studies comply with all relevant ethical regulations. All research
protocols involving human samples were subjected to review by the
Ethics Committee of the First Affiliated Hospital of Soochow University
and Nanjing Drum Tower Hospital, and received approval for the study
protocols as described in detail below.

Sample collection and preparation

Four patients who were pathologically diagnosed with PDAC with liver
metastases were enrolled into this study. None of the patients received
any antitumor therapy prior to surgery. Three of the patients (P1-P3)
underwent primary PDAC resection, as well as synchronous oligome-
tastatic resection at the First Affiliated Hospital of Soochow University,
China. The decision for the operations was made based on extremely
careful preoperative assessment of the high-resolution abdominal
magnetic resonance imaging (MRI) and enhanced computed tomo-
graphy (CT) data. The biopsy of the liver metastasis from the fourth
patient (P4) was obtained via EUS-FNA operation in Nanjing Drum
Tower Hospital Affiliated to Nanjing University Medical School. The
patients included males and females, aged 49-73, as the information on
sex and gender was not relevant in our study. The clinical character-
istics of the patients were shown in Supplementary Table 1. All patients
provided written informed consent for sample collection and data
analyses prior to operation.

Tissue dissociation

Tissues were cut into 2-4 mm? segments and underwent cell lysis using
gentleMACS (130-093-235; Miltenyi Biotec Germany) and MACSmix
(130-090-753; Miltenyi Biotec Germany) in the mixed enzyme solution
(4.7mL Medium, 200puL Enzyme H, 100 uL Enzyme R, and 25uL
Enzyme A). The lysate was resuspended and filtered through a 70-um
cell strainer (130-098-462; Miltenyi Biotec Germany). Cells were col-
lected by centrifuging (300 x g for 7 min at 4 °C) and resuspended at
700-1200 cells/ul. The entire mixed cell populations were analyzed
further without sorting or enriching for particular cell subtypes.

Whole-exome sequencing

Whole-exome capture was performed using an Agilent SureSelect
Human All Exon V6 kit. Exome sequencing data were aligned to the
GRCh38 human reference genome with BWA (version 0.7.15)%. After
sorting aligned reads using samtools (version 1.9), we used GATK
(version 4.3.0.0) to mark and remove duplicate reads and perform
base mass recalibration. The MuTect2 algorithm® was used to identify
somatic mutations. MuTect2 identifies candidate somatic mutations
by Bayesian statistical analysis of bases and their qualities in the tumor
and normal BAMs at a given genomic locus. Variants with mutation
allele frequency (MAF)>0.7 were filtered. Allelic copy numbers in
exome sequencing data were estimated using Sequenza with the
default options. The variant allele frequency (VAF) of KRAS mutations
is defined as the number of variant reads divided by the number of
total reads, reported as a percentage. And the VAF for KRAS mutations

of the three detected samples were 0.25 for P2-HM, 0.357 for P3-PT and
0.364 for P3-HM separately.

10x single-cell sequencing

Cell suspension was loaded to the Chromium Single-Cell v2 3’ and 5
Chemistry Library, catching 5000-10,000 cells position. Library con-
struction was sequenced on the NextSeq 500 platform (Illumina),
receiving 26, 8 and 98 cycles run for Read 1, i7 index and Read 2. All
steps were performed according to the manufacturer’s standard
protocol.

scRNA-seq data processing, cluster annotation and data
integration

The 10x Chromium single-cell RNA sequencing (scRNA-seq) data were
processed using CellRanger (v3.1.0; 10x Genomics) for alignment,
barcode assignment and unique molecular identifier (UMI) counting
(using the genome reference set GRCh38-3.0.0). Filtered count
matrices were converted to sparse matrices using the Seurat package
(v3.2.3)%, and cells expressing less than 200 genes as well as with more
than 20% mitochondrial reads, were excluded from the downstream
analysis. The ‘doubletFinder v3’ method from the DoubletFinder
package (v2.0.3)*° was applied for additional cell filtering. Filtered data
were then log normalized and scaled, with cell-cell variation due to
UMI counts and percent mitochondrial reads regressed out.

To avoid batch effects among samples and experiments, inte-
gration of single-cell data was performed using Seurat’s canonical
correlation analysis (CCA) integration method. A total of 2000 fea-
tures for anchoring (the ‘FindIntegrationAnchors’ function) and 30
dimensions for alignment (‘IntegrateData’) were used. Cell clustering
was performed by ‘FindClusters’ function at a resolution of 0.8 and the
top 20 genes were used to define cell identity. Dimensionality reduc-
tion was performed with ‘RunUMAP’ function and visualized by Uni-
form Manifold Approximation and Projection (UMAP). For subgroup
cell clustering, cells of different types were extracted separately and
clustered by their respective first 30 principal components (PCs) using
different resolutions based on visual inspection.

Identification of signature genes

We applied the ‘FindAllMarkers’ function in Seurat to identify specific
genes for each cell subset. For the selection of marker genes specific to
each cell cluster/subset, we calculated the log2 fold change (log2FC)
between two groups (a cell cluster/subset vs. other cells) using the
‘FindMarkers’ function with the Wilcoxon rank-sum test (default
parameters).

CNV estimation in ductal cells

The InferCNV package (version 1.6.0)* was used to infer CNVs in
EPCAM" ductal cells and to recognize cancer cells with default para-
meters. The CNV signal for individual cells was estimated with a 100-
gene sliding window. Genes with a mean count of less than 0.1 across
all cells were filtered out before analysis and the signal were denoised
using a dynamic threshold of 1.3 s.d. from the mean. Ductal cells were
divided into four groups based on CNV accumulation scores: normal,
low, medium, high in the analysis.
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Gene signatures

Inflammation-associated genes, including IFNG, IFNGR1, IFNGR2, IL10,
IL12A, IL12B, IL12RB1, IL12RB2, IL13, IL17A, IL17F, IL18, IL18R1, IL1ISRAP,
IL1A, IL1B, IL2, IL21, IL21R, IL22, IL23A, IL23R, IL2RG, 1L4, IL4R, ILS, IL6,
JUN, NFKBI1, RELA, RORA, RORC, S100AS8, S1I00A9, STAT1, STAT3,
STAT4, STAT6, TGFB1, TGFB2, TGFB3, and TNF, were obtained from
previous publication by Smillie et al.”’.

The cytotoxic gene list consists of 12 genes that translate to
effector cytotoxic proteins (GZMA, GZMB, GZMH, GZMK, GZMM,
GNLY, PRF1, and FASLG) and well-described cytotoxic T cell activation
markers (IFNG, TNF, IL2R, and IL2). The list of genes used for dys-
functional T cells were obtained from Li et al.*® and the TAM gene list
from Cassetta et al.*’. Clinically targetable receptor or ligand immune
modulator markers expressed on the surface of cells were taken from
Wu et al. %%,

Pathway analysis

Differentially expressed genes (DEGs) were detected by the ‘FindAll-
Markers’ function in Seurat, using |[FC| > 2 and adjusted p value < 0.05
as the cut-off values. GO enrichment analysis on DEGs in this study
were performed by the clusterProfiler package®. GSVA was conducted
using the GSVA package®’. Differences between different cell groups
were calculated by the ‘FindMarkers’ function in the Seurat package.

Pseudotime analysis by Monocle

Ductal cell and CAF cell developmental trajectories were inferred using
Monocle2 (version 2.99.3)* with default parameters as recommended
by the developers. Firstly, integrated gene expression matrices from
specific cell type were exported from Seurat into Monocle to construct
a CellDataSet. Secondly, the ‘setOrderingFilter’ function was applied to
sort cells with the variable genes identified by the function of ‘differ-
entialGeneTest’ (cutoff of ¢<0.001). Finally, after dimensionality
reduction using the ‘reduceDimension’ function (using the ‘DDRTree’
reduction method), a series of representative key role genes were
revealed along the differentiation progress by the ‘plot_pseudotime_-
heatmap’ function. Dimensionality reduction was performed with no
normalization and the ‘DDRTree’ reduction method in the ‘reduceDi-
mension’ step. The visualization function “plot_cell_trajectory” were
used to plot each group along the same pseudotime trajectory.

RNA velocity

We used scVelo® (version 0.2.3) to calculate the single-cell trajectory/
directionality using spliced and unspliced reads from the pre-aligned
bam files. From loom files produced by the command-line tool, we
subset the exact same cells that were previously selected for Monocle
trajectory analysis. RNA velocity, latent time, root, and terminal states
were calculated using the dynamical velocity model.

Cell-cell interaction analysis

Cell-cell interactions among the cell types were estimated by Cell-
PhoneDB (v2.1.1)* with default parameters (20% of cells expressing the
ligand/receptor) and using the version 2.0.0 of the database. Cell-
PhoneDB infers the potential interaction strength between two cell
subsets based on the gene expression level of a receptor-receptor pair.
The significance of interaction is assessed through a permutation test
(1000 times). The normalized gene expression was used as input.
Interactions with p value <0.05 were considered significant. We only
considered ligand-receptor interactions based on the annotation from
the database, for which only and at least one partner of the interacting
pair was a receptor, thus discarding receptor-receptor interactions and
other interactions not involving a receptor.

Correlation to public datasets
Using the Cancer Genome Atlas (TCGA) PDAC bulk RNA-seq datasets,
the relative abundance of subtypes of ductal cells was predicted by

CIBERSORTX* algorithm (https:/cibersortx.stanford.edu/) with
default parameters. The tumor samples were divided into two groups
based on the estimated relative cell abundance. Overall survival ana-
lysis was performed with Cox proportional hazards regression using
‘coxph’ from the R package Survival. Kaplan-Meier plots were used to
assess the prognostic value of cell types and to explore their effect in
PDAC cancer progression.

Survival analysis

RNA-seq and clinical data of PDAC samples were obtained from TCGA
to evaluate the prognostic effects of gene sets derived from specific
cell states. To assess the impact of specific differentially expressed
marker genes on PDAC cancer progression, the tumor samples were
divided into two groups with high 50% and low 50% of the mean
expression of the target genes. Survival curves were performed by the
Kaplan-Meier method with the Survival package v.2.44, and visualized
using the ‘ggsurvplot’ function of the survminer package. Significance
was assessed by the log-rank test statistics (p values) between two
groups.

Immunohistochemistry (IHC) staining

Formalin-fixed, paraffin-embedded PDAC and matched liver metas-
tasis specimens were obtained from Nanjing Drum Tower Hospital
(n=11) and the First Affiliated Hospital of Soochow University (n=10)
for IHC staining of LITAF protein. All the specimens were pathologi-
cally validated as PDAC with liver metastasis. Besides, another cohort
containing 46 PDAC tissues (PT) and adjacent normal pancreas tissues
(NT) was obtained from Nanjing Drum Tower Hospital for IHC staining
of LITAF. Ethical approval was obtained from the ethics committee of
Nanjing Drum Tower Hospital and the First Affiliated Hospital of
Soochow University.

IHC staining was performed as described previously®. Slides of
the specimens were sectioned at 4-um thickness, deparaffinized,
blocked, and incubated overnight at 4 °C with primary antibody, fol-
lowed by horseradish peroxidase-labeled secondary antibody Goat
Anti-Rabbit IgG H&L HRP (1:2000, ab205718, Abcam) at room tem-
perature for 2 h. The primary antibody used in this study was LITAF
(1:100, 16797-1-AP, ProteinTech).

Multiplexed immunofluorescence (IF) staining

Formalin-fixed, paraffin-embedded PDAC and matched liver
metastasis specimens were obtained from the First Affiliated Hos-
pital of Soochow University. Multiplexed IF staining was performed
for the 3 pairs of PDAC and liver metastasis samples (paired PT and
HM) undergoing scRNA-seq using the PANO 5-plex IHC kit
(Cat# 10002100100, Panovue, Beijing, China) according to the
manufacturer’s instructions. Multiplexed IF staining was performed
for the analysis of SIO0A8" neutrophils using 10 pairs of matched
samples.

Multiple primary antibodies, including RGS5 (1:300, 11590-1-AP,
Proteintech), ACTA2/smooth muscle actin (1:500, 14395-1-AP, Pro-
teintech), Pan Cytokeratin (1:500, 53-9003-82, Invitrogen), FN1 (1:200,
66042-1-Ig, Proteintech), SI00A8 (1:200, 15792-1-AP, Proteintech),
MPO (1:1000, ab208670, Abcam), CD4 (1:500, 67786-1-lg, Pro-
teintech), CD8 (1:1000, 66868-1-Ig, Proteintech), CD68 (1:400, 76437,
CST), CCL18 (1:200, 22303-1-AP, Proteintech), FOXP3 (1:500, ab20034,
Abcam) and GNLY/Granulysin (1:1000, ab241333, Abcam), were used in
this study, followed by incubation with horseradish peroxidase-
conjugated secondary antibodies and tyramide signal amplification.
The slides were microwave heat-treated after each tyramide signal
amplification operation. Nuclei were stained with DAPI after all the
antigens above had been labeled. The stained slides were imaged at
x10 magnification using a Vectra 3.0 Automated Quantitative Imaging
System (Perkin EImer) and regions of interest (ROIs) were selected for
multispectral image acquisition at x20. Five high-power fields were
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taken per patient sample to quantitate the average number of certain
cell populations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The processed scRNA-seq data generated in this study are avail-
able through the Gene Expression Omnibus under accession
number GSE197177. The raw sequence data generated in this study
have been deposited in the Genome Sequence Archive (GSA-
Human: HRA004556 (scRNA-seq); GSA-Human: HRAO004625
(WES)) and are publicly accessible at https://ngdc.cncb.ac.cn/
search/?dbld=hra&q=HRA004556 (scRNA-seq) and https://ngdc.
cncb.ac.cn/search/?dbld=hra&q=HRA004625 (WES). The publicly
available datasets reused in this study, including Peng et al.’s
dataset® (including 11 NT and 14 PT samples) was retrieved from
the Genome Sequence Archive under the accession number GSA:
CRAO001160 and Yang et al.” dataset™ (including 6 NT, 13 PT and 14
HM samples) was retrieved from GSE151580. The inflammation-
associated genes (Fig. 1b) were obtained from previous publica-
tion by Smillie et al. ¥, whose data were deposited in Single Cell
Portal: SCP259. The TCGA PAAD dataset was obtained from GDC
data portal (https://portal.gdc.cancer.gov/projects/TCGA-PAAD).
Source data are provided with the paper. The remaining data are
available within the article, Supplementary Information or Source
Data file. Source data are provided with this paper.

Code availability
R codes used to analyze data and generate figures are available at
Github (https://github.com/compbioNJU/scPDAC).
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