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Manipulating microorganisms to increase soil organic carbon (SOC) in croplands remains a challenge. Soil microbes are important
drivers of SOC sequestration, especially via their necromass accumulation. However, microbial parameters are rarely used to predict
cropland SOC stocks, possibly due to uncertainties regarding the relationships between microbial carbon pools, community
properties and SOC. Herein we evaluated the microbial community properties (diversity and network complexity), microbial carbon
pools (biomass and necromass carbon) and SOC in 468 cropland soils across northeast China. We found that not only microbial
necromass carbon but also microbial community properties (diversity and network complexity) and biomass carbon were
correlated with SOC. Microbial biomass carbon and diversity played more important role in predicting SOC for maize, while
microbial network complexity was more important for rice. Models to predict SOC performed better when the microbial community
and microbial carbon pools were included simultaneously. Taken together our results suggest that microbial carbon pools and
community properties influence SOC accumulation in croplands, and management practices that improve these microbial
parameters may increase cropland SOC levels.

ISME Communications; https://doi.org/10.1038/s43705-023-00300-1

INTRODUCTION
Given the massive potential (~3.2 Pg C yr−1) for carbon
sequestration in terrestrial soils [1], there is an imminent need
to identify cost-effective strategies for fostering C storage in soils
[2]. Relative to natural ecosystems, cropland generally has lower
soil organic carbon (SOC) as a result of agricultural management
practices and crop harvest [3]. For example, fallowing, cultivation
and biomass removal can decrease SOC by reducing C inputs to
the soil, increasing decomposition rates, or both [4]. Conse-
quently, cropland may present an opportunity for enhanced SOC
storage if it is managed strategically and experiences significant
harvest residues inputs [5, 6]. Field studies have indicated that
long-term return of crop residues could greatly improve
cropland SOC stocks by increasing plant-derived C [7, 8]. On a
global scale, it has been estimated that cropland soils can
sequester 0.90–1.85 Pg C yr−1, which is equivalent to ~10% of
the current annual fossil fuel emissions [9]. Thus, cropland C
sequestration through effective management is considered to
be one of the few approaches that could be implemented on a
large scale [10, 11].
Soil microorganisms are believed to regulate SOC decomposi-

tion and formation [12–14]. Indeed, the modeling studies and field
observations have indicated that microbial-derived necromass C,
which includes dead cells, cell parts, cellular debris, and
extracellular polymeric substances, can contribute as much as
50–80% of SOC [15–19]. The persistence of microbial necromass is

determined by its chemical composition and its interactions with
soil minerals [20–23]. In addition, microbial community properties
(diversity, community composition) may influence the formation
and persistence of microbial necromass, with consequences for
SOC sequestration [12, 24, 25]. First, microbial community
composition and species interactions regulate microbial death
pathways, which can influence the quantity and molecular
composition of necromass [24]. For instance, fungal-derived
necromass is comprised of complex, C-rich cell wall fragments
[26], while bacterial cell wall fragments contain more N [27].
Regarding interactions, bacteriophage infection could accelerate
the lysis of select bacterial populations resulting in more
accumulation of bacterial cell wall residues compared to
fungal residues [24]. Second, microbial necromass available for
mineral stabilization may be regulated by the efficiency of
microbial biomass production [28, 29]. Recent evidence suggests
microbial community with higher carbon use efficiency and fungal
abundance accumulate more microbial-derived organic C [21, 30].
Therefore, there is a close interconnection between microbial
community properties, living biomass production, and necromass.
However, we currently have limited knowledge on the quantita-
tive relationships between these factors on a large scale, and the
unresolved challenge remains as to how to effectively integrate
them into SOC prediction models.
Cropland soils are facing SOC depletion, especially in northeast

China, where the SOC has decreased from 50 to 24 g kg−1 after
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150 years of cultivation [31, 32]. There is an urgent need for a
comprehensive understanding of the microbial-driven processes
involved in SOC formation to restore cropland SOC. Additionally,
crop types influence long-term SOC dynamics and sequestration
potential. Notably, SOC declines are less pronounced in rice
paddies than that in adjacent upland maize fields [33–35].
However, the microbial-mediated mechanisms underlying crop-
driven differences in SOC losses are unknown, limiting our ability
to crop-specific predictions and recommendations for SOC
sequestration.
Here, we conducted a survey of 468 cropland soils taken from

Liaoning province in northeast China, including maize (n= 349)
and rice (n= 119). The aims of this study are to: (1) investigate the
relationships between microbial community properties (diversity
and network complexity), microbial carbon pools (living biomass
and necromass) and SOC; and (2) develop crop-specific predictive
models that leverage microbial parameters. We hypothesize that
microbial necromass C can explain a large proportion of the
variation in SOC, but its importance will vary between maize and
rice soils. Additionally, we hypothesize that the inclusion of
microbial parameters (i.e., community properties and C pools) will
improve model predictions of SOC.

METHODS
Site description and soil sampling
This study was conducted in Liaoning province, located in northeast China
(Supplementary Fig. S1), which is one of most important grain production
provinces in China, with a land area of ~5.15 million hm2 under cultivation.
The climate is predominantly temperate and semi-humid in southern
Liaoning province, and the western region has a continental monsoon
climate; the mean growing season precipitation ranges from
450–1200mm; the mean growing season temperature ranges from
4.6–10.3°C. The soil types in Liaoning province mainly include Aridisols,
Alfisols, Inceptisols, and Entisols in accordance with the USDA soil
taxonomy [36].
In total, we collected 468 sampling sites, including 349 maize fields and

119 rice fields, from September and October 2019 after crop harvest. The
sampled fields have been under cultivation with maize or rice at least 20
years. At each site, five sampling plots (each of 100m2) were established
and five soil cores (2.5 cm in diameter) within 0–15 cm were taken from
each plot. Then all 25 samples were mixed thoroughly to generate one
composite soil sample for each site. Soil samples were immediately sieved
through a 2.0-mm mesh, visible living plant material was manually
removed. Soil was transported to the laboratory in a box with dry ice.
Subsamples from each site were stored at 4°C prior to measuring soil
microbial biomass C, dissolved organic C, dissolved total nitrogen (N),
available phosphorus, and water content. Another subsample was air-dried
for the analysis of pH, SOC, total nitrogen, total phosphorus, fungal
necromass carbon, and bacterial necromass carbon. The remaining soil
samples were stored at −80°C for subsequent microbial community DNA
extraction.

Soil physiochemical analysis
Soil pH was measured at an air-dried soil to water ratio of 1:2.5 (soil: water)
by a pH electrode (Leici, Shanghai, China). The soil water content (SWC)
was determined by oven-drying fresh soil. The SOC and total nitrogen
content in air-dried soil were measured with an elemental Flash EA
analyzer (Thermo Fisher Scientific, USA) after the soil was ground by a ball
mill. Soil total phosphorus was measured using a digestion method. Soil
available phosphorus was extracted according to the method described by
Olsen-P method and measured using an automated discrete analyzer
(SmartChem140, AMS, Italy).

Microbial biomass and necromass C analysis
Soil microbial biomass C was determined by the fumigation extraction
method described by Vance et al. [37]. Briefly, 20 g of fresh soil was
extracted with 80mL of 0.5 M K2SO4 solution. Then, another 20 g of fresh
soil was fumigated with ethanol-free chloroform in the dark for 24 h and
extracted with 80mL of 0.5 M K2SO4 solution. The concentration of total
organic C in each extract was analyzed using a TOC analyzer (TOC,

Shimadzu, Kyoto, Japan). The conversion factor used to calculate the MBC
was 0.45 [38].
Amino sugars are important indices for the contribution of soil

microbial necromass to soil organic matter [39]. Amino sugars were
determined according to the protocol of Zhang and Amelung [40]. Three
amino sugars (glucosamine (GluN), galactosamine (GalN) and muramic
acid (MurA)) were used to quantify the microbial necromass carbon
accumulation in soil [39]. We used amino sugar-C contents by normal-
izing their molecular masses as a proxy to calculate the bacterial
necromass C and fungal necromass C contents using the following
equations from Joergensen [39] and Liang et al. [41]: bacterial necromass
C=MurA × 45, fungal necromass C= (GluN/179.17 - 2 × MurA/
251.23) × 179.17 × 9. The total necromass C was estimated as the sum
of bacterial necromass C and fungal necromass C.

Amplicon sequencing and data processing
Soil genomic DNA was extracted from 0.5 g freeze-dried soil using a
QIAGEN DNA Isolation Kit according to the manufacturer’s instructions. The
quantity and quality of extracted DNA were estimated by using a
NanoDrop Spectrophotometer (Thermo Scientific, Waltham, MA, USA). We
characterized bacterial and fungal communities by amplifying and
sequencing the V4-V5 regions of the 16S rRNA gene using the 515 F (5′-
GTG CCA GCM GCC GCG GTA A -3′) / 806 R (5′- GGA CTA CHV GGG TWT
CTA AT -3′) primers [42] and the ITS1 region of the ITS genes using ITS1 (5′-
CTT GGT CAT TTA GAG GAA GTA A -3′) / ITS2 (5′- GCTGC GTT CTT CAT CGA
TGC-3′) primers [43]. PCR amplification for the 16 S gene was performed in
triplicate under the following conditions: 95°C for 2 min, followed by 25
cycles at 95°C for 30 s, 55°C for 30 s, and 72°C for 30 s and a final extension
at 72°C for 5 min. Sequencing libraries were prepared by using an Illumina
Nextera kit. Paired-end sequencing (2 × 250) was performed by using an
Illumina MiSeq system (Illumina, San Diego, CA, USA). For ITS gene, the
PCRs were carried out in a final volume of 50 μL, comprising 100 ng of
template DNA, 25 μL of Phusion Hot start flex 2 ×Master Mix, and 2.5 μL of
10 μmol L-1 each of the forward and reverse primers, made up to the final
volume with double distilled water (ddH2O). The same volume of ddH2O
instead of template DNA was added to the above PCR system as a negative
control group. The PCR of ITS1 rDNA was implemented under the following
procedures: 3 min at 94°C, followed by 25 cycles of 60 s at 95°C, 60 s at
50°C, and 60 s at 72°C, and then a final 7 min extension step at 72°C was
executed using a thermal cycler (Bio-Rad, Hercules, CA, United States).
High-throughput sequencing was performed at the Institutional Center for
Shared Technologies and Facilities at the Institute of Applied Ecology in
Shenyang, China.
The raw sequencing data were qualified through screening and the

removal of sequences that were shorter than 200-bp, with a quality score
below 20 (Q < 20), contained ambiguous bases or did not exactly match the
primer sequences and barcode tags. In addition, the cross-sample singletons
and doubletons were removed, which were defined as sequences that
occurred only once (singletons) or twice (doubletons) among all samples.
Then, the high-quality sequences were processed using VSEARCH [44] and
QIIME2 [45]. The sequences were clustered into amplicon sequence variants
(ASVs) at a similarity level of 100% by using the UPARSE. Data were rarified to
16450 ASVs for bacteria and 6750 ASVs for fungi across all samples. The
Ribosomal Database Project (RDP) classifier tool was used to classify all
sequences into different taxonomic groups based on the SILVA (version 138)
database [46] for bacterial 16 S rRNA and the UNITE (version 9.0) database
[47] for fungal ITS. For assessing microbial diversity, we calculated the alpha-
diversity metrics, including the observed species and Shannon index.
Microbial beta-diversity was estimated using the Bray-Curtis dissimilarity
metric between samples. Beta-diversity of bacterial and fungal communities
was quantified using a principal coordinate analysis (PCoA) of Bray-Curtis
dissimilarities, visualized on a two-dimensional plot.

Network construction
Network analysis has proven helpful in deciphering complex microbial
interaction patterns [48, 49]. Thus, bacteria-fungi internetworks were
constructed for each crop and the network’s topological parameters were
extracted to describe the microbial community complexity [49]. Microbial
networks were constructed using the “igraph [50]” and “psych [51]”
packages based on the Spearman correlation matrix for maize and rice,
respectively. Microbial phylotypes with relative abundances less than
0.01% of the total number of bacterial and fungal sequences were
excluded from the analysis. Then, the bacterial and fungal ASVs were
merged into an abundance table. Pairwise Spearman correlations between
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ASVs were calculated, and P-values were adjusted by the Benjamini and
Hochberg false discovery rate (FDR) test. The cutoff of the FDR-adjusted
P-values was 0.001, and correlations with a coefficient of less than 0.7 were
also removed. These criteria allowed us to concentrate on the ASVs that
exhibited strong co-occurrence patterns and were more likely to interact
with each other.
The network topological parameters of each sample were extracted

using the subgraph function in the “igraph” package following Ma et al.
[48]. The network topological parameters used in this study included the
node number (n), average connectivity (average K), centralization of
betweenness (CB), clustering coefficient (CC), centralization of degree (CD),
density (Den) and average path length (average L). Because these
topological parameters were tightly correlated, we used the first and
second components (network PC1 and network PC2) of the seven selected
topological parameters to denote the network complexity. Finally, the

interactive platform “Gephi” was used to identify the modules of microbial
taxa that strongly interacted with each other.

Statistical analyses
We tested the differences in SOC, microbial biomass C, microbial
necromass C, soil pH, available phosphorus, total nitrogen to phosphorus
(N/P ratio), soil water content and microbial alpha diversity between maize
and rice soil using one-way ANOVA. Homogeneity of variances was tested
by Levene’s test, and the normal distribution of residues was tested by the
Shapiro test. Statistical differences in the microbial community composi-
tion were tested using permutational multivariate analysis of variance
(PERMANOVA) by the “vegan” package [52]. We used the Wilcoxon rank-
sum test to determine the difference in network topological parameters
between maize and rice.

Fig. 1 Geographical distribution of soil and microbial carbon pools. The four panels represent the soil organic carbon (SOC), microbial
biomass carbon (MBC), microbial necromass carbon (MNC) and the ratio of necromass carbon to soil organic carbon (MNC/SOC). Mean and
standard deviations for each variable are reported in the top left corner of each panel and means with the same lower case are not significant
at P < 0.05 between maize and rice.
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Identifying the best set of predictors for soil organic carbon
Predictors including climate (growth season precipitation and tempera-
ture), soil properties (pH, N/P ratio, available phosphorus and soil water
content), microbial carbon pools (microbial biomass C and microbial
necromass C) and microbial community properties (bacterial diversity,
fungal diversity, network PC1 and network PC2) were used to predict SOC.
To examine the relationships between predictors and their correlations
with SOC, we initially performed the Pearson correlation analysis. Due to
the significant correlation between microbial necromass C and both fungal
necromass C and bacterial necromass C, we selected only microbial
necromass C as a predictor in the SOC models. We used multiple
regression models to assess the effects of climate, soil properties, microbial
carbon pools and microbial community properties on SOC [53]. All
predictors and response variables were Z score standardized to interpret
parameters on a comparable scale. Using the “MuMIn” package [54], we
generated a set of models comprising all possible combinations of the
initial predictors. The models were then ranked based on the Akaike
information criterion (AIC) fitted with maximum likelihood in R. We
selected all models with ΔAIC < 2 and used the model averaging approach
to estimate parameters and associated P-values, using the function
model.avg. We then calculated the relative effect of the parameter
estimates for each of the predictors compared with the effect of all
parameter estimates. This method allowed us to evaluate the identifiable
relative importance of climate, soil properties, microbial carbon pools and
microbial community properties in predicting SOC [53, 55]. In addition, to
explore the importance of microbial carbon pools and community
properties for predicting SOC, we built competing models without
microbial carbon pools and community properties. Thus, four models
were built (model #1 to #4). Model #1 included all climate and soil property
predictors as well as microbial carbon pools and community properties.
Model #2 included the predictors of model #1 except microbial community
properties. Model #3 included the predictors of model #1 except microbial

carbon pools. Finally, model #4 included only climate and soil property
predictors excluding both microbial community properties and carbon
pools. The best model among the four models was assessed by using the
AIC value; that is, the lower AIC, the better of model.
Additionally, the structural equation modeling (SEM) was adopted to

explore the pathways of microbial C pools and community properties in
driving SOC. We first removed the effects of climate and soil properties on
SOC by fitting a multiple regression model including those predictors and
saved the residuals. Then we started the SEM procedure with the
hypothetical relationships between microbial C pools, community proper-
ties and SOC residuals. In the SEM analysis, we compared the model-
implied variance-covariance matrix against the observed variance-
covariance matrix. Data were fitted to the models using the maximum-
likelihood estimation method. Model fit statistics included the Chi-square
(χ2), probability level (P), R2 (proportion of variance explained), and
comparative fit index (CFI). The SEM analysis was conducted in the
environment of Amos 20.0 (Amos Development Company, USA).

RESULTS
Soil carbon pools and properties
The SOC and microbial biomass C were significantly different
between maize and rice (Fig. 1). On average, the SOC under rice
(16.1 ± 6.1) was significantly higher than that under maize
(12.6 ± 6.2), and the microbial biomass C showed a similar pattern
(rice 0.21 ± 0.09 vs. maize 0.13 ± 0.06). Maize soil had greater
microbial necromass C (4.71 ± 1.54), bacterial necromass C
(1.22 ± 0.42) and fungal necromass C (3.49 ± 1.24) than rice soils
(microbial necromass C, 3.90 ± 1.19; bacterial necromass C,
1.01 ± 0.53; fungal necromass C, 2.91 ± 0.89) (Supplementary
Table S1). Moreover, microbial necromass C accounted for 41.2%

Fig. 2 Soil microbial community composition and diversity. Principal coordinates analysis (PCoA) with Bray-Curtis distance showing that
A bacterial and B fungal community composition of maize soils are significantly different from those of rice (PERMANOVA, P < 0.001). Ellipses
cover 95% of the data for each crop. Alpha diversity indices (observed species and Shannon index) of C bacterial and D fungal communities in
maize and rice. The asterisks indicate a significant difference between rice and maize soil at P < 0.001.
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for maize soils but only 27.1% for rice soils (Fig. 1). Besides, the soil
water content, total nitrogen, and N/P ratio were higher in rice
soils compare with maize, while soil phosphorus and available
phosphorus were higher in maize soils (Supplementary Table S1).

Microbial diversity and network complexity
Principal coordinate analysis (PCoA) showed that maize and rice
had clearly distinct bacterial and fungal community compositions
(Fig. 2). Maize soils had greater alpha diversity than rice soils for
both bacterial and fungal communities. To identify the potential
species interactions in maize and rice, two co-occurrence
networks were constructed (Fig. 3). The degrees (number of
connections per node) within the two networks exhibited power-
law distributions (Supplementary Fig. S2), which indicates a scale-
free network structure and a non-random co-occurrence pattern.
When we compared the network topological properties of the
maize and rice soils, microbial co-occurrence patterns in the maize
and rice soil were markedly different (Supplementary Table S2). In
addition, the maize network differed from the rice network
regarding the taxonomic composition of modules in the networks
(Supplementary Fig. S3). In the maize network, modules #1 and #2
were dominated by Proteobacteria and Actinobacteria. Proteo-
bacteria and Acidobacteria were predominant in module #3,
whereas module #4 was dominated by fungal taxa (Auriculariales
and Chaetothyriales). In the rice network, Proteobacteria and
Chloroflexi were the two dominant taxa in modules #1 and #2; and
Mortierellales was the most important taxa in module #3. Finally,
the topological properties of the maize network were markedly
different from those of the rice network (Fig. 3C). The PC1 and PC2

of microbial network properties accounting for 44.2% and 23.8%
for maize, and 48.6% and 21.6% for rice (Supplementary Fig. S4)
were used to denote the microbial network complexity index in
SOC model building.

Linking microbial community, biomass and necromass C to
SOC
Microbial necromass C and its components (bacterial necromass C
and fungal necromass C) were positively correlated with SOC in
both maize and rice soils (Fig. 4). Further, microbial biomass C
positively correlated with SOC maize but not for rice soils (Fig. 4).
The best linear model for predicting SOC for both maize and rice
included all predictors (model #1) and had both the lowest AIC
and highest R2 (Fig. 5 and Supplementary Table S3). Removing
either the microbial biomass C pools (model #2), microbial
community properties (model #3), or both (model #4) from model
#1 significantly reduced the predictive power (ΔAIC > 2, Supple-
mentary Table S3). In the best model for maize, the microbial
biomass C, necromass C, bacterial diversity, and network complex-
ity (network PC1) were the significantly predictors of SOC (Fig. 5A).
Microbial C pools (biomass and necromass) were responsible for
31.7% while community properties (diversity and complexity)
were responsible for 23.9% of the explained variance in SOC for
maize (R2= 0.45). In the best model for rice, soil properties
explained the largest proportion of SOC variation (57.7%), and the
soil N/P ratio was the most important predictor of SOC. Together,
microbial necromass C and microbial community parameters
(network PC1 and bacterial diversity) explained a total of 25.7% of
the variance in SOC in rice soil (Fig. 5B).

Fig. 3 The microbial community network of soil bacteria and fungi. Network diagram with nodes colored according to the main modules
for A maize and B rice. Nodes represent individual OTUs; edges represent significant Spearman correlations. C Average topological properties
of microbial network for the studied sites. The network topological properties include node number (n), average connectivity (average K),
centralization of betweenness (CB), density, clustering coefficient (CC), centralization of degree (CD) and average path length (average L). The
asterisks indicate a significant difference between rice and maize soil. **P < 0.01; ***P < 0.001; NS not significant.
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Potential microbial-mediated mechanisms of SOC accrual in
cropland systems were explored using SEM (Fig.6). The SEM for
maize soil suggested that necromass C and biomass C may have
direct and positive effects on SOC, while microbial network and
diversity influenced SOC directly or indirectly through microbial
biomass C and necromass C (Fig. 6A). For rice soil, the SEM
suggested necromass C may positively influence SOC, while
microbial biomass C does not (Fig. 6C). The microbial network
parameters linked directly to SOC and indirectly via microbial
diversity and necromass C in the rice SEM. When the standardized
path coefficients of the microbial community and carbon pools
were summed, the results suggest microbial diversity and
microbial biomass C were the first and second most important
microbial predictors for SOC in maize (Fig. 6B), while the microbial
network properties and necromass C were the first and second
most important microbial predictors for SOC in rice soil (Fig. 6D).

DISCUSSION
Soil organic carbon in cropland is highly dynamic, and
increasing SOC could potentially promote crop production [56]
as well as C sequestration [10, 57]. In comparison to natural
ecosystems, cropland tends to have lower SOC because of
the irrigation-associated erosion, chemical fertilizer application,
and removal of crop residues [3, 5, 11]. Improved cropland
management, such as cover cropping and no tillage, have the
potential to increase both the quantity and quality of SOC.
However, the underlying mechanisms responsible for the
increase in SOC resulting from these management practices
remain unclear, particularly with respect to the roles of soil
microorganisms [2, 10, 58]. In this study, we conducted a large-
scale soil survey in an important crop production region of China
(Supplementary Fig. S1). The results demonstrate that consider-
ing microbial properties related to life and death (e.g., microbial
diversity, network complexity, biomass and necromass) could
better improve the predictions of cropland SOC. These findings

highlight the importance of microbial community in regulating
SOC formation and have potential implications for the C
management in croplands.

Contribution of necromass C to SOC in cropland
The importance of microbial biomass and necromass to SOC
formation and prediction in natural ecosystems has been
investigated [25, 59], yet the significance of these factors for
cropland SOC remains unclear. This study is the first, to our
knowledge, to show the regional-scale links among the microbial
biomass C, necromass C, and SOC in cropland soils. The positive
correlation between microbial necromass (assessed via amino
sugars) and the content of SOC for both rice and maize systems
(Fig. 4) supports our hypothesis that microbial necromass is an
important contributor to soil organic matter [15, 22, 28]. However,
the importance of microbial necromass C may depend upon the
crop. The average SOC content in rice soil was higher than that in
maize soil (Fig. 1), but the ratio of necromass C to SOC was the
opposite (27.0% in rice vs. 41.2% in maize). This is likely because
waterlogged rice soils experience oxygen limitation which slows
microbial anabolism, allowing the refractory components of plant
residues to accumulate and decreasing the formation of microbial
necromass [33].
Additionally, fungal necromass C accounted for the majority of

necromass C with an average of 74% (46–85%) in maize and 75%
(33–88%) in rice soil (Supplementary Table S1). This suggests that
fungi may be a more important source of SOC than bacteria in
studied croplands. The higher accumulation of fungal necromass
in soil could be due to its lower decomposition rate in soil and
higher recalcitrant C components [20, 26, 60]. Moreover, because
fungi could facilitate aggregate formation, the cell fragments of
fungal necromass can have a higher chance of being physically
protected by aggregate cohesion [61–63]. Taken together, these
findings suggest that fungal necromass, rather than bacterial
necromass, played a more important role in the accumulation of
SOC in the studied cropland soil.

Fig. 4 Investigate the correlation between soil organic carbon and its predictors. Heatmap of correlation between soil organic carbon
and its predictors for A maize and B rice soil. MGP mean growing season precipitation, MGT mean growing season temperature, pH soil
pH, SWC soil water content, NP soil nitrogen and phosphorus ratio, AP soil available phosphorus, MBC microbial biomass carbon, MNC
microbial necromass carbon, FNC fungal necromass carbon, BNC bacterial necromass carbon, FBNratio the ratio of fungal necromass
carbon to bacterial necromass carbon, BS bacterial Shannon index, FS fungal Shannon index, Network PC1 the first principal component
of seven microbial topological properties, Network PC2 the second principal component of seven microbial topological properties, SOC
soil organic carbon.
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Importance of microbial community properties to soil C pools
Linking microbial community diversity and composition to soil C
storage has been a challenging task in soil ecology [14, 64, 65]. Our
study provides novel evidence that microbial community properties
may influence SOC accumulation through their effect on microbial
biomass and necromass. Specifically, our results demonstrate sig-
nificant correlations between microbial community complexity,
diversity, and soil organic carbon. Maize soil had a higher microbial
diversity and complexity along with microbial necromass C pool and
necromass C to SOC ratio relative to rice soils (Fig. 1). This may be
explained by the following two reasons. First, microbial diversity and
community complexity influence microbial community carbon use
efficiency [30]. Microbial diversity often positively relates to microbial
carbon use efficiency (CUE), resulting in more microbial biomass
production and necromass C retention in soil [30, 66, 67]. Indeed, a
recent global analysis suggests high CUE allows more allocation to
biomass and by-products, which leads to SOC accumulation [68].
Second, microbial death processes could be affected by microbial
community dynamics and inter-species interactions [24]. For instance,
competition for resources within a microbial community may lead to
higher starvation and death, resulting in increased production of
microbial necromass and subsequent SOC buildup [15, 24]. Overall, our
study, along with previous studies, supports an overall life cycle view to
describe the role of microorganisms in SOC dynamics, which includes
the microbial community, growth, biomass, turnover and necromass
[15, 29]. This view emphasizes that cropland SOC production would be
promoted not only by increasing microbial-derived C production, but
also by fostering microbial community properties that facilitate higher
carbon use efficiency and favorable inter-species interactions.

Prediction of SOC by integrating the microbial community
As hypothesized, integrating microbial parameters improved the
model’s accuracy in predicting SOC. Specifically, regression
models that exclude both microbial biomass and necromass

C had lower prediction power (Supplementary Table S3). This
finding aligns with other studies that have demonstrated the
value of including microbial properties to enhance SOC predic-
tions [25, 68]. For example, including microbial necromass
improved the performance of both first-order kinetic and
Michaelis-Menten model [17]. Connecting microbial community
properties with SOC has also been attempted in previous studies.
For instance, recent work suggests soil bacterial communities to
be utilized as bioindicators of SOC [69]. Our results go beyond
these previous works by simultaneously integrating both micro-
bial community properties and microbial carbon pools to predict
SOC in croplands. But it should be noted that the relative
importance of microbial carbon pools and community properties
on SOC is difference between maize and rice soils. To better
integrate microbes in SOC models, we propose a framework that
considers “microbial living biomass”, “necromass” and “microbial
community” as three crucial predictors (similar to our SEM, Fig. 6)
and change the parameters when predicting SOC for different
crop types (e.g., maize vs. rice). Moreover, our results also indicate
that the relative abundance of microbial composition is a poor
indicator of SOC in the studied soils (data not shown). Under-
standing the environmental conditions and ecological processes
that govern microbial community properties and C pools will be
critical to enhancing SOC sequestration.

The importance of soil properties for SOC in cropland
Our results suggest that soil properties also play an important role
in determining SOC concentration in cropland soils. In particular,
we found that the soil nitrogen and phosphorus ratio and
available phosphorus were positively correlated with SOC (Fig. 5).
This finding is supported by past studies that nutrient sufficiency
can facilitate SOC increases in cropland soils [70, 71]. One possible
reason is that increasing nitrogen and phosphorus can increase
crop biomass, allowing more plant-derived C to enter the soil for

Fig. 5 Relative effects of multiple predictors on soil organic carbon. The averaged parameter estimates (standardized regression coefficients)
of the model predictors are shown with their associated 95% confidence intervals (A and C) along with the relative importance of each predictor,
expressed as the percentage of explained variance (B and D) for maize and rice. The best model is selected based on the AICc (Supplementary
Table S3). The relative effect of the predictors is calculated as the ratio between the parameter estimate of the predictor and the sum of all
parameter estimates, and it is expressed as a percentage. The climate includes mean growing season precipitation (Precipitation) and mean
growing season temperature (Temperature) at each location; soil properties include soil nitrogen and phosphorus ratio (soil N/P), soil pH, soil
available phosphorus and soil water content; microbial community properties include bacterial diversity and network compelxity (Network PC1
and PC2); soil microbial carbon pools include microbial biomass and necromass carbon. *P < 0.05; **P < 0.01.
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accumulation [72]. Another possibility is that changes in the N and
P supply can affect living microbial biomass, microbial community
composition and necromass production [71, 73]. Further research
should work to separate the direct and indirect roles of soil
nutrient conditions on C storage in croplands and estimate the
relative contribution of each pathway.

CONCLUSION
In summary, it remains a challenge to manipulate microbial
community composition and function for maximum organic C
storage in cropland soils. However, the present study provides
novel insights into the correlation between microbial necromass
and SOC in cropland on a regional scale. Specifically, we found
that fungal necromass had a greater contribution than bacterial
necromass to the accumulation of SOC. Additionally, our results
suggest that microbial diversity, community complexity, and
microbial living biomass C either directly or indirectly influence
microbial necromass C and ultimately impact on SOC. This
research contributes to our understanding of how microbial
life and death impact SOC and suggests that management
practices targeting these microbial parameters may enhance
cropland SOC.
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