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Road to sexual maturity: Behavioral event
schedule from eclosion to first mating
in each sex of Drosophila melanogaster

Ki-Hyeon Seong,1,5,6,* Tadashi Uemura,2,3,5 and Siu Kang4,5,*

SUMMARY

Animals achieve their first mating through the process of sexual maturation. This
study examined the precise and detailed timing of a series of behavioral events,
including wing expansion, first feeding, first excretion, and courtship, during sex-
ual maturation from eclosion to first mating in D. melanogaster. We found that
the time of first mating is genetically invariant and is not affected by light/dark
cycle or food intake after eclosion. We also found sexual dimorphism in locomo-
tor activity after eclosion, with females increasing locomotor activity earlier than
males. In addition, we found a time rapidly changing from extremely low to high
sexual activity in males post eclosion (named ‘‘drastic male courtship arousal’’ or
DMCA). These behavioral traits leading up to the first mating could serve as clear
indicators of sexual maturation and establish precisely timed developmental
landmarks to explore further the mechanisms underlying the integration of
behavioral and physiological sexual maturation.

INTRODUCTION

Comprehending the mechanisms governing sexual maturation, their intricate interdependencies, and the

effects of various exogenous factors (such as nutrition, stresses, social effects, and seasonal conditions) in

chronological order remains daunting. Accurately measuring the extent of sexual maturation and deter-

mining its completion is a significant challenge in many animal species due to the continuous, seamless,

and prolonged development and growth.1 In insects, their life can be divided into two phases: the juvenile

stage and the reproductive adult stage. In particular, holometabolous insects undergo drastic changes in

morphology and behavior through a metamorphosis reorganizing the larval to the adult system. Addition-

ally, acquiring sexual maturity requires a certain period of post-eclosion in many insects, thus allowing for

easy measurement and quantification of the time from eclosion to sexual maturity. Therefore, holometab-

olous insects have a distinct advantage in understanding sexual maturation.

Drosophila melanogaster is a holometabolous insect and one of the most widely used model research or-

ganisms whose sexual reproductive system has been studied. D. melanogaster shows a stereotypical sex-

ual courtship behavior.2–8 Recent studies have used D. melanogaster to elucidate the mechanisms through

which the brain controls and decides the sexual reproductive process at the molecular and neuronal

levels.9–15 During metamorphosis, most larval neurons survive and join with groups of new adult-specific

neurons to form the adult central nervous system.16 The abdominal neuromeres undergo a reduction while

the thoracic neuromeres experience expansion and assume the responsibility of facilitating walking and

flight in the adult stage.17 Gross expansion and reorganization of adult neurons occur within the brain,

especially in the optic lobes, the antennal lobes, and the mushroom bodies.17–20 Larval arbors are rapidly

pruned back after pupariation, followed by adult outgrowth, target recognition, and synaptogenesis.16,21

During metamorphosis, glial cell numbers also increase and contribute to the reorganizing process of neu-

ral circuits.22,23 These processes are regulated by endocrine hormones such as ecdysone and its active de-

rivative, 20-hydroxyecdysone.16,21 Through the metamorphosis, the adult flies emerge from the puparium.

However, sexual immaturity persists throughout the newly eclosed adult organs, including the reproduc-

tive system and even the adult brain. The neuronal cell death occurs after eclosion and is confined predom-

inantly to abdominal neurons.16 The cell death accompanies the degeneration of specific adult muscles

used during ecdysis and subsequent wing expansion. The neuropeptide Bursicon induces cell death in

BAG neurons required for wing expansion behaviors.24 However, there are few studies of sexual brain
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maturation in the adult stage using D. melanogaster. Thus, well-studied knowledge of the mechanisms of

the nervous system in sexual behavior has not led to an understanding of how brain maturation occurs and

progresses and how they interact with the maturation of the other organs in the context of sexual matura-

tion in adult flies.

Generally, mating comes with many costs, such as energy consumption, competition with other essential

needs like feeding or sleeping, threats to predators or rivals, and physiological costs including disease,

injury, or reduced lifespan.25–28 Therefore, mating would be driven toward a favorable energy balance

for reproduction and physiologically and behaviorally low risk. However, sexual selection or sexual conflict

also drives the evolution of reproductive traits.29 For example, seminal fluid proteins of males, such as sex

peptide, regulate the sexual behavior of females in D. melanogaster.28,30 Conspecific females and males

often maturate at different developmental rates (sexual bimaturism), and D. melanogaster shows a proto-

gyny phenotype that females can eclose 4 h earlier than males.31–34 Elucidation of the detailed process and

mechanism of sexual maturation could largely contribute to understanding the ecological and evolutionary

aspects of the reproductive system in D. melanogaster.

Sexual maturity can be regarded as a spatiotemporal progression and integration of various organs,

including the brain, in eclosed adult flies. The first mating is a clear indicator of completing sexual maturity

in D. melanogaster. Therefore, elucidating the sequential flow of behavioral transitions from eclosion to

first mating is significant in advancing research on the underlying organ maturation and integration pro-

cesses within sexual maturity. In this study, we investigated the precise and concrete chronological

schedule of several characteristic behaviors, such as wing expansion, first feeding, first excretion, and

courtship behavior, exhibited by wild-type strains of male and female flies from eclosion until successful

first mating in D. melanogaster.

RESULTS

Duration until the first mating after eclosion

To determine the precise first mating time of D. melanogaster after eclosion, we constructed a fly behavior

long-recording chamber consisting of an infrared (IR) camera, IR 850 nm LED, and white LED. The chamber

can house different microplate sizes, including 96-well plates, and record the behavior of multiple individ-

ual flies under light and dark cycles (Figure 1A). A black pupa (pupal stage P14)35 and an adult mating part-

ner were placed together in each well (96-well microplate) containing normal yeast-cornmeal fly medium

and were recorded over 48 h (Figures 1B and 1C). Next, we visually detected time points of the eclosion

and the first mating in each well (Figure 1C). We observed that almost all flies succeeded in wing expansion

just after eclosion, even though the well-space was very small. We used 5-day-old virgin mating partners for

the experiment, which had a high sexual demand for the opposite sex. Mature virgin partner males ex-

hibited significantly higher courtship behavior toward newly eclosed females, while mature virgin partner

females exhibited aggressive behavior, such as head-butting-like behavior, toward eclosed males. Howev-

er, both newly eclosed males and females rarely conducted any sexual response in the early period after

eclosion. We succeeded in detecting the precise time point of the first mating after eclosion in all strains

using the 96-well microplate. The values for the first mating andmating duration in each strain are indicated

in Figures 1D–1F (Table S1) and 1G–1I (Table S2), respectively. The first mating time point after eclosion did

not show any significant difference between the two sexes in all three strains, yet there were differences in

Figure 1. Measurement of the duration until the first mating of both sexes from eclosion in D. melanogaster

(A and B) Schematic representations of the first mating-detection system (A) and sequences of events (B).

A black pupa and a sexually mature virgin adult (five-day-old) mating partner were placed in each well of a 96-well

microplate and observed until successful first mating occurred.

(C) represents a timeline of representative frames captured during the observation process.

(D–F) Boxplots illustrating the duration until first mating post eclosion for the three strains: (D) Canton-S (CS), (E)

Oregon-R (OrR), and (F) white1118 (w1118). Whiskers indicate minima and maxima (n.s., no significant difference; Student’s

unpaired t test).

(G–I) Boxplots of the first mating duration in the (G) CS, (H) OrR, and (I) w1118 strains. Whiskers indicate minima and

maxima (*, p < 0.05; n.s., no significant difference; Student’s unpaired t test). The number of flies analyzed is indicated in

parentheses in all graphs.

(J and K) Boxplots depicting the (J) and mating duration (K) with the age of virgin mating partners, which were 0, 3, and

7 days old. Whiskers indicate minima andmaxima (n.s., no significant difference; Student’s unpaired t test). The number of

flies analyzed is indicated in parentheses in all graphs. See also Figure S1, Tables S1 and S2.
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the first mating time between strains (Figures 1D–1F; Table S1). The duration from eclosion to first mating

and the mating duration were unaffected by well size, suggesting that the confined space in the 96-well

format does not disturb normal sexual maturation following eclosion (Figures S1A and S1B). We also exam-

ined the effects of mating partner age. We chose 0-, 3-, and 7-day-old virgin flies as partners for the exper-

iment at the beginning of the observation period. Interestingly, we found no significant difference in the

duration until first mating from eclosion. This result suggests that the duration until first mating from eclo-

sion is unaffected by the sexual maturity level of themating partner and is determined only by the individual

fly’s own sexual maturation schedule (Figures 1J and 1K).

Circadian rhythm does not affect first mating

To assess whether the first mating is also governed by circadian rhythms, we sought to identify the time

when flies succeeded in first mating under 12:12 h light and dark cycles. As expected, all strains clearly

showed a tendency for eclosion to occur during the daytime in both sexes under our experimental condi-

tions, with a more pronounced circadian daytime tendency in females (Figure 2). However, unexpectedly,

the first mating did not show any daytime or nighttime tendency in Canton-S (CS) and Oregon-R (OrR)

strains (Figures 2B and 2C), indicating that first mating is unaffected by circadian rhythms in these strains.

Similarly, white1118 (w1118) flies showed no clear tendency for first mating during the day; however, w1118

females strongly preferred first mating at night (Figure 2D). We speculate that this is a result of the eclosion

A B

C D

Figure 2. No daytime tendency for first mating in D. melanogaster

(A) Schematic graph describing a relationship between light and dark tendency in eclosion and first mating event. The x

and y axes depict the relative time of eclosion and first mating, respectively. White and gray color bands within the graph

indicate light (L) and dark (D) periods on the x and y axes. The percentage of individuals undergoing eclosion and first

mating during the light period was calculated by dividing the number of individuals in the light period by the total number

of individuals, respectively (as depicted in the bar graph on the right side of each scatterplot).

(B–D) Each scatterplot illustrates the eclosion and first mating times for the (B) Canton-S (CS), (C)Oregon-R (OrR), and (D)

white1118 (w1118) strains (***, p < 0.0001; **, p < 0.001; *, p < 0.05; n.s., no significant difference; Binomial test). See also

Figure S2.
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ofw1118 females occurring in the early morning in a narrower range, and that the time between eclosion and

first mating is slightly shorter (about 15 h after eclosion) than in the other strains (about 18 h after eclosion)

(Figures 2D and 1D-1F). To further investigate the influence of the developmental stage in determining the

first mating timing, we measured the time elapsed from egg-laying to first mating in the OrR strain (Fig-

ure S2). The eclosion event occurred primarily in the daytime and tended to avoid the nighttime in the

experiment (Figures S2A–S2C). We could easily distinguish two groups (named for convenience, L (late)

and E (early) groups, dotted boxes in Figures S2A and S2B), especially in male flies, when we calculated

the elapsed time from egg-laying to the first mating. This gap reflected the gap in the elapsed time

from egg-laying to eclosion (Figures S2A and S2B). However, we did not find a gap when the time to first

mating was calculated from the eclosion time point (Figure S2D). Furthermore, the duration to first mating

from eclosion had no correlation with the durations of the larval and pupal stages in both sexes (Figures S2E

and S2F). These results indicate that the timing of the first mating is measured as an elapsed time after eclo-

sion, which is independent of circadian rhythm and is independent of the previous developmental duration

before eclosion.

Gastrointestinal activity and feeding are not important for the successful first mating of both

sexes

The success of normal excretion seems to reflect the normal gastrointestinal activity of the body (Figure S3).

As normal gastrointestinal activity is required for effective nutrient absorption, first, we measured the first

excretion (defecation of the meconium) of eclosed flies. We observed that the initial excretion was

completed within approximately 2 h of eclosion, suggesting that the gastrointestinal organ of the fly

may already be functioning normally within 2 h of eclosion, at least in terms of excretion function

(Figures S3E–S3G). First excretion showed no daytime or nighttime tendency and did not differ between

sexes in all wild-type strains (Figures S3E–S3G). The wing expansion after eclosion often occurred within

approximately 30 min of eclosion (Figure S4). In most individuals, defecation of meconium was completed

after wing expansion, although some individuals excreted before wing expansion (Figures S3D–S3G).

Next, we directly measured the first feeding behavior of eclosed flies as shown in Figures 3A–3C. We

observed that each individual showed an extensive range of first feeding timing (Figures 3D–3F). Some in-

dividuals began their first feeding within minutes of eclosion, whereas others had their first feeding more

than 10 h after eclosion (Figures 3D–3F). Unlike the relatively strict first mating time, the wide range of the

first feeding time suggests that feeding may have little effect on first mating. To investigate this hypothesis

further, we monitored the first mating under starvation conditions (Figures 3G–3I; Tables S3–S5). We

observed that the time until first mating from eclosion was no different between the groups with or without

food in all strains, indicating that feeding was not required for the performance of first mating in both sexes.

Sexual dimorphism on the first phase transition of locomotor activity after eclosion

To understand the relationship between the time of the first mating and the increase in behavioral activity,

we next focused on a transition of the locomotor activity after eclosion. A single black pupa was placed in

each well of a 24-well microplate, and the activity was monitored for 48 h under 12:12 h light:dark (LD) and

dark:dark (DD) cycle conditions. Phase transitions of locomotor activity showing steep increases were

analyzed. As in Figure 4A (also in and Figures S5–S7), we observed that nearly all adult flies displayed a rela-

tively high locomotor activity immediately after eclosion. Despite the initial surge in locomotion, flies

tended to quickly revert to a low-activity state that persisted for an extended period. Later, the activity

gradually increased again and then shifted into a high-active state which persisted for a long period. We

defined the second upward trend as a phase transition of activity and captured it by sigmoid curve fitting

onto the distance that the flies moved, after some signal processing (Figures 4A and S5–S7, see also

‘‘method details’’). The activity phase transition time (APTT) was characterized as the inflection point of

the sigmoid function (as detailed in ‘‘Data analysis’’ in Figure 4A). Also, the persistent and relatively high

activity after the phase transition could be estimated as the maximum value of the sigmoid function (see

‘‘method details’’). Activity after APTT showed significant differences in locomotor activity between the

sexes of all three strains, except for the CS strain in the LD condition (Figures 4B and 4C; Tables S6 and

S7). The activity of CS strain under LD conditions also tended to be higher in females than males (see Fig-

ure 4B). Previous reports also noted sexual dimorphism in mature adult locomotor activity.36,37 We

analyzed the APTT of the three strains, from a low- to high-active phase in locomotor activity in LD (Fig-

ure 4D) and DD conditions (Figure 4E). We observed that females exhibited significantly earlier APTT

than males in both LD (1.3-, 7.7-, and 9.8-h difference in CS, OrR, and w1118 strains) and DD (3.8-, 5.9-,
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and 4.2-h difference in CS, OrR, and w1118 strains) conditions, indicating a sexual dimorphism in the dura-

tion of the phase transition to higher locomotor active phase after eclosion (Figures 4D and 4E; Tables S8

and S9). We observed sexual dimorphism in APTT but not in the first mating time. These results suggest

that the sexual behavioral maturation in D. melanogaster is not simply synchronized with the increase in

locomotor activity following eclosion.

A B C

D E F

G H I

Figure 3. Feeding does not have significant impact on the performance of first mating in both sexes

(A and B) Schematic representation of the method to detect the time of first feeding after eclosion. A black pupa was

placed in each well of a 12-well microplate and observed until success of first feeding (A). A black pupa was placed in each

well of a 12-well microplate containing a droplet of sugar solution on the parafilm (B) and monitored until first feeding

success after eclosion.

(C) Images of the first feeding before and after wing expansion (WE). Dotted lines indicate droplets of sugar solution.

(D–F) Scatterplots depict the eclosion and first feeding time following eclosion in the (D) Canton-S (CS), (E) Oregon-R

(OrR), and (F) white1118 (w1118) strains.

(G–I) Boxplots of first mating time after eclosion with/without food in the (G) CS, (H) OrR, and (I) w1118 strains. Whiskers

indicate minima and maxima (n.s., no significant difference; Student’s unpaired t test). The number of flies analyzed is

indicated in parentheses on all graphs. See also Figures S3 and S4 and Tables S3–S5.
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Drastic male courtship arousal after eclosion

Themating event only succeeds after an agreement between both the male and the female fly. Therefore, the

first mating might also be greatly influenced by the sexual motivation of the partner. The wing extension

behavior primarily reflects the internal sexual motivation of males to sexual stimuli and seems to be indepen-

dent of the motivation of their female partners.4,5,38 Accordingly, we attempted to detect the first occurrence

of wing extension behavior in eclosed male flies to comprehend the maturation of their internal sexual moti-

vation. We detected the first mating and first wing extension in males using the same method shown in

Figures 1A–1C. As expected, the variation in time of the first wing extension was narrower than that between

the first mating events in all strains (Figures 5A–5C). Some males had a successful first mating at about the

same time as the first wing extension, indicating that males might already be capable of mating at the time

that they show wing extension behavior (Figures 5A–5C). Next, we tried to observe more clearly the male

behavior just after eclosion in a wider space using a 12-well microplate (Figure 5D). Eclosed males showed

A B

C

D E

Figure 4. Sexual dimorphism in the time of the first activity phase transition of locomotor activity following

eclosion

(A) Schematic representation for monitoring and analyzing the locomotor activity following eclosion. After monitoring the

activity of individual flies for two days after eclosion (upper panel), the recoded data were analyzed as following panels.

Middle panels depict examples of raw activity state of fly after eclosion in the experiment. As depicted in the lower panel,

the activity phase transition time (APTT) was characterized as the inflection point of the sigmoid function, derived through

data processing of the raw data (see ‘‘method details’’). The blue line represents the modified moving distance, and the

green line corresponds to the sigmoid function fitted on the modified moving distance. The red vertical line indicates the

time of eclosion, and the green vertical line indicates APTT, defined as the inflection point of the sigmoid.

(B and C) Boxplots of the average direction per second after activity phase transition in the Canton-S (CS), Oregon-R

(OrR), and white1118 (w1118) strains under (B) a 12:12 h light-dark (LD) cycle and (C) a dark-dark (DD) cycle conditions.

(D and E) APTT of locomotor activity after eclosion in both sex of the CS, OrR, and w1118 strains under (D) LD and (E) DD

conditions. Whiskers indicate minima and maxima (***, p < 0.001; **, p < 0.01; **, p < 0.05; Student’s unpaired t test). The

number of flies analyzed is indicated in parentheses in all graphs. See also Figures S5–S7 and Tables S6–S9.
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a very stationary state for several hours. However, after that, we observed that males shifted to a hyperactive

mode for courtship behavior (Figures 5E and S8). We were particularly interested in such rapid increases in

male courtship activity that appeared for the first time after eclosion. We focused on the hyperactive modes

in which courtship activation status was seen in a continuous way for at least 10 min, after a period of no court-

ship behavior (see the definition of courtship activation status in STAR Methods). We visually determined the

initial time point of each hyperactive mode from the video, and designated it as ‘‘drastic male courtship

arousal (DMCA)’’ (Figure 5E). We observed that the first mating for adult males occurred shortly following

A B C

D E

F G H

Figure 5. D. melanogaster males exhibit characteristic courtship behaviors after eclosion

(A–C) Scatterplots of times of the first wing extension and first mating after eclosion in the (A) Canton-S (CS), (B)Oregon-R

(OrR), and (C) white1118 (w1118) strains. Green and light blue bands within the graph indicate pointed range of minima and

maxima of each axis.

(D) Schematic example of the experiments. A black pupa and a sexually mature virgin adult (five-day-old) mating partner

were placed in each well of a 6-well microplate and observed until successful first mating occurred.

(E) Change in courtship activity rate for +/� 10 min of the drastic male courtship arousal (DMCA) point. In this paper, we

define the DMCA point as the point of heightened activity at the first onset of which copulation activity increases abruptly

from a near-inactive state and persists for at least 10 min. The graph illustrates fluctuations in courtship activity over a

10-min interval preceding and following the DMCA point; courtship activity on the y axis is quantified as the ratio of the

duration of copulation behavior per minute (ranging from 0 to 1.0).

(F–H) Boxplots depicting initial behaviors, including wing expansion (WE), first wing extension (FWE), drastic male

courtship arousal (DMCA), and first mating (FM) in the (F) CS, (G)OrR, and (H)w1118 strains. The number of flies analyzed is

specified in parentheses in all graphs. See also Figure S8.
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the DMCA in all strains (13.7, 12.3, and 11.4 h post eclosion on average for DMCA in the CS, OrR, and w1118

strains, respectively; 15.0, 13.5, and 11.5 h on average for the first mating, respectively), indicating that the

DMCA serves as a significant behavioral turning point for males (Figures 5F–5H).

DISCUSSION

In this report, we have determined the precisely timed first mating and several characteristic behaviors after

eclosion in both sexes of three different strains. The schematic timeline of behaviors during adult sexual

maturation is depicted in Figure 6 (also see Figure S9).

We found that it takes a certain fixed duration for first mating after eclosion in both sexes of wild-type

strains, suggesting that this process is tightly controlled genetically. We observed that the circadian

rhythm was not involved in the first mating event, although the eclosion event is highly controlled by

the circadian clock.39–41 It has been previously also reported that fully aged, 5- and 9-day-old virgin flies

display a robust circadian rhythm in the mating activity, but 3-day-old females do not show the mating

activity rhythm.42,43 Our results indicate that the first mating is determined by the elapsed time after eclo-

sion in both sexes.

Figure 6. Schematic schedule of behavioral events during sexual maturation from the eclosion to the first mating

in each sex

This schematic represents the integrated schedule of events of three strains (CS,OrR, and w1118) from the eclosion to first

mating, as depicted in Figure S9. The boxes depict the range of minimum andmaximum values, and the darkest color and

its gradations indicate the mean and distribution of each event. The following events are represented by their respective

colors: yellow represents first feeding (FF); gold represents wing expansion (WE); magenta represents first excretion (FE);

green represents first wing extension (FWE); blue represents drastic male courtship arousal (DMCA); light blue represents

first mating (FM); and red represents activity phase transition time (APTT).
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Generally, nutritional conditions directly affect the reproductive performance of animals, including

D. melanogaster.44–49 Insulin signaling contributes to the sexual receptivity of fruit flies.50,51 Hence, we

investigated the relationship between gastrointestinal activity, first feeding, and first mating after eclosion.

We used sugar for food source in this experiment. It is noteworthy that D. melanogaster displays diverse

responses to volatiles emitted by distinct food sources. In general, matured flies tend to consume more

in the case of high carbohydrate food and, in contrast, yeast-rich diets have a pronounced suppressive ef-

fect on feeding.52–54 Therefore, our experiment may vary if a more attractive food source were employed.

Nevertheless, our observations suggest that the drive for appetite in newly emerged flies may not be as

intense as in hungry mature adults. Additionally, the duration until first mating from eclosion remained

consistent regardless of the presence or absence of regular Drosophila food (yeast/glucose/cornmeal

diet) during the adult stage for both males and females. These results suggest that sexual maturation after

eclosion seems to progress independent of external nutrient intake.

Previously, it was reported that 20% of just-eclosed teneral females mated within 1 h.55 However, such

forced mating to teneral females by mature males has rarely been observed in our experiments. One

reason might be the difference between the experimental conditions of the female in our study and those

in previous reports. We used pre-eclosed pupal females for the experiment, whereas the earlier study used

teneral females collected with no anesthesia soon after eclosion.55

A previous report indicated that courtship depends on the internal state of the male.56 Our study found that

males exhibit a notable turning point in sexual behavior characterized by a surge of active courtship behavior

toward virgin females (termedDMCA) and first mating often coupled withDMCA. Thematuration of the sensory

system to sense females is important for male courtship response.7,38,57,58 Themale-specific fru/dsx co-express-

ing P1 cluster is deeply connected to the decision process ofmale courtship.59–62 In addition to establishing such

a dedicated neural circuitry, there is also the possibility that other factors, such as thematuration of reproductive

organs, the physiological environment, or extrinsic environmental stimuli, may be involved in DMCA. Therefore,

the DMCA, as a clear indicator of male sexual maturation, could contribute to elucidating themechanism of sex-

ual maturation by underlining the relationship between several factors.

In D. melanogaster, there is apparent sexual dimorphism in locomotor activity.36 Previous reports indicate

that the sexual dimorphism in locomotor activity is genetically controlled, and the pars intercerebralis neu-

rons directly regulate the sexual dimorphic behavior.36,63 We confirmed that the sexual dimorphism of lo-

comotor activity was already exhibited after entering the active phase after eclosion. We also found that

females are earlier than males to change the motivation to the active phase of locomotor activity after eclo-

sion. Previously, we reported that females eclose 4 h faster than males in D. melanogaster.32,33 Sex differ-

ences in the duration of eclosion and maturation and locomotor activity produce a spatiotemporal gap be-

tween the sexes in siblings. Therefore, these results could be a compelling example to explain that

protogyny (where females emerge earlier than males) has ecological implications for avoiding inbreeding.

In this study, we focused on the behavioral aspect of adult maturation in each sex of fruit flies. However, it is

also known that the reproductive capacity is very low in very young flies just after eclosion, even if the fly has

already acquired the ability to mate,64–66 suggesting that behavioral sexual maturation may occur before

physiological sexual maturation. It is worth considering the benefits and costs of mating and reproduction

in the physiologically immature adult stage. So far, the driving forces for the evolution of the maturation

balance between behavior and physiology are not known; yet, there could be a multitude of factors influ-

encing the optimization of the behavioral and physiological balance.65 Our research will help to further our

understanding of the link between behavioral and physiological maturation in D. melanogaster.

Limitations of the study

In this study, by putting a pupa and an adult virgin mating partner in the same well and recording video for

long periods, we could precisely detect the duration of first mating from eclosion in D. melanogaster and

obtain the new findings described above. However, it is essential to note that this analysis has presented

formidable challenges and required a substantial investment of time, primarily due to the reliance on visual

observations for detecting all behavioral patterns. Consequently, improving efficiency by automating

detection is a major challenge for using this method. Moreover, it is imperative to acknowledge the limi-

tations of this study, which focused solely on the behavioral interactions between a single male and a single

female, thus precluding an examination of how the sexual maturation mechanism is influenced in the
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presence of multiple individuals. Therefore, future investigations should aim to develop methods that can

analyze the effects of various environmental and physiological factors on the behavioral progression from

eclosion to first mating, encompassing not only pairs but also larger groups of individuals.
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lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly strains and maintenance

In this study, we examined the timing of first mating after eclosion in males and females of three different

strains: Oregon-R (OrR), Canton-S (CS), and white1118 (w1118). While w1118 is utilized as a laboratory "wild-

type" strain inDrosophila research, including studies of the circadian clock,67–71 it is known to exhibit visual

defects72–74 and various behavioral abnormalities, including altered locomotor activity,75 memory,76,77 and

courtship behavior.78,79 All strains were cultured in standard conditions: on standard fly medium in a plastic

vial at 25�C.80 We recorded flies at the black pupal stage (stage P14) to observe the behavior of flies just

from the eclosion. We also used 5-day-old virgin females or males as mating partners for each fly in the

study.

METHOD DETAILS

Measurement of the duration until first mating after eclosion

We designed an apparatus to record fly behavior for a long duration with the day/night cycle as described

in the main text and Figure 1A. The microplate can be set at a fixed position in the chamber and was illu-

minated using an IR 850 nm LED placed beneath and was monitored by the IR camera placed at the top of

the chamber. Recording and illumination for the day/night cycle were controlled by using the Raspberry Pi

3 Model B (https://www.raspberrypi.org/). The microplates were filled with a normal fly medium (about the

half volume of the well). Then, a black pupa (stage P14) was placed in each well and sealed with Titer stick

film (Watson, Tokyo, Japan). The film on each well was cut using a cutter in a cross shape, and an adult mat-

ing partner fly was placed into each well. Using themonitoring system, we recorded the behavior of eclosed

flies from eclosion to first mating. Time points of eclosion and first mating were visually determined from

the video.

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Oregon-R Kept in lab stock

Canton-S Kept in lab stock

w1118 Kept in lab stock

Software and algorithms

Prism v. 8.4.3 GraphPad Software, LLC. https://www.graphpad.com
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To measure the time elapsed from egg laying to first mating, we collected the embryos in a narrow time

range (30 min) and put each embryo into a well of a 96-well microplate containing fly food. Then, the pu-

pariation time points were measured using DIAMonDS.32 After pupariation, black pupae (stage P14) and

5-day-old virgin mating partners were paired together in single wells of a 96-well microplate, and then

monitored to detect eclosion and the first mating of each individual.

Detection of DMCA

To detect DMCA, the 6-well microplate was filled with a normal fly medium. A black male pupa (stage P14)

was placed in each well and add a maturated virgin female (5-days old). Then, the microplate was recorded

by the monitoring system and DMCA was visually determined from the video. DMCA was defined as the

initial time point after eclosion when courtship response occurred and continued for at least 10 minutes,

following a period of no courtship behavior. Courtship activation status is distinguished by the elicitation

of one or more behaviors, such as orienting, following, tapping, wing extension, licking, abdomen bending,

attempted copulation, and copulation, within a one-minute interval.

Detection of individual activity phase transition time (APTT) after eclosion

Tomeasure the individual activity of adult flies just from eclosion, the black pupae were placed in the well of

a 24-well microplate with normal medium. The plate was then placed on the recording apparatus described

in Figure 1A. Video recording was continued for 48 hours.

To process the image, the movies obtained by continuous monitoring were transferred to sequential time-

lapse images. The consecutive image frames were also divided into individual wells. All the animals were

independently extracted in a well manually created as square shape images with 68 x 68 pixels. A moving

animal body was detected as a foreground object separated from the background by an image processing

technique called MOG which employed a mixture Gaussian distribution1 (Figure S5A). Grayscale transfor-

mation and binarization by thresholding were also applied (Figure S5B). In addition, closing- and opening-

operation which are types of morphological filtering were performed for filling object and noise reduction,

respectively2 (Figures S5C and S5D). An object with sufficiently large areas (>30 pixels) in a frame was

determined as a moving animal body.

The trajectory of the animal body was calculated to estimate the behavioral history of an individual moving

displacement. Instantaneous displacements of a fly were obtained as a moving distance of gravity center of

the region of interest (ROI) between pre- and post-images. The total movement of the animal body was

characterized as a sequence of instantaneous displacements.

Eclosion times of all animals were automatically detected as the first frame showing non-zero activity and

additional manual confirmation. To eliminate tentative active state related with eclosion event, activity of

eclosion just after 2 hours was replaced with zero. Smoothing by moving average was performed on the

time series of fly displacement for 30 hours after eclosion offset (Figure S5E). To capture the distinct activity

elevation timing, the time series after the smoothing was transformed as follows:

ymod
n = max

�
y1; :::; yn

�
(Equation 1)

Here, n is a frame number, ymod
n is modified signal of n-th frame and yi is original signal in i-th frame.

Finally, curve fitting by sigmoid function was performed on the modified signal. The rise timing of fitted

sigmoid was defined as the timing of fly activity elevation after eclosion.

First feeding and excretion times after eclosion

We poured 2% agar into a 12-well microplate, placed a parafilm sheet (about 7 3 7 mm2) on the agar, and

placed one crystal of sucrose on the center of the parafilm as shown in Figure 3B. After placing the sucrose

crystal on the parafilm sheet, it was melted by water vapor and became a drop of saturated sucrose solu-

tion. Then, a black pupa (stage P14) was placed at the side of the agar plate and monitored the plate using

the recording system described in Figure 1A for 2 days. We defined the time at which the proboscis exten-

sion reaction occurs as the index of feeding reaction, and visually measured the time of first feeding after

eclosion from the video. We also visually determined the time of the first excretion after eclosion by detect-

ing the meconium on the plate from the same video.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data were analyzed, and graphs were plotted using the GraphPad Prism v. 8.4.3 software (GraphPad Soft-

ware, San Diego, CA, USA). A student’s unpaired, two-tailed t-test was performed to compare differences

between groups in each experiment (***p < 0.001; **p < 0.01; *p < 0.05; n.s., no significance). In order to

quantify grouping factors on behavioral schedule, we also performed two-way ANOVA for sex-strain and

sex-food before the direct pairwise comparisons by t-test. While the duration until first mating after eclo-

sion did not show significant interaction between sex and strain (Table S1, see also Figures 1D–1F), mating

duration exhibited significant interaction between them (Table S2, see also Figures 1G–1I). There were no

significant interactions between sex and strain in the APTT and moving distance after the APTT in both of

LD/DD (Tables S6–S9, see also Figures 4B–4E). When we tested sex-food interactions, no significant inter-

actions were found in the duration to first mating from eclosion for all strains (Tables S3–S5, see also

Figures 3G–3I).

We also performed the binomial test to characterize the light-dark (LD) tendency in eclosion and first mat-

ing. A significance level of difference from neutral (50%) was labeled as same as the t-test described above

(Figures 2B–2D and S2C).
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