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Intracellular peptides
in SARS-CoV-2-infected patients

Luiz Felipe Martucci,1 Rosangela A.S. Eichler,1 Renée N.O. Silva,1,7 Tiago J. Costa,2 Rita C. Tostes,2

Geraldo F. Busatto,3,* Marilia C.L. Seelaender,4 Alberto J.S. Duarte,5 Heraldo P. Souza,6 and Emer S. Ferro1,5,6,8,*

SUMMARY

Intracellular peptides (InPeps) generated by the orchestrated action of the
proteasome and intracellular peptidases have biological and pharmacological sig-
nificance. Here, human plasma relative concentration of specific InPeps was
compared between 175 patients infected with severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), and 45 SARS-CoV-2 non-infected patients;
2,466 unique peptides were identified, of which 67%were InPeps. The results re-
vealed differences of a specific group of peptides in human plasma comparing
non-infected individuals to patients infected by SARS-CoV-2, following the re-
sults of the semi-quantitative analyses by isotope-labeled electrospray mass
spectrometry. The protein-protein interactions networks enriched pathways,
drawn by genes encoding the proteins from which the peptides originated, re-
vealed the presence of the coronavirus disease/COVID-19 network solely in the
group of patients fatally infected by SARS-CoV-2. Thus, modulation of the rela-
tive plasma levels of specific InPeps could be employed as a predictive tool for
disease outcome.

INTRODUCTION

Circulating blood plasma connects the various compartments of the organism, promoting tissues/organs

crosstalk, and warranting functional organization and accordance of adaptive responses. Human plasma

peptide contents have been for decades associated with secreted, short-lived, neuronal and hormonal

peptides, such as insulin, glucagon, angiotensin, and bradykinin. Recent advances in high-sensitive elec-

trospray ionizationmass spectrometry coupled with high performance nano liquid reversed-phase chroma-

tography (ESI-nLC-MS/MS), allowed us to investigate proteome and peptidome from human fluids in far

greater details.1 Perturbation of the human plasma proteome was shown to persist for up to 6 weeks

following the first confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection,

allowing to track symptoms of severity and antibody responses.2 Human urine peptidome in SARS-CoV-

2-infected patients suggested that urinary peptide profiling generates candidate biomarkers even at early

disease stages.3,4 It is noteworthy to mention that human urine and plasma have almost complete distinc-

tive peptide profiles, suggesting that human plasma has a large pool of resident peptides, maintained by

reabsorption in detriment of excretion during renal filtration.4–6 Despite the well-known function of

bradykinin and angiotensin7,8 and fibrinogen-derived peptides,9–15 the biological function of most plasma

resident peptides remains poorly investigated.

Considering that peptides play key roles in physiology as well as in several diseases, and are frequently em-

ployed for medication16–20 or diagnosis,4,21 the present report was designed to semi-quantitatively inves-

tigate, by using formaldehyde-derived isotope labeling, the human plasma peptidome in SARS-CoV-2-

non-infected individuals and in SARS-CoV-2-infected patients. The results show variations in the relative

levels of specific peptides according to the defined clinical status of the patients (i.e., non-infected vs.

SARS-CoV-2-infected with moderate, severe, or fatal infection). Peptides identified in human plasma

were 67% derived from intracellular, non-secreted proteins. Plasma peptides identified herein and else-

where6,22 were compared with the collection of previously reported urinary peptides. Plasma and urinary

peptidomes were distinctive in several biochemical aspects (i.e., precursor proteins, molecular weight,

net charge, isoelectric point, hydrophobicity, aliphatic index, and instability index). The present results

indicate that human plasma presents a large pool of resident peptides, whose relative levels vary according
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to the severity of SARS-CoV-2 infection. InPeps herein identified have unknown biological or pharmacolog-

ical function, requiring further characterization.

RESULTS

Individuals diagnosed with SARS-CoV-2 infection (n = 175, 63 male, 100 female, and 12 undeclared sex) and

non-infected (control) individuals (n = 45; 17 male and 28 female), were enrolled for this study (Tables 1 and

S3). All SARS-CoV-2-infected patients enrolled in this study received supplemental oxygen, and according

to the WHO guidelines23,24 could be considered as cases presenting the severe form of the COVID-19

disease. However, for the purpose of this plasma peptidome study, SARS-CoV-2-infected patients were

sub-classified into: (1) patients not mechanically ventilated or with moderate infection (M); (2) patients

mechanically ventilated or with severe infection (S); and (3) severe fatal infection that led to death during

hospitalization (D). Non-SARS-CoV-2-infected individuals were considered ‘‘controls’’ (C).

Plasma peptidome analyses in this group of 220 individuals unveiled he presence of 2,466 distinct peptides

of varied frequencies across mass spectrometry runs (Figure 1; Table S4). As the peptides were isotope-

labeled their relative levels among groups M/C, S/C, or D/C could be compared. Several differentially

regulated (increased or decreased) peptides were identified, with increased peptide ratios being more

evident among SARS-CoV-2-infected patients (Figure 1).

Table 2 shows peptides with frequencyR30% across mass spectrometry runs, and their semi-quantitatively

evaluated ratios among groups MC, S/C or D/C. Peptides such as GIFTDQVLSVLKGEE, VESTSNSPSSS,

IKERVPDSPSPAPSLEE, and GEGDFLAEGGGVR were identified in more than 50% of SARS-CoV-2-infected

patients, and may thus present relevance for diagnosis; these more frequent peptides originated from nine

proteins. Fibrinogen gave rise to four peptides, DACH1 yielded three peptides, and DACH2 generated two

peptides (Table 2). The remaining proteins gave rise to only one peptide each (Table 2).

When categorized by sex, fewer peptides seem differentially modulated in patients infected by SARS-CoV-

2, as compared to non-infected individuals (Table S5). Shortly, an increase in the peptide

GIFTDQVLSVLKGEE occurred in females from groups M/C and S/C, and in males D/C. The peptide

VESTSNSPSSS increased only in females, in M/C, S/C, and D/C. Peptide KERVPDSPSPAPSLEE increased

in both males and females from groups M/C and S/C, but not in group D/C. The related peptide

IKERVPDSPSPAPSLEE increased in both male and female from group M/C, and in males from group

S/C, while the shorter peptide VPDSPSPAPSLEE increased only in females from the M/C group. Peptide

KERIPESPSPAPSLEE increased in females from group M/C, whereas the peptide DGSDVSK was reduced

in males from groups M/C and D/C. Fibrinogen peptide ADSGEGDFLAEGGGVR was increased in females

from group S/C, the peptide SGEGDFLAEGGGVR was increased in males from M/C group, while the

shorter peptide GEGDFLAEGGGVR appeared increased in males and females from M/C group.

From all 2,466 unique peptides identified herein, 67.3% were considered InPeps as they originated from

proteins whose predominant subcellular localization was either cytosolic, nuclear or mitochondrial (Fig-

ure 2A, sA); similar results were obtained considering only the most frequent peptides shown on Table 2.

A smaller proportion of peptides identified in the human plasma were from proteins preferentially

Table 1. General clinical characteristics of patients investigated herein

C M S D

Age (years) 58.57 G 19.59 59.24 G 14.58 58.31 G 12.79 66.86 G 14.69

Sex (n)

Male 17 22 41 22

Female 28 37 27 14

Not available 0 11 0 1

M, moderate infection; S, severe infection; D, infection that led to death during hospitalization; C, non-SARS-CoV-2-infected

individuals Table S3 contains additional descriptions of patients’ clinical conditions, including pre-existence of obesity, dia-

betes, and/or hypertension, as well as hospitalization period (days), need of mechanical ventilation, and time in mechanical

ventilation if needed (days).
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compartmentalized in the cellular membranes (22.72%; Figure 2A, sA), or devoted to the secretory pathway

(9.91%; Figure 2A, sA).

Considering that one protein can originate more than one peptide, the percentage and the respective sub-

cellular localization of the precursor proteins giving rise to unique peptides were then investigated.

Secreted proteins were observed to give rise to the greatest number of plasma peptides per protein

(13.60 peptides per precursor protein), while intracellular proteins generated 3.58 peptides per precursor

protein, and membrane proteins generate 2.49 peptides per precursor protein.

Comparisons between the present study and previous plasma peptidomics studies6,22 revealed both sim-

ilarities and discrepancies (Figure 2B). From 2,466 peptides presently identified, 6 peptides intersect with

Magalhães et al.,6 76 peptide with Parker et al.,22 while 42 peptides were common to all these three

mentioned studies (Figure 2B; Table S6).

The entire pool of plasma peptides identified in this study and previously,6,22 was compared to the collec-

tion of previously reported urinary peptides.4,6 These data suggested that plasma peptides, compared to

urinary peptides, were: (1) significantly lighter (Figures 3A and 3B), (2) shorter (Figures 3B and 3C), (3) less

negatively net charged (Figures 3C and 3D), (4) of higher isoelectric point (Figures 3D and E), (5) less hydro-

philic (Figures 3E and F), (6) of greater aliphatic index (Figures 3F and G), and (7) of greater instability index

(Figure 3G). Thus, these data suggest the existence of a distinctive large pool of plasma peptides, whose

biological significance have not yet been investigated.

Protein-protein interactions (PPI) networks (PIN) were constructed using genes encoding the proteins that

originated the differentially expressed peptides identified from groups M/C, S/C, and D/C. These analyses

sheds light on the biological significance of differentially regulated peptides, revealing that their enriched

terms were commonly associated with SARS-CoV-2 infection (Figure 4). A higher fold enrichment in D/C

group compared toM/C or S/C groups was identified for term related to complement and coagulation cas-

cades, and neutrophil extracellular trap formation. Parkinson’s disease termwas enriched exclusively in S/C

group (Figure 4), which could indicate propensity of these patients to develop post-COVID-19 neurological

symptoms. The coronavirus disease/COVID-19 term was enriched only in the D/C group (Figure 4).

Ligand short linear motifs (SLiMs) are functional modules that participate in PPI without requiring stable

tertiary structure to accomplish their function.26 Thus, over-representation analysis (ORA) using SLiMs in

differentially regulated peptides evince their possible role in interfering with PPI, and impacting the

severity of SARS-CoV-2 infection (Figure 5). The prediction tool from ELM, a dedicated database and

exploratory server for over 300 SLiMs classes, with experimental evidence manually curated from over

3,800 scientific publications,26 was employed for these analyses.

The ELM tool predicted an average of 5.31 SLiMs per peptide, among 108 (94%) out of 114 (100%) distinct

differentially regulated peptides from M/C, S/C, or D/C groups. After filtering the SLiMs to remove dupli-

cates and to keep only those with annotated instances ofHomo sapiens from the classes docking or ligand,

a significant overrepresentation of the MAPK, NF-kB (NF-kB), phospholipase D, and Ras signaling path-

ways were identified in all group comparisons. However, T cell receptor and tumor necrosis factor (TNF)

Figure 1. Plasma peptides frequency and their respective p value when comparing peptide ratios

M/C, S/C, and D/C. Colored dots represent peptides whose relative ratio either remained unaltered (gray dots),

significantly increased (red dots) or significantly decreased (green dots) [p value % -log10 (5$10
�2)]. See also Table S4.
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signaling pathways were enriched only in the M/C and S/C groups, while RNA degradation was exclusively

enriched in D/C.

Using SLiMs, as a framework to conduct ORA can offer insights into the processes taking place in the body.

Indeed, integrins possess the capability to bind to a vast array of ligands harboring SLiMs such as an RGD,27

LDS or LDI28; the presence of those cells’ attachment motifs in spike (S) protein of SARS-CoV-2 (S-SARS-

CoV-2) indicates its usage by the virus’s cell entry system for pathogenic hijacking.27 RGD and LDS, but

not LDI, peptides were identified multiple times in this study (Figure 6A); similarly, peptides containing

the RGD and LDS motifs were also identified in previous plasma peptidome studies.6,22 The ratio of pep-

tides containing either RGD or LDSmotif was not differentially regulated within any group (data not shown).

However, considered as a class of peptides, those containing the RGDmotif were increased in S/C and D/C

groups, but not in theM/C group (Figure 6B). Peptides containing the LDSmotif were increased inM/C and

S/C groups, but not in D/C group (Figure 6C).

DISCUSSION

One of the major findings of the present report was to reveal in human plasma the presence of a large pool

of peptides derived from intracellular protein precursors (i.e., InPeps). The relative levels of InPeps

frequently identified in SARS-CoV-2-infected patients was increased, suggesting these to be interesting

candidates for disrupting the PIN related to SARS-CoV-2 infection severity. The biological function of

the InPeps identified herein remains elusive and deserves further investigation, as prior evidences indicates

the potential for both biological29–32 and medical4,16–21,25 relevance of plasma-resident peptides.6,22,33

InPeps IKERVPDSPSPAPSLEE and KERVPDSPSPAPSLEE, derived from the intracellular protein DACH1,

were identified in patients with a frequency of 58% and 33%, respectively; these peptides were significantly

increased in SARS-CoV-2-infected patients (i.e., M/C, S/C andD/C). A similar DACH1-derived peptide lack-

ing three N-terminal residues, VPDSPSPAPSLEE, identified with a frequency of 66.67% among all patients,

was also increased in SARS-CoV-2-infected patients with moderate or severe symptoms. These data imply

that proteolytic processing (i.e., by aminopeptidases) differentially regulates the levels of plasma peptides,

according to the severity of COVID-19. It is worth mentioning that InPeps functions correlates with those of

the precursor proteins,34–37 indicating that InPeps could be contributing to SARS-CoV-2 symptoms playing

a role similar to those of their precursor proteins. In line with that, a recent report showed that the protein

DACH1 is associated with SARS-Cov-2 infection38; in addition, the expression of DACH1 is relatively

increased in patients infected with influenza.39 DACH1 represses the transcriptional level of matrix metal-

loprotease 9 (MMP9) by interacting with p65 and c-Jun at the NF-kB and AP-1 binding sites in the MMP9

Figure 2. Comparative analyzes of human plasma peptidome studies

(A) subcellular localization of proteins that originated the identified peptides.

(B) Venn diagram of peptides identified across studies. sA, present report; sB, Magalhães et al.5 and sC, Parker et al.25 See

also Table S6.
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promoter, respectively.40 MMP9 was also suggested as an early indicator of respiratory failure in patients

infected by SARS-Cov-2.41,42 The association of DACH1 and p65 promotes the recruitment of HDAC1 to

the NF-kB binding at the MMP9 promoter, reducing p65 acetylation level and transcriptional activity,

and inhibiting the metastasis of breast cancer cells downregulating the expression of MMP9,40 and

reducing the canonical NF-kB-driven inflammation.43

Plasma peptides reported herein and elsewhere6,22 have very little overlap to previously reported urinary

peptides.4,6 This fact may indicate that renal clearance selects specific peptides for excretion based on

their biochemical characteristics; thereby, enabling the persistence of numerous peptides in the plasma

(i.e., human plasma resident peptides). This observation suggests demonstrate a potential undiscovered

pivotal role for plasma peptides in human physiology, as well as in disease states as SARS-CoV-2 infection.

These distinguishable biochemical characteristics of plasma and urine peptides shown in the present

study, provides a rationale for improving the pharmacokinetics of functional rationally design peptides.

This could be of interest to improve the half-life of peptides in the plasma, reducing rapid urinary excretion.

The protein from which the peptide originates can provide valuable information about its biological

role.34–37 Supporting this notion, PIN enrichment analyses revealed coronavirus disease/COVID-19 enrich-

ment in D/C group only. Furthermore, these analyses showed a higher fold enrichment of the PIN terms

related to complement and coagulation cascades, and neutrophil extracellular trap formation in patients

that died from SARS-CoV-2 infection. Additionally, considering the frequent association of neurological

Table 2. Peptide frequency and group comparisons

Freq. (%) * M/C S/C D/C

APOC2

GIFTDQVLSVLKGEE 60.00 [ [ [

ATP7A

VESTSNSPSSS 56.67 [ [ [

DACH1

IKERVPDSPSPAPSLEE 58.33 [ [ [

KERVPDSPSPAPSLEE 33.33 [ [ [

VPDSPSPAPSLEE 66.67 [ [ 4

DACH2

ESPSPAPSLEE 45.00 4 4 4

KERIPESPSPAPSLEE 46.67 [ [ 4

FAT2

DGSDVSK 30.00 4 4 [

FIBA

ADSGEGDFLAEGGGVR 61.67 [ [ 4

DSGEGDFLAEGGGVR 65.00 [ 4 [

GEGDFLAEGGGVR 63.33 [ [ [

SGEGDFLAEGGGVR 46.67 [ [ [

IRGQ

LLALPPASPSAARTKA 31.67 [ 4 [

KNG1

RPPGFSPFR (bradykinin) 45.00 4 [ 4

ZN541

SPSEESPPGPGG 50.00 4 4 4

M, moderate infection; S, severe infection; D, infection that led to death during hospitalization; C, non-SARS-CoV-2-infected

individuals. Freq. (%)*, percentage ofmass spectrometry runs whose peptide sequence was identified. Symbols indicate:⟷,

no change in peptide ratio, p > 0.05; [ or Y, respectively, peptide ratio either increased or decreased, p < 0.05. See also

Table S5 for results segmented by sex.
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disorders such as Parkinson’s disease with post-COVID-19 sequelae,44–46 the enrichment of this term exclu-

sively in the S/C group may suggest that patients with a severe SARS-CoV-2 infection are more prone to

developing Parkinson’s-like symptoms.

SLiMs are compelling candidates for deciphering the roles played by peptide sequences, suggesting that

the biological functions of peptides can be predicted from their SLiMs.47,48 Specifically, these analyses can

reveal enriched terms commonly associated with SARS-CoV-2 infection, underscoring the potential useful-

ness of SLiMs as a means for comprehending the pathophysiology of this disease. Such functional motifs

consist of short linear sequences, typically containing 3–15 residues,49,50 and can serve as a proxy for pep-

tides’ biological activities. In fact, an in-depth exploration through ORA of differentially regulated pep-

tides’ SLiMs brought up a large number of enriched terms commonly linked to SARS-CoV-2 infection.51,52

To spotlight the relationship between findings from SLiMs ORA and SARS-CoV-2 infection, it is noteworthy

that in all infected groups, NF-kB, a central player in SARS-CoV-2 cytokine storm,53 is enriched alongside

the MAPK signaling pathway. In circulating immune cells, MAPK is activated during the active phase of

SARS-CoV-2 infection, especially in severe cases.54 Additionally, activation of this pathway could partially

be responsible for the increase in platelet activation and aggregation observed with this infection.55

Considering that Ras serves as the initial module in the MAPK cascade, it is unsurprising to observe its

enrichment across all infected groups. Significance of Ras in COVID-19 becomes apparent through evi-

dence showcasing that inhibition of its downstream axis impedes SARS-CoV-2 replication.56 Another

aspect of SLiMs ORA is what distinguishes a fatal from a non-fatal SARS-CoV-2 infection. Viral replication

Figure 3. Biochemical comparisons between plasma and urine peptides

Identified plasma peptides (P) were both herein and previously by Magalhães et al.5 and sC, Parker et al.,25 and urine peptides (U) from previously reports by

Magalhães et al.5 and Wendt et al.3

(A) Peptide mass.

(B) Number of residues.

(C) Net charge.

(D) Isoelectric point.

(E) Hydrophobicity.

(F) Aliphatic index.

(G) Instability index. *p % 0.05 vs. P.

ll
OPEN ACCESS

6 iScience 26, 107542, September 15, 2023

iScience
Article



can be potently inhibited through selective activation of the TLR3/TLR4-IRF3 pathway.57 SARS-CoV-2 in-

fected patients with an unfavorable outcome presented lower TLR3 expression and enhanced expression

of TLR4, which could be related to the inflammatory response of patients with severe COVID-19.58 Enrich-

ment of T cell receptor and TNF signaling exclusively in patients who survived suggests that peptides,

through their SLiMs, competitively inhibit protein interactions59,60 that would otherwise trigger extensive

T cell activation and TNF signaling, which are associated with poor clinical outcomes.61,62 Moreover,

exclusive enrichment of RNA degradation in individuals who succumbed to the infection can indicate path-

ogen’s exploitation of cellular machinery to accelerate degradation of cytosolic cellular mRNAs, which fa-

cilitates viral takeover of the mRNA pool in infected cells.63,64

The S-SARS-CoV-2, which plays a key role in the receptor recognition binding and cell membrane fusion

process, is composed of subunits S1 and S2. The S1 subunit of S-SARS-CoV-2 contains a receptor-binding

domain (RBD) that recognizes and binds to the host receptor angiotensin-converting enzyme 2 (ACE2); the

S2 subunit of S-SARS-CoV-2 mediates viral cell membrane fusion.65 The mechanisms surrounding SARS-

CoV-2 infection have been widely attributed to ACE2-mediated pathways.66,67 However, SARS-CoV-2

infection was observed in many extra-pulmonary tissues, such as brain tissue, cardiovascular tissue, and

lymphoid tissue, where ACE2 expression was very low.68 Integrins are a family of a/b heterodimeric cell sur-

face adhesion receptors, which have also been suggested as a possible receptor candidate for SARS-CoV-2

cell infection.28,65,69 The RBD of S-SARS-CoV-2 has three potential integrin-binding motifs: RGD (Arg403-

Gly404-Asp405), LDS (Leu441-Asp442-Ser443) and LDI (Leu585-Asp586-Ile587).28,65,69 The S-SARS-CoV-2

Figure 4. PathfindR bubble plot of Biogrid PIN represented by Kyoto Encyclopedia of Genes and Genomes

(KEGG) terms

Enriched PIN were identified using genes encoding the proteins that originated the differentially expressed peptides.

The x axis corresponds to fold enrichment values, while the y axis indicates the enriched pathways with at least two genes.

Bubble size indicates number of differentially expressed genes (DEGs) in the given pathway. Color indicates �log10(p

value) value; the more it shifts from purple to red, the more significant the PIN was enriched.
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was shown to depend on its integrin RGDmotif to elicit vascular leakage events, which can be prevented by

the RGD-cyclic peptide compound cilengitide.70,71 Herein, the relative ratio of InPeps containing RGD or

LDS motifs were reported to be increased in patients infected by SARS-CoV-2. Moreover, peptides pre-

senting LDS motif were increased in M/C and S/C groups, but not in D/C group, which may help patients

to survive the SARS-CoV-2 infection. On the other hand, binding of plasma RGD peptides to integrins may

prevent the binding of S-SARS-CoV-2, thereby leaving it unhindered to interact with ACE2 facilitating a

more robust viral cell entry, as previously suggested.70 Plasma peptides containing RGD motifs, might

also regulate the activation of transforming growth factor b,72 which could lead to tissue fibrosis and

augmented coagulation.73 Therefore, the relative increase in peptides containing the RGD motif in

patients from D/C groups may contribute to SARS-CoV-2 fatal effect. Nonetheless, these captivating pos-

sibilities warrant further experimental exploration to unveil additional clinical implications of plasma pep-

tides/InPeps.

Limitations of the study

The present study has some important limitations. This was a single-center study. Blood samples from

SARS-CoV-2-infected patients from groups M, S, and D were collected early during the first wave of infec-

tion. Blood from SARS-CoV-2 non-infected individuals was collected later during the course of the COVID-

19 pandemic, with unusual limited clinical information about the patients. There were no available data

Figure 5. Bubble plot of overrepresented differentially regulated peptides docking or SLiMs KEGG terms

On Y axis are terms with p value% -log10(p value) and part of top three lowest p values of at least one group comparison

(M/C, S/C or D/C). Bold terms were enriched on groupsM/C and S/C, or exclusively on group D/C. Bubble size represents

number of SLiMs related to a given term. Color scale indicates -log10(p value); redder the color, more significantly

pathway is enriched.
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about the vaccinal status or previous SARS-CoV-2 infections from control individuals non-infected by SARS-

CoV-2 at the moment of the blood test. Therefore, differences in the relative ratio of human plasma pep-

tides presented herein should be taken as the differences between individuals that: (1) tested positive for

SARS-CoV-2 infection by RT-PCR test in nasopharyngeal and throat swabs, and by typical chest computed

tomography (CT)-scan findings at the moment of their blood collection; and (2) compared to individuals

that tested negative for SARS-CoV-2 infection by RT-PCR test in nasopharyngeal and throat swabs at the

moment of their blood collection. Therefore, SARS-CoV-2 derived peptides were identified in blood of in-

dividuals that tested either negative or positive for SARS-CoV-2 infection at the moment of blood collec-

tion (data not shown). Differences in peptidome caused by distinctive SARS-CoV-2 variants or those caused

by vaccination status were beyond the scope of this study. The statistical analyses presented herein have

not been further correlated with additional clinical conditions of the patients/individuals, including obesity,

diabetes, and/or hypertension, hospitalization period (days), need for mechanical ventilation, or time un-

der mechanical ventilation if needed (days). The limited number of differentially modulated peptides

Figure 6. Multiple sequence alignment of plasma peptides identified herein that contain the RGD or LDS SLiMs

(A) Peptides containing either the motif RGD, (B) or LDS, (C) and their respective relative ratios in M/C, S/C, or D/C. For

better visualization, extreme peptides ratios values used to produce the plot were capped at 10 and 0.5. *Peptide ratio

significantly greater than one (p% 0.05). The peptide-precursor protein was shown after each peptide sequence. Proteins

which generated more than one peptide were identified with unique ID in parentheses.
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according to sex suggests the need for a larger patient cohort to further investigate the modulation of

plasma peptidome. Urine and plasma were not simultaneously collected from patients investigated in

the present study, which prevented the parallel analysis of plasma and urine peptidome under similar

experimental protocols.

Conclusions

SARS-CoV-2 infection perturbs the plasma peptidome. PIN related to SARS-CoV-2 infection was deci-

phered through peptidome signature. The presence of resident InPeps in human plasma may have impli-

cations for health and diseases, and differs from the urinary profile indicating selective renal filtration.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Emer S. Ferro (eferro@usp.br).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Mass spectrometry peptidomics data were deposited to the ProteomeXchange Consortium74 via the

PRIDE75 partner repository. All accession numbers are listed in the key resources table.

d Original codes and scripts used for the analyses are publicly available as of the date of publication at Gi-

tHub: github.com/lfmartucci/InPeps_COVID19.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethical approval and informed consent

The study protocol was approved by the Research Ethics Committee (REC) of Hospital das Clı́nicas da Fac-

uldade de Medicina da Universidade de São Paulo, SP, Brazil (HCFMUSP; protocol number CAAE

30417520.0.0000.0068), with written informed consent or verbal authorization documented in the patient’s

charts. Patient anonymity was preserved. Written informed consent was not possible, for example, if the

patient was unconscious or in acute respiratory failure. When written informed consent from the patient

was not possible, informed verbal authorization from the patient or family members in the presence of wit-

nesses was authorized by the REC. All patients were treated according to hospital protocols, which

included prescription of antibiotics at admission in all cases. The study was registered in the Brazilian reg-

istry of clinical trials RBR-5d4dj5.

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human plasma Emergency Service - HCFMUSP N/A

rowheadDeposited data

Mass spectrometry data This paper http://www.ebi.ac.uk/pride/archive/projects/

PXD040580

ftp://ftp.pride.ebi.ac.uk/pride/data/archive/

2023/04/PXD040580.

Software and algorithms

Mascot Daemon (v.2.3; search engine v.2.8) Matrix Science https://matrixscience.com

R (v.4.1) R Core team

R library pathfindR (v.1.6.4) Ferro, E.S.et al.32 https://cran.r-project.org/web/packages/

pathfindR/index.html

R library MSnbase (v.2.24.2) Huang, M.et al.28 https://bioconductor.org/packages/release/

bioc/html/MSnbase.html

ELM prediction tool Gewehr, M.C.et al.25 http://elm.eu.org/search.html

ClustalW de Araujo, C.B.et al.34 http://clustal.org
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Patient admission and classification criteria

Participants were enrolled at the Emergency Service in Internal Medicine from HCFMUSP. Patients

admitted to the Emergency Service with severe SARS-CoV-2 infection on admission, according to WHO

guidelines,23,24 were enrolled. SARS-CoV-2 infection was diagnosed by a positive SARS-CoV-2 reverse

transcriptase polymerase chain reaction (RT-PCR) test, employing nasopharyngeal swabs, and by typical

chest computed tomography (CT)-scan findings. Individuals diagnosed by a negative SARS-CoV-2 RT-

PCR test in nasopharyngeal swabs, were considered non-infected (control) individuals. All enrolled

SARS-CoV-2 positive patients had hypoxemia (as defined by peripheral oxygen saturation of less than

92%) and required supplemental oxygen. Patients under 18 years old, pregnant women, and patients in

end-of-life protocols were not included.

METHOD DETAILS

Sample handling and peptide identification

Plasma was separated by centrifugation from blood collected from the brachial vein, in tubes containing

anticoagulant (sodium citrate 0.109 M (3.2%) previously buffered with N-2-Hydroxyethylpiperazine-N’-

2’-Ethanesulfonic acid; Hepes salt), and aliquoted in 0.5 mL samples which were kept at -80�C until use;

one of these plasma samples was devoted for peptide extraction. Plasma samples (300 mL) were transferred

to a protein low-binding tube, and an equal volume of 0.5% bovine serum albumin, phosphate buffered sa-

line containing 0.05% Tween 20, pH 7.2 (sample buffer) plus two volumes of acetonitrile (to achieve 66% of

acetonitrile to the final sample extraction volume) were added to the tubes. After vortexing, samples were

incubated at room temperature for 60 minutes (min) and centrifuged at 12,000 x g for 5 min at 4�C. The su-

pernatant was transferred to a clean protein low-binding tube, and the volume was reduced in a speed vac-

uum centrifuge (Eppendorf, Hamburg, Germany) for 3 hours (h) at 30�C. The semi-dried pellet was resus-

pended in 1.5 mL of ultrapure water, acidified to pH 2 with 0.1 M HCl (final concentration of 10 mM;

Millipore, Burlington, MA, USA) and transferred to Amicon Ultra-4 Centrifugal Units of 10,000 Da cutoff

(Millipore, Burlington, MA, USA). After centrifugation at 1,500 x g, at 4�C, for approximately 1 h, the pH

of the flow through (containing peptides ofmolecularmass < 10,000Da) was adjusted to 2-4with 50% formic

acid (Fisher Scientific, Pittsburgh, PA, USA). This flow-through material-containing peptides was passed

through Oasis HLB 1cc (30 mg) Extraction Cartridges (Waters, Etten-Leur, NB, NL) previously equilibrated

with 100% acetonitrile/0.10% formic acid (Fisher Scientific, Pittsburgh, PA, USA), and then with 5% acetoni-

trile/0.10% formic acid in ultrapure water. After washing with 5% acetonitrile/0.10% formic acid, peptides

were eluted in 100% acetonitrile/0.15% formic acid, collected in Fisherbrand� low-retention microcentri-

fuge tubes (Waltham, MA, USA), and dried in a speed vacuum centrifuge (Eppendorf, Hamburg, Germany).

A peptide aliquot was resuspended in ultrapure water (100 mL) and quantified by 214 nm absorbance (Nano-

Drop�, Thermo Fisher Scientific, São Paulo, Brazil), using a peptide mix of known composition and concen-

tration as the standard reference for determining peptide concentration (standard curve).76

Peptide samples were labeled using dimethyl isotopic labeling, as previously described76 (Table S1). The

labeling method employed is based on the dimethylation of amine and formaldehyde groups in the pres-

ence of cyanoborohydride. The combination of regular, deuteride and 13C formaldehyde with regular and

deuteride cyanoborohydride allowed us to use four isotopic forms as the reactions added 28, 30, 32 or

36 Da to the final mass of peptides at each available (lysine or N-terminal) labeling site, which can be

observed in the MS spectrum.76 Briefly, 10 mg of purified peptide extract was diluted in 100 mL of triethy-

lammonium bicarbonate (TEAB) buffer (Sigma-Aldrich, St. Louis, USA) to a final concentration of

100 mM. In the hood, 4 mL of the different isotopic forms of the formaldehydes were added at a concen-

tration of 4%, according to the desired labeling scheme. Then, 4 mL of 0.6 M reducing sodium cyanobor-

ohydride (NaBH3CN) were added, and samples were incubated for 16 h at room temperature, protected

from light. The reaction was then quenched with 16 mL of 1% ammonium bicarbonate. Samples were placed

on ice and 8 mL of CH₂O₂ (formic acid; Sigma-Aldrich, St. Louis, USA) were added. Four differentially labeled

samples were pooled, desalted using Oasis HLB 1cc (30 mg) Extraction Cartridges (Waters, Etten-Leur, NB,

NL), and eluted with 100% acetonitrile containing 0.15% formic acid. The samples were dried in a vacuum

centrifuge and stored at �20�C until use. The amount of 0.2 mg of peptides diluted in 5 mL of 100% aceto-

nitrile containing 0.15% formic acid were injected for all mass spectrometry analyses, as described below.

Isotopic forms (28, 30, 32 or 36 Da) were alternated to ensure that samples from patients with different clin-

ical conditions (i.e., C, M, S or D) received all different markers. Samples from SARS-CoV-2-non-infected

patients (C) were eventually used more than once, allowing every run to have all four markers included.

These runs and the respective patients were annotated (Tables S1 and S2).
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Mass spectrometry analyses

Mass spectrometry peptidome analyses were performed on an electron-spray mass spectrometer coupled

to nano-liquid high-performance chromatography (nLC-MS/MS) and conducted at the Mass Spectrometry

Facility of FIOCRUZ PARANA, PR, Brazil. Briefly, the identification of peptides sequences was performed on

an Orbitrap Fusion Lumos Spectrometer (Thermo Fisher Scientific, Bremen, Germany) through a nano-

electrospray ion source. Peptide separation was performed on 360 mm OD x 150 mm a column, with 3-

mm C-18 beads (Dr. Maisch, 72119 Ammerbuch-Entringen, Germany). Peptides were eluted using a linear

gradient of 5-40% acetonitrile, in 0.1% formic acid, for 120 min at 250 nL/min flow. Data were acquired after

the generation of multiple peptides protonated by the ESI (electrospray ionization), according to the

following conditions. Runtime, 120 min, polarity positive, default charge state 2, full MS, resolution

120,000, AGC target standard, maximum IT 50 ms, scan range 300 to 1500 m/z. Dd-MS2 resolution

30,000 AGC target: standard, maximum IT 54 ms, 2 s duty cycle, isolation window 1.6 m/z, (N)CE 30. Inten-

sity threshold for MS2 2.0e4, charge exclusion 1, and >7, peptide match preferred, exclude isotopes on,

dynamic exclusion time 60.0 s. Data processing and analyses were performed in-house using XCalibur

and the Mascot software suite (search engi, as previously described.76–78 Thus, to perform data analyses,

raw data files were converted into peak list format (mgf) by Mascot Daemon (v.2.3 Matrix Science Ltd, Lon-

don, UK, search engine v.2.8). Before proceeding with the search for peptides, a filtering procedure using

the R library MSnbase (v.2.24.2)79 was used to remove peaks containing the mass of contaminants present

in the Mass spectrometry Contaminants Database.80 This step was important because, despite all the care

taken to work with samples with the highest possible quality, some contaminants, such as drug vehicles,

were still identified in mass spectrometry: when the peak of one of these contaminants coincides with

the expected mass time for a labeled peptide, the Mascot algorithm will consider it as the peptide; conse-

quently, later quantitation of the ratio between the labeled peptides will be influenced.

After removing contaminants, data analyses processes continued with the search for peptides using the

Mascot search engine. No cleavage site was specified and a fragment ion mass tolerance of G0.5 Da

was applied to the MS and MS/MS ions. The search parameters were no enzyme specificity; precursor

mass tolerance set to G0.5 Da; no modifications included. The identified peptides were filtered to keep

only those in which the ratio between the number of peptide-matched ions and the number of peptide res-

idues minus one were greater than 0.4 (Table S2).

QUANTIFICATION AND STATISTICAL ANALYSIS

Peptide relative levels and statistical analyses

In isotope-labeled mass spectrometry, the peptide ratio value among groups is indicative of its increase or

decrease. We assessed whether the peptide ratios in patient groups (M/C, S/C, and D/C) were significantly

different from the null effect of 1 using the One-Sample Wilcoxon Signed Rank Test. All analyses were per-

formed using R (v.4.1). p-values %0.05 were significantly different.

PIN enrichment analysis and SLiMs

Active subnetworks identification in a PINand the subsequentenrichment analyseswereperformedusing theR

library pathfindR (v.1.6.4)81 with the genes coding the proteins that were precursors of differentially regulated

peptides as input. Biogrid was selected as the reference PIN, and KEGG as the reference gene set. Only path-

ways with at least two genes involved were kept. SLiMs from differentially regulated peptides were identified

using the eukaryotic linear motif (ELM) prediction tool.26 Only SLiMs with Homo sapiens annotated instances

from docking or ligand classes were included for further analyses. Enrichment of SLiMs selected through this

process was evaluated by calculating their enrichment ORA per KEGG term, using Fisher’s hypergeometric

test.82 The reference set for these analyses was the ELM26 database of SLiMs for Homo sapiens KEGG terms.

A p value%0.05 were considered significant. Odds ratio was assumed as fold enrichment.

Multiple sequences alignments

Alignments of peptides containing arginine–glycine–aspartate (RGD) and leucine-aspartic acid-seryne

(LDS) SLiMs were performed using the msa interface for ClustalW algorithm.83 RGD and LDS peptide ratios

were assessed using the One-Sample Wilcoxon Signed Rank Test. All analyses were performed using R

(v.4.1). p-values %0.05 were significantly different.
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