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Abstract

A deep learning (DL) network for 2D-based breast mass segmentation in unenhanced dedicated 

breast CT images was developed and validated, and its robustness in radiomic feature stability and 

diagnostic performance compared to manual annotations of multiple radiologists was investigated. 

93 mass-like lesions were extensively augmented and used to train the network (n=58 masses), 

which was then tested (n=35 masses) against manual ground truth of a qualified breast radiologist 

with experience in breast CT imaging using the Conformity coefficient (with a value equal to 

1 indicating a perfect performance). Stability and diagnostic power of 672 radiomic descriptors 

were investigated between the computerized segmentation, and 4 radiologists’ annotations for 

the 35 test set cases. Feature stability and diagnostic performance in the discrimination between 

benign and malignant cases were quantified using intraclass correlation (ICC) and multivariate 

analysis of variance (MANOVA), performed for each segmentation case (4 radiologists and DL 

algorithm). DL-based segmentation resulted in a Conformity of 0.85±0.06 against the annotated 

ground truth. For the stability analysis, although modest agreement was found among the four 

annotations performed by radiologists (Conformity 0.78±0.03), over 90% of all radiomic features 

were found to be stable (ICC>0.75) across multiple segmentations. All MANOVA analyses 

were statistically significant (p≤0.05), with all dimensions equal to 1, and Wilks’ lambda 

≤0.35. In conclusion, DL-based mass segmentation in dedicated breast CT images can achieve 

high segmentation performance, and demonstrated to provide stable radiomic descriptors with 

comparable discriminative power in the classification of benign and malignant tumors to expert 

radiologist annotation.
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1. INTRODUCTION

With the advancements in medical image analysis, clinical images are now being considered 

not only as graphical representations intended for visual perception alone, but as mineable, 

multidimensional data [1]. Extracting relevant data from medical images is referred to 

as radiomics. For this purpose, images may be analyzed by high-throughput computing 

algorithms that extract several quantitative features, which can be used to develop 

mathematical models and classifiers for diagnostic decision support [1]. Automated medical 

image analysis has seen a rapid growth in the past few years, and is motivated by the fact 

that intrinsic characteristics contained in medical images can be quantified and subsequently 

related to specific physiological and pathological conditions [2].

The pipeline of quantitative radiomics involves several steps, including the identification of 

the region of interest in the image, the segmentation of the structure to be analyzed (which 

is, in most cases, performed manually by expert readers), and the extraction of quantitative 

features [2]. Once obtained, these features can be statistically analyzed, and used to develop 

classification models to predict the investigated diagnostic outcome.

One of the main areas where radiomics has been applied is breast cancer imaging, due 

to its high incidence rate [3]. Classification models based on quantitative descriptors 

have been proposed for digital mammography [4,5,6], digital breast tomosynthesis [7], 

breast ultrasound [8], and breast MRI [9,10], with the objective of assessing the risk of 

breast cancer development [6], differentiating benign versus malignant lesions [4,5,8,9], and 

predicting cancer recurrence and survival rates [10].

Among the most recently developed technologies for breast imaging, dedicated breast CT 

has been proposed to overcome the problem of tissue superposition in mammography. Breast 

CT, optimized for the contrast and spatial resolution requirements of breast cancer imaging, 

can provide real 3D images of the breast, allowing for a complete characterization of breast 

tissue and, especially, of lesions [11]. Without tissue superposition, tumor features such 

as shape, heterogeneity, and degree of infiltration might be obtained with higher accuracy 

compared to when using mammography, potentially leading to more predictive radiomic 

descriptors of malignancy and aggressiveness.

Since in morphological imaging (such as in unenhanced breast CT), malignant and 

benign tumors may appear differently in the image mainly according to shape, definition 

of boundaries, and heterogeneity in voxel intensity [12], radiomic biomarkers should 

investigate tumor shape, margin, and texture. In order to quantify these characteristics, 

numerous radiomic features should be calculated, leading to a huge amount of data 

extracted from each image. This poses major difficulties in the development of robust 

diagnostic models, especially when datasets are limited [1], as is the case with breast CT 

imaging, a modality still under research and not yet implemented in the daily clinical 

Caballo et al. Page 2

Comput Biol Med. Author manuscript; available in PMC 2023 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



routine. Furthermore, many radiomic features are of considerable complexity, a fact which 

makes their computational cost high, especially in the case of 3D descriptors calculated in 

tomographic imaging techniques [13].

This can be partially solved by considering the tomographic image as a stack of 2D 

slices, and performing any radiomic analysis on a 2D basis. A 2D radiomics approach 

has been shown to provide, in some studies, similar performance compared to 3D radiomic 

analyses [13], with the additional advantage of a much simpler mathematical formulation of 

radiomic features (and corresponding lower computational cost). In parallel, a 2D approach 

allows for the development of more advanced and robust diagnostic classifiers through the 

augmentation of the dataset (for example, through the collection of multiple image slices, 

multiple image views, or affine transformations of each tumor image [14–15]). However, 

this approach makes the manual segmentation process of all regions of interest highly time 

consuming and, therefore, not sustainable in clinical practice, especially if tens (or hundreds) 

of 2D images need to be annotated from each case.

Therefore, automated tumor segmentation methods are needed, especially where the volume 

to be segmented is usually of considerable size and complexity in shape (e.g. in mass-like 

lesions). With the advancements in artificial intelligence, deep learning algorithms can be 

trained to perform the segmentation task in a supervised fashion, which have demonstrated 

to achieve high performance with low computational times, as reported in previously 

conducted studies on mass segmentation in digital mammography [16–18], breast ultrasound 

[19,20], and breast MRI [21].

For breast CT, to the best of our knowledge, only unsupervised segmentation methods have 

been proposed [22–23], which report an average DICE similarity performance of 0.8 [22], 

with some cases where the DICE drops to below 0.7 [23]. Therefore, the application of deep 

learning in breast CT images for lesion segmentation remains to be investigated.

Moreover, while the superior performance of deep learning over traditional segmentation 

methods has been repeatedly demonstrated, the viability of computerized segmentation as 

input for radiomic models has not be studied to a large extent. Some previous works 

evaluated the stability of radiomic features across different annotations for head and neck 

squamous cell carcinoma [24], pleural mesothelioma [24], lung [24–27] and liver [28, 29] 

cancer, but radiomic feature stability among radiologist annotations and deep learning-based 

segmentation in breast cancer imaging remains to be investigated in depth. In a single 

publication (to the best of our knowledge) on radiomics robustness in dynamic contrast-

enhanced breast MRI [30], only radiomic-based classification performance was evaluated, 

without investigating the stability of the descriptors.

Therefore, in this work, we implemented a deep learning-based method for breast mass 

segmentation and classification in unenhanced dedicated breast CT images, and we validated 

it against a ground truth dataset in terms of segmentation performance, and against 

the annotation of multiple breast radiologists in terms of radiomic feature stability and 

diagnostic power in the classification of benign and malignant masses.
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The proposed study therefore aims to investigate the validity of engineered solutions for 

breast mass segmentation (in the perspective of radiomic analyses) compared to human 

expert annotations, with future application for computer-aided diagnosis in dedicated breast 

CT imaging.

2. MATERIALS AND METHODS

2.A. Breast CT Images

The unenhanced dedicated breast CT images used in this study were prospectively collected 

as part of an ethics-board approved patient trial being performed at our institution, with 

all women providing written informed consent. Women 50 years of age or older with a 

suspicious finding detected at mammographic screening were eligible for this study.

Exclusion criteria were suspected or confirmed pregnancy, bilateral mastectomy, the 

presence of the suspicious lesion in the axillary tail, prior breast cancer or breast biopsy 

in the recalled breast in the last 12 months, presence of palpable lesions, breastfeeding, 

frailty or inability to cooperate.

For each patient, as part of the clinical routine, the presence of the lesion was assessed by 

the combined use of digital breast tomosynthesis and/or breast ultrasound, and all masses 

were identified and localized on the breast CT images by an experienced breast radiologist.

2.B. Breast CT Scan Protocol

Images were acquired by trained radiographers with a dedicated breast CT clinical system 

(Koning Corp., West Henrietta, NY) [31, 32]. The system has an x-ray tube with a tungsten 

target and aluminum filter, and the tube voltage was set to 49 kV for all acquisitions. The 

x-ray source has a half-cone beam geometry, and the resulting spectrum has a nominal 

focal spot of 0.3 mm and a half-value layer of 1.39 mm Al. The breast CT system has 

a source-to-imager distance of 92.3 cm, a source-to-isocenter distance of 65 cm, and is 

equipped with an energy-integrating detector (4030CB, Varian Medical Systems, Palo Alto, 

California, USA) with dimensions 397 mm × 298 mm (1024 × 768 elements) and nominal 

pixel size of 0.194 mm. Tomographic image reconstruction was performed through a filtered 

backprojection algorithm, with a reconstructed voxel size of 0.273 mm (isotropic).

A complete breast CT scan is achieved through the acquisition of 300 projections during a 

full revolution of the x-ray tube and detector around the patient breast, in a total time of 

10 seconds. The x-ray tube operates in pulsed mode, with a constant 8 ms pulse; the tube 

current is automatically set for each patient breast by acquiring two scout images normal to 

each other (16 mA, 2 pulses of 8 ms each per projection). According to the signal level in 

the two scout images, the tube current is selected between 12 mA and 100 mA. The dose 

varied for each patient breast, with the average level (for a breast of mean composition and 

size) being 8.5 mGy [32].

2.C. Data Collection and Annotation

Within this study, 69 patient images containing a total of 93 mass-like lesions were 

collected, with patient age ranging between 50 and 86 years, (mean 61.1 years). The 
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distribution of the image dataset within the four BI-RADS® breast density categories was 

5.85% (n=4, BI-RADS® a), 42.0% (n=29, BI-RADS® b), 47.80% (n=33, BI-RADS® c), and 

4.35% (n=3, BI-RADS® d).

The size of the lesions, given by the major diameter, ranged between 4.8 mm and 27.0 mm 

(mean 10.2 mm, median 8.5 mm). 59 masses were benign (49 cysts, 5 fibroadenoma, 3 

lymph nodes, 1 hamartoma, 1 atypical papilloma), 25 biopsy-proven malignant (12 ductal 

carcinoma in situ (DCIS), 8 invasive ductal carcinoma (IDC), 5 combinations of tumor 

types), and for 9 cases the lesion type was not available. All cysts (n=49) were diagnosed 

through ultrasound examination, while all solid masses (n=35) were biopsyproven (through 

stereotactic or ultrasound-based biopsy).

All lesions were divided into training (n=50: 24 cysts, 2 fibroadenoma, 2 lymph nodes, 

6 DCIS, 3 IDC, 2 combinations of tumor types, 1 atypical papilloma, 1 hamartoma, 9 

with unknown lesion type), validation (n=8: 4 cyst, 1 fibroadenoma, 1 DCIS, 1 IDC, 1 

combination of tumor types), and test sets (n=35: 21 cysts, 2 fibroadenoma, 1 lymph node, 5 

DCIS, 4 IDC, 2 combinations of tumor types). For each lesion type, the number of cases to 

be assigned to each dataset was defined a priori (to allow for case stratification), and then the 

lesions were assigned to each dataset randomly.

2.D. Data Augmentation

Since this study aims to perform breast mass segmentation on a 2D basis for subsequent 

radiomic analyses, a single image patch was collected for each mass in the coronal plane 

intersecting the mass center. Each patch had fixed dimensions of 128 × 128 voxels, so as to 

fully encompass the largest mass in our dataset (27.0 mm, equivalent to 99 voxels).

Given the strong dependency of deep learning performance on dataset size, different 

augmentation strategies were performed for the 58 breast masses included in the training 

and validation sets , in order to maximize the deep learning model training effectiveness. 

In the first augmentation step, an additional 8 patches (still of 128 voxel side length) were 

collected from each training-validation mass, in addition to the coronal ones. Two of these 

were generated from the other planes perpendicular to the coronal view (sagittal and axial). 

The other six were extracted from the planes of symmetry that cut two opposite faces of an 

imaginary cube (circumscribing the mass) into its diagonals (that is, each plane contains two 

opposite edges of the cube, and four vertices). This process resulted in a first dataset of 522 

training and validation patches (some of which are shown in Figure 1), and 35 test patches. 

All training, validation, and test patches were manually segmented under the supervision 

of a qualified breast radiologist with experience in breast CT imaging, providing a labelled 

dataset considered as the ground truth. Three other breast radiologists segmented the 35 

patches of the test set, which were used to evaluate the radiomic feature stability across 

different annotations (as explained in Section 2.I).

In the second augmentation strategy, traditional rotation (three rotations, with random 

angles ranging among 1°–20°, 10°–30°, and 20°–40°), mirroring (horizontal and vertical), 

and shearing (along the horizontal and vertical axis, with a shear ratio varying randomly 
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between 1% and 20%) were performed. All these affine transformations were performed in a 

cumulative manner, resulting in a total of 324 patches for each mass.

Finally, a third augmentation strategy was performed using a Generative Adversarial 

Network (GAN). This deep learning model was used to synthesize additional training data 

through the generation of new, realistic images of breast masses. A GAN architecture is 

composed of two main blocks: a generator and a discriminator, which are trained to compete 

against each other. Given an input noisy vector, the former generates synthetic images which 

are fed to the discriminator. This latter is trained in parallel to recognize between real breast 

masses, and synthetic ones. During training, gradients from the discriminator decision are 

propagated to the generator (which never directly sees the real mass images), allowing to 

adjust the parameters of the model to generate, at each iteration, more realistic synthetic 

images.

The implemented GAN model [33] was trained to output synthetic image patches of breast 

masses, and respective annotations, and was used to generate 450 pairs of patches, which 

were then further augmented using the second augmentation strategy described above. As 

a result of this last augmentation method (summed with the two previously described), a 

total of 34,992 image patches (and respective annotations) were available for training and 

validation.

A scheme of the GAN model is shown in Figure 2, and details about architecture and 

training parameters are described in the following Subsection.

2.E. GAN for Data Augmentation: Architecture and Training

The implemented model [33] is a modification of the standard GAN [34], which forces 

the generator to create annotation masks in addition to synthetic images. The discriminator 

then judges the results from the generator on a pair basis, allowing the whole GAN to 

implicitly learn about the structure of both real mass images and ground truth labels. The 

model is based on the DCGAN [35] architecture, which uses a fully convolutional generator 

and discriminator without pooling layers. The generator takes a noisy vector x as input 

(dimensions kept fixed to 400 × 1, uniform noise ranging between −1 and 1), and outputs the 

synthetic images.Isynthetic (x) The discriminator takes both Isynthetic (x) and the real images Ireal, and 

provides a binary output classifying each image as either real (y = 1) or fake (y = 0) using 

binary cross-entropy as the loss function (jD):

JD = 1
m ∑i = 1

m log , y Isynthetic  xi, , , + log , 1 − y Ireal 
i , , (1)

where m is the mini-batch size. The generator loss function (JG) is similar to equation (1), 

but it only evaluates the output from the discriminator (i.e. real training images are not 

directly fed to the generator):

JG = 1
m ∑i = 1

m log 1 − y Isynthetic  xi (2)
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By minimizing JD, the discriminator can recognize correctly between real and fake images, 

while minimizing JG allows the generator to create realistic synthetic images.

The size of the feature maps of the generator were [512; 256; 128; 128; 128], while the 

discriminator feature map dimensions were set to [128; 128; 256; 512; 512]. All weights 

were normally initialized, and batch normalization was implemented to reduce overfitting.

The GAN was trained using the Adam (adaptive moment estimation) optimization method 

[36], an algorithm that adapts the learning rate for each network weight by using first and 

second moments of the gradient, with an initial learning rate of 0.0001 and an exponential 

decay rate for the first and second moment estimates of β1= 0.5,β2 = 0.999, and a mini-batch 

size of 64 examples. The model was trained using the image patches from the training 

set (50 masses and respective annotations), after extracting 9 patches from each mass (450 

patches in total) using the first data augmentation strategy (as explained above).

So as to process both the original and the annotated image, the DCGAN architecture was 

modified to include two input channels [33]. The first channel corresponds to the original 

image, while the second to the respective manually annotated mask. During training, the 

discriminator judges the quality of the image-annotation pairs, instead of evaluating only the 

original image. After training, the generator creates synthetic examples which are composed 

by a mass patch, and the associate segmentation mask; these pairs can then be used as 

additional examples for the training of supervised deep learning models aiming at automatic 

segmentation.

2.F. Breast Mass Segmentation through Deep Learning

For the segmentation of breast mass patches, a U-net architecture [37] composed of an 

encoder-decoder structure was implemented (Figure 3). This model performs pixel-wise 

mapping between the original image and the manually annotated mask, learning the 

segmentation task in a supervised fashion. The encoder reduces the input feature space 

dimensions through 3×3 convolutions and max pooling operations (kernel size 2×2, stride 

of 2), while the decoder recovers the information through 2×2 nearestneighbor up-sampling 

followed by two 3×3 convolutional kernels. All results of convolutional blocks from the 

encoding part are concatenated with each corresponding decoding step, allowing to preserve 

the high detail of the original input image. The final layer consists of a 1×1 convolution 

followed by a sigmoid activation function, which outputs the segmentation result in the form 

of a pixel-wise probability. The network was trained using mini-batches of 16 examples 

and the Adam optimization method. The initial learning rate was set to 0.001, and decayed 

exponentially every 10 epochs (over a maximum of 50 epochs). The energy function was 

computed by a pixel-wise softmax (equation 3) over the final feature map combined with the 

cross-entropy loss function (equation 4) [37]:

pi(x) = exi

∑j = 1
K exj

(3)
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Loss  = − ∑i = 1

K tilog pi(x) (4)

Equation (3), in which Xi represents the activation value for an input pixel i, and K the 

number of possible classes (two in case of binary segmentation), maps the non-normalized 

output of the network to a probability distribution over the predicted output class. Equation 

(4) penalizes wrong network predictions, by comparing the ground truth labels ti with the 

network predictions pi(x).

When implementing the network, the validation set was used both for hyperparameter 

tuning, and for overfitting prevention, by evaluating the network accuracy on the validation 

set, and stopping the training if the validation accuracy did not increase after 5 epochs. 

Accuracy was calculated as for binary classification, but was applied pixel-wise: the sigmoid 

activation function in the last layer outputs a pixel-wise probability map between 0 and 1, 

which is rounded and compared with the ground truth annotated images.

2.G. Radiomics Descriptors

A pipeline for the automatic extraction of radiomic features (327 texture-based, 18 shape- 

and contour-based) was implemented. Texture was quantified through different descriptors 

which can be divided into five major categories: histogram-based (first order moments of the 

image patch gray-level distribution) [38], Haralick (second order moments, which recognize 

frequency patterns of neighboring pixels) [39], run length (which capture the coarseness of 

texture over different linear orientations) [40], structural and pattern (which characterize 

tissue architectural complexity, possible directionality of structures, and local intensity 

variations) [41–45], and Gabor filters (which analyze the frequency content within the image 

in specific directions and in localized regions) [46]. Texture analysis was performed for each 

mass both inside the segmented boundary, and within an annular region whose centerline is 

given by the edge of the segmented area, and whose total thickness along the radial direction 

equals 10 voxels, to capture the texture of the mass margins.

Shape and contour analysis were performed through the extraction of 18 features calculated 

from each segmented mass. Features include regional descriptors based on geometrical 

characteristics [47], and more complex measurements based on Fourier descriptors applied 

to the centroid-distance function [48], to the shape contour [49], and moments of the mass 

boundaries [50].

A detailed mathematical formulation of all implemented radiomic features is reported in 

Tables 3 and 4 (Online Appendix).

2.H. Segmentation Performance

To evaluate the segmentation performance of the deep learning algorithm (A) using the 

manual annotations as ground truth (B), four similarity metrics were used:

• DICE similarity, defined as the intersection between the two samples A and B 

over their union, ranging between 0 (no overlap) and 1 (perfect overlap)
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DICE = 2 ⋅ A ∩ B
A + B (5)

• Sensitivity, which measures the proportion between positive voxels which are 

correctly segmented by the algorithm (TP) to the total number of ground truth 

positive voxels (PgroundTruth)

S = TP
PgroundTruth 

(6)

• Precision, defined as the ratio between TP and all voxels which are segmented by 

the algorithm (Palgorithm)

P = TP
P algorithm 

(7)

• Conformity, which considers the ratio between the total number of incorrectly 

classified voxels (Vmisclassified) and TP:

Conformity  = 1 − V misclassified 

TP (8)

This latter metric varies within a much wider range compared to the other three, spanning 

between −∞ (no overlap between A and B), and 1 (perfect overlap). A value of zero 

indicates that the number of correctly segmented voxel equals the number of misclassified 

voxels.

Evaluation was performed against the ground truth annotation for four different models, 

which were trained using the different data augmentation strategies (as described in Section 

2.D):

Using only the 9 multi-view patches collected from each training and validation mass 

(augmentation 1)

Using the 9 multi-view patches, and traditional affine transformations (augmentation 

2)

Using the 9 multi-view patches, and synthetic images generated with the GAN 

(augmentation 3)

Using the 9 multi-view patches, traditional affine transformations, and synthetic 

images generated with the GAN (augmentation 4)

To evaluate the stability of radiomic features among the algorithm, the considered ground 

truth, and the three additional expert manual annotations, the model with the highest 

performance was selected.
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2.I. Radiomic Feature Stability

The stability of radiomic features between the annotations performed by the four 

radiologists included in this study and the segmentation resulting from the deep learning 

algorithm was quantified using the intraclass correlation coefficient (ICC(3,1)), a statistical 

indicator that measures the consistency of feature descriptors [51]. ICC indicates the degree 

of variability of feature values that is due to a real difference among the cases, as opposed to 

disagreement between annotations. It varies between 0 and 1, with a value above 0.75 often 

considered as a good threshold to indicate that the descriptors are stable across different 

segmentations [52].

The analysis of feature stability for the DL segmentations was performed considering 

both one radiologist at a time (to evaluate the algorithm performance over different 

radiologists’ annotations), and all four radiologists together (to evaluate the actual stability 

of the descriptors accounting for all the annotations at a time). The process was repeated 

multiple times, each time eliminating features with high inter- correlation (with a correlation 

threshold varying from 1 to 0.7), and for multiple ICC threshold levels (from 0.9 to 0.7).

Finally, to investigate the differences in diagnostic performance in mass classification 

based on radiomic feature descriptors, multivariate analysis of variance (MANOVA) was 

performed for all five segmentation cases (four manual, one computerized). MANOVA was 

used to test the equality of the means of the two groups, i.e. benign vs malignant lesions. 

Therefore, radiomic features of the test set masses were tested against their pathology 

ground truth, which represents a nominal variable assuming only two values (0 and 1). To 

avoid multicollinearity, highly correlated variables were removed prior to the analysis (with 

a correlation threshold of 0.7) [53].

For each analysis performed, the MANOVA dimension, the Wilk’s Lambda, and the p-value 

were reported. The dimension of the MANOVA (d) was used to assess whether the two 

groups (benign, malignant) were separable in the MANOVA canonical hyperplane. In fact, d 

is an estimate of the dimension of the group means, and a value equal to 1 indicates that the 

means of the two groups can be considered as different (with a statistical significance given 

by the p-value). Finally, the Wilk’s Lambda expresses the ratio between the determinant of 

the variance within each of the group, and the sum between the determinants of the variance 

within and between each group [53]. All MANOVA analyses were performed using the 

Statistical Toolbox available in MATLAB (The MathWorks, Natick, MA, USA).

3. RESULTS

3.A. Segmentation Performance

The algorithm resulted in the best performance when trained with all augmented data (9 

multi-view planes, affine transformations, and synthetic images), achieving an average DICE 

for the test set images of 0.93±0.03, a sensitivity of 0.92±0.03, a precision of 0.93±0.05, 

and a conformity of 0.85±0.06. Some example results are shown in Figure 4. Segmentation 

performance using only the 9 planes and affine transformations resulted in comparable 

performance, while the training using only the 9 planes resulted in significantly lower 
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performance. Between affine transformations and synthetic images, the former provided a 

higher increase in segmentation performance (Table 1).

3.B. Radiomic Feature Stability

Overall, modest agreement was found among the four annotations performed by radiologists 

(Conformity: 0.78±0.03), and between all radiologists and the DL-based segmentation 

(Conformity: 0.78±0.04). A few examples of different segmentations are shown in Figure 5.

Results from the stability analysis are shown in Figure 6 and 7. Overall, comparisons 

between each radiologist and the deep learning segmentation resulted in the majority of 

the radiomic features being stable. When all radiomic features were analyzed (i.e. highly 

correlated features not eliminated), at least the 90% of descriptors were stable (ICC>0.75) 

for all comparisons between each radiologist and the algorithm. When lowering the 

correlation threshold to eliminate highly correlated features, the percentage of stable features 

decreased, but the majority of features were still stable (ICC>0.75) for all comparisons 

(Figure 6, a–d).

By comparing all five segmentations together, the percentage of stable features (ICC>0.75) 

was 95.4%, 86.5%, 78.0%, and 77.2%, after eliminating correlated features with a threshold 

of 1, 0.9, 0.8, and 0.7, respectively (Figure 6, e).

Overall, texture features extracted from the masses and from their margins were the most 

stable (322 on 327, and 310 on 327, respectively), while only half of the shape and contour 

features showed high stability (9 on 18).

MANOVA analyses resulted in similar discrimination between benign and malignant masses 

for all five segmentations (Figure 8). All three groups of radiomic descriptors (texture, 

margin, shape) were found to provide discriminant features. All analyses were statistically 

significant (P<0.05), with MANOVA dimension (d) of 1, and all Wilks lambda were below 

0.35. Complete findings for all analyses are reported in Table 2.

A list of all features used, their ICC value, and the features that were selected after the 

correlation analysis (with a threshold of 0.9, 0.8, and 0.7) are reported in the Online 

Supplemental Material.

4. DISCUSSION

In this work, we developed a deep learning-based algorithm for 2D breast mass 

segmentation in unenhanced dedicated breast CT imaging, and we validated it in terms 

of segmentation performance and stability of radiomic feature descriptors across multiple 

expert manual annotations.

Although, in the past few years, radiomic approaches based on convolutional neural 

networks have been proposed to directly analyse the lesions without the need for 

mass contouring, segmentation remains an important and critical aspect in radiomics, as 

confirmed by the number of studies involving lesion segmentation and handcrafted radiomic 
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features being still much increasing, due to the advantage of handcrafted features to capture 

different physiological phenomena without an excessive increase in feature space size [54].

The best segmentation performance was achieved using extensive data augmentation, which 

includes the use of synthetic images generated by a GAN. However, while traditional 

augmentation strategies (rotations, mirroring, and shearing) improved the segmentation 

results considerably compared to only using 9 views from each mass (DICE increased by 

over 30%), the additional inclusion of synthetic cases only increased the DICE results by 

an additional 1%. This highlights that traditional augmentation methods are still valuable, 

and that synthetic images generated through GANs have a lower impact in performance 

increase, and this could be due to the fact that synthetic images possess features which are 

not fully representative of real cases. However, when added to the 9 views only, synthetic 

images could increase the DICE by 20%, suggesting that, for small datasets, GANs could 

still be helpful in increasing segmentation performance. While previous studies on chest 

x-ray lung segmentation showed a negligible benefit in segmentation performance when 

adding synthetic images to original cases [33], our findings could be due to the increased 

difficulty of segmenting size- and shape-varying structures (e.g. breast masses) as opposed 

to organs. Given the higher difficulty in the segmentation task, in case of very limited 

datasets there seems to be a benefit when using synthetic images for training a supervised 

segmentation model, as also previously reported in [55]–[56]. However, our findings are 

related to the specific model implemented in this work [33], and might therefore be different 

when other architectures are used. Therefore, also accounting for the very low increase in 

segmentation performance by including the synthetically generated images, further statistics 

with additional mass cases are required in future for a more meaningful performance 

comparison assessment. Furthermore, due to the limited number of masses available for 

this study, the same dataset was used to train both the U-net and the GAN. This limitation 

might reduce the impact of synthetic images on the segmentation performance, which could 

increase if the GAN was trained on different training examples compared to the model used 

for segmentation. The limited size of the dataset used in this study could be addressed in 

future work by the acquisition and inclusion of additional patient images. This could allow 

for improvement of the realism of the synthetically generated images, and consequently the 

performance of the automatic segmentation. The availability of larger image datasets could 

also allow for implementation of a conditional GAN architecture, where the input is not 

given by a simple noise vector, but by mask priors. While this approach is generally harder 

to train due to the larger dimension of the input to the generator and to the pixel level 

constraints given by the input mask [57], it could help improve the quality of the generated 

images. Therefore, it could help produce more realistic synthetic examples to be used to 

ameliorate the performance of the subsequent segmentation model.

While the implemented GAN can generate an arbitrary number of images, we chose to 

generate 450 synthetic mass patches to match the number of original training examples 

deriving from the first augmentation strategy (9 view augmentation). This was done to 

evaluate the potential increase in segmentation performance when the network was trained 

with only the 9 mass views and the synthetic samples, with a number of synthetic cases 

equal to the number of real images. While a larger number of synthetic cases could be 

included in this step, we do not expect further significant improvements, as the GAN was 
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trained with the same image patches used to train the U-Net. With a larger number of 

examples available to train the GAN, especially different examples from the ones used to 

train the U-Net, additional insights may be achieved, and, in this case, a larger number of 

generated synthetic images could provide further benefit in the segmentation performance.

Deep learning applied for breast mass segmentation in dedicated breast CT images achieved 

higher performance compared to traditional, unsupervised methods (DICE of 0.8) [22], [23], 

although former analysis were performed on different datasets, which may impact results. 

The algorithm also demonstrated better results compared to some deep learning-based 

segmentation algorithms applied to breast ultrasound (DICE of 0.82 [19], and DICE of 

0.89 [20]), and similar results compared to digital mammography (DICE of 0.91 [16]), and 

DICE of 0.93 [17]). This could be due to the better contrast of dedicated breast CT (as 

opposed to ultrasound), and to the possibility to perform extensive data augmentation thanks 

to the images being in fully three dimensions, which allows for the increase in the U-net 

training set size to a large number of examples (resulting in data set sizes similar to those in 

mammography). However, despite the promising results, the experiment should be repeated 

when a larger number of patient cases is available, possibly with images acquired with 

different breast CT systems, and for different radiation dose levels, to evaluate the effect of 

different noise magnitudes and frequencies on the segmentation performance.

The majority of radiomic features were found to have good stability, and features from each 

group were selected in all MANOVA analyses, indicating that a strong radiomic signature 

is obtained by the combination of radiomic descriptors belonging to different categories 

(mass and margin texture, and shape). Considering the non-negligible variability observed 

in the annotations of the four radiologists (Conformity of 0.78), this finding demonstrates 

a considerable robustness in radiomic descriptors extracted from breast CT mass-like 

lesions, suggesting that reliable radiomic signatures could be obtained even with different 

segmentation results. Moreover, the percentage of stable descriptors remained high when 

highly correlated features were eliminated. This is in line with previous findings conducted 

on liver masses [29], and indicates that only a small subset of radiomic features could be 

used to draw diagnostic conclusions. This is a desirable outcome, since dealing with too 

many features (compared to the number of available cases) usually requires correction for 

multiple testing, and increases the risk of overfitting of any predictive model designed upon 

the feature values.

MANOVA was chosen as a statistical test to evaluate the discrimination between benign 

and malignant cases due to its appropriateness in handling multi-dimensional data 

simultaneously. In fact, as opposed to univariate analyses (e.g. ANOVA or t-test), single 

statistical indicators are provided without the need to correct for multiple comparisons [58]. 

However, little information is provided about the power of single descriptors. Therefore, in 

future and with larger datasets, further insights could be achieved by applying additional 

statistical tests, to better evaluate the discriminant power of each radiomic descriptor and 

provide a more reliable analysis from a diagnostic perspective.

MANOVA analyses resulted to be statistically significant, and all presented a dimensionality 

of 1, indicating that the differences observed in the two samples (benign and malignant 
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masses) is not due to random chance. Furthermore, except for a single radiologist whose 

annotation led to a much improved separation of the two classes in the MANOVA 

hyperplane (Radiologist 3, Figure 8.c), all segmentations led to similar discriminations 

between benign and malignant cases.

These results confirmed not only the power of automatic segmentation for radiomic 

purposes, but also highlighted a significant difference between the two mass types. However, 

these findings should be confirmed with future studies, with an enlarged test set, additional 

experts’ annotations, and further statistics to better assess all comparisons among all 

segmentation results.

With a larger test set, future studies will also analyze each non-stable radiomic descriptor, 

to evaluate whether the low stability is due to high variability among segmentations, or 

low variability across the image cases. Although results from the MANOVA show a good 

discriminant power (and therefore suggest a variability between the two classes of interest, 

benign and malignant), some features may show low stability because our dataset is not 

representative enough. Therefore, the analysis should be repeated with a larger number of 

cases, to understand which features should be avoided prior to radiomic analysis. The main 

limitation of this study is the relatively limited dataset size, due to breast CT still being 

in the clinical research realm, and not yet implemented in daily clinical routine. With an 

increased number of test cases, especially in terms of different lesion types, further insights 

could be achieved, both in terms of segmentation performance, and on its effect on radiomic 

feature stability. Furthermore, the training set was annotated by a single radiologist, and 

this can potentially bias the segmentation performance towards this single expert. However, 

from a radiomics perspective, this does not seem to significantly affect the diagnostic power, 

while the segmentation performance could be further increased by using the entire dataset 

annotated by multiple readers.

In future work, with an expanded dataset, this study will be included in the development 

of an automated computer-aided diagnosis system for dedicated breast CT images, with the 

goal of predicting breast mass malignancy grade and, consequently, attempt to reduce the 

number of negative biopsies.

5. CONCLUSIONS

Deep learning-based 2D segmentation of breast masses in unenhanced dedicated breast 

CT images can achieve high performance against manually annotated ground truth. 

Furthermore, it demonstrated to provide stable radiomic feature descriptors, with a 

discriminative power in the classification of benign and malignant tumors comparable to 

expert manual annotation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Examples of training image patches generated with the first augmentation strategy. Each 

row shows the same mass captured in a multi-view manner along 9 different planes. Three 

planes correspond to the coronal, sagittal and axial view, while the other six to the planes of 

symmetry that cut two opposite faces of an imaginary cube, circumscribing the mass, into its 

diagonals.
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Fig. 2. 
(a) Scheme of the implemented GAN [33] used as an augmentation strategy to generate 

synthetic images and respective annotations. (b) Some examples of the generated synthetic 

images, and respective annotations.
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Fig. 3. 
U-net architecture implemented for breast mass segmentation.
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Fig. 4. 
(First row) Examples of original test masses; (second row) ground truth (single manual) 

annotation; (third row) deep learning-based segmentation; (last row) graphical comparison 

between ground truth and automated segmentation.
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Fig. 5. 
Examples of breast masses included in the test set, with different segmentations overlaid. 

(a-c) are malignant, (d-f) are benign cases.
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Fig. 6. 
Results of radiomic feature stability analysis. Each graph shows the percentage of features 

(y axis) having different ICC values (x axis), after eliminating the highly correlated features 

for four thresholds of correlation (1, 0.9, 0.8, 0.7). (a)-(d) show the feature stability for the 

four radiologists’ annotations (each compared with the DL algorithm), while (e) shows the 

stability for the deep learning-based segmentation compared to all radiologists together.
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Fig. 7. 
Graphs showing the ICC distribution for all radiomic features, when the annotation of 

all radiologists was simultaneously compared with the deep learning segmentation. Each 

plot shows the results of the stability analysis for different correlation thresholds, used to 

eliminate highly correlated features (a: 1; b: 0.9; c: 0.8; d: 0.7).
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Fig. 8. 
Graphs displaying the statistical analysis performed using MANOVA on the radiomic 

features extracted from the test set masses. Each plot shows the results of the analysis 

based on a different annotation (a-d), and on the deep learning segmentation (e).
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Table 1.

Results of the segmentation performance metrics (mean, standard deviation) for the four different data 

augmentation strategies implemented.

DICE Sensitivity Precision Conformity

Augmentation 1 0.70 (0.16) 0.70 (0.19) 0.72 (0.18) 0.59 (0.18)

Augmentation 2 0.92 (0.03) 0.92 (0.03) 0.92 (0.03) 0.83 (0.07)

Augmentation 3 0.87 (0.09) 0.85 (0.13) 0.91 (0.11) 0.65 (0.37)

Augmentation 4 0.93 (0.03) 0.92 (0.03) 0.93 (0.05) 0.85 (0.06)
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Table 2.

Results of the MANOVA for the four radiologists and for the deep learning-based segmentation in the 

discrimination between benign and malignant masses based on radiomic features.

p-value d Wilks Lambda

Radiologist 1 0.009 1 0.321

Radiologist 2 0.003 1 0.276

Radiologist 3 0.001 1 0.129

Radiologist 4 0.005 1 0.233

DL algorithm 0.015 1 0.342
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