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Key Points

• Exact quantitation of
RBC dysmorphologies
in peripheral blood
smears can be
accurately performed
using a computer
vision system.

• This quantitation
allowed for improved
diagnostic and
prognostic evaluations
of multiple hematologic
disease states.
Examination of red blood cell (RBC) morphology in peripheral blood smears can help

diagnose hematologic diseases, even in resource-limited settings, but this analysis remains

subjective and semiquantitative with low throughput. Prior attempts to develop automated

tools have been hampered by their poor reproducibility and limited clinical validation.

Here, we present a novel, open-source machine-learning approach (denoted as RBC-diff) to

quantify abnormal RBCs in peripheral smear images and generate an RBC morphology

differential. RBC-diff cell counts showed high accuracy for single-cell classification (mean

AUC, 0.93) and quantitation across smears (mean R2, 0.76 compared with experts,

interexperts R2, 0.75). RBC-diff counts were concordant with the clinical morphology

grading for 300 000+ images and recovered the expected pathophysiologic signals in diverse

clinical cohorts. Criteria using RBC-diff counts distinguished thrombotic thrombocytopenic

purpura and hemolytic uremic syndrome from other thrombotic microangiopathies,

providing greater specificity than clinical morphology grading (72% vs 41%; P < .001) while

maintaining high sensitivity (94% to 100%). Elevated RBC-diff schistocyte counts were

associated with increased 6-month all-cause mortality in a cohort of 58 950 inpatients (9.5%

mortality for schist. >1%, vs 4.7% for schist; <0.5%; P < .001) after controlling for

comorbidities, demographics, clinical morphology grading, and blood count indices. RBC-

diff also enabled the estimation of single-cell volume-morphology distributions, providing

insight into the influence of morphology on routine blood count measures. Our codebase

and expert-annotated images are included here to spur further advancement. These results

illustrate that computer vision can enable rapid and accurate quantitation of RBC

morphology, which may provide value in both clinical and research contexts.
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A labeled set of 5000 single RBC images used to train the algorithm and a set of 50
cell population level smears with expert estimates of cell density are provided
(supplemental Data 2).

An additional set of 5000 manually labeled single-cell images, not used in model
training, is also provided (see supplemental Methods for further details).

Other details about the code are available on request from the corresponding author,
Brody H. Foy (bfoy1@mgh.harvard.edu).

The full-text version of this article contains data supplement.
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Introduction

Quantitation and differential profiling of blood cells are the
cornerstone of modern clinical diagnosis.1,2 For example, the white
blood cell (WBC) differential, a quantitative profile of WBC sub-
types, can flag infections or malignancies.3,4 Unlike WBCs, there
are no functionally distinct normal RBC subtypes. However,
morphologic RBC subtypes are associated with pathology and can
be pathognomonic5 – eg, sickle cells in sickle cell disease, spi-
culated cells in liver disease, or teardrop cells in bone marrow
disorders. Although clinical laboratory technologies to analyze
WBCs have advanced,6-8 RBC profiling technologies have not and
are still primarily limited to evaluating changes in RBC size and
hemoglobin content, with only a limited analysis of morphology.7,9

An objective and quantitative differential of RBC subtypes could
provide valuable clinical insights as a scalable, standardized, and
automated summary of morphology. However, RBC shape cannot
be accurately detected by standard automated hematology ana-
lyzers that rely on optical scatter or electrical impedance,10 making
alternative approaches necessary.

To be the most clinically useful, RBC morphology classification
must be fast and accurate. For example, identification of schisto-
cytes is a linchpin in the diagnosis of immune thrombotic throm-
bocytopenic purpura (iTTP), a life-threatening medical emergency
that can be treated with immediate therapeutic plasma exchange.11

Yet, assessment of schistocytes is primarily performed through
manual examination of a peripheral smear, a slow and subjective
process often involving initial evaluation by a laboratory technolo-
gist and subsequent review by a hematologist or hematopatholo-
gist.7 These review processes typically generate semiquantitative
flags (No flag, 1+, 2+, and 3+) that categorize smears in terms of
frequency but are based on criteria that can vary substantially
across hospitals.9 The result may be delayed or inaccurate diag-
noses12 that do not fully use the information present in the smear.
The lack of methods for rapid and objective RBC evaluation is also
a key obstacle in clinical research to investigate the novel diag-
nostic information contained in peripheral blood smears. In partic-
ular, the lack of automated tools means that RBC morphology
quantitation is not regularly recorded in electronic medical records
and is subsequently unavailable for large-scale retrospective
studies of hematologic diseases. More broadly, smears contain rich
information on the RBC shape, size, and hemoglobin content at the
single-cell level, which are rarely captured or used. This is in stark
contrast to the increasing role of single-cell data in understanding
human physiology in other settings.

The automated capture of peripheral blood smear images and
artificial intelligence have the potential to address many of these
limitations. Digital peripheral smear images are already automati-
cally captured in many hospitals and are regularly used to conduct
remote manual reviews. Current state-of-the-art for automated
RBC morphology analysis includes CellaVision analyzers, which
provide some preclassification of RBCs to assist with manual
grading of smears.7,13,14 These systems assist in creating semi-
quantitative grading but are not sufficiently calibrated for important
RBC subtypes, such as schistocytes,7,14 and the corresponding
hardware may not be available in resource-limited settings.
Research and development of additional tools have been
hampered by poor reproducibility,15 inadequately small image data
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sets,16 limited clinical testing,17,18 or narrow focus on a few mor-
phologies.19 Although some recent approaches have shown
promise,17,20,21 they have not been validated at the cell population
level, at which clinical assessments are made, nor have they been
shown to add value in clinical diagnosis.

Here, we address these limitations by presenting a novel, open-
source machine-learning pipeline (denoted as RBC-diff) for the
calculation of an RBC morphology differential from peripheral
blood smear images. We validated the RBC-diff performance at
single-cell and cell population levels using a clinical grading from a
multicenter database of 338 577 smears. We then retrospectively
applied the RBC-diff in multiple clinical contexts, demonstrating its
value in differential diagnosis and prognosis. Finally, we illustrated
the utility of RBC-diff in a research setting by showing how this tool
can derive novel single-cell data that can help improve the under-
standing of how morphology contributes to routine blood count
indices.

Materials and methods

Peripheral smear collection

Images were collected for all peripheral blood smears at Massa-
chusetts General Hospital (MGH) between 4 November 2015 and
15 November 2021 (n = 281 745 images and 49 056 patients),
and at Brigham and Women’s Hospital (BWH) between 1 January
2021 and 20 December 2021 (n = 56 832 images and 9894
patients). Smear slides were created as part of standard clinical
care (further details are given in supplemental Methods) and
imaged using CellaVision (DM96 or DI60) with an image resolution
of ~0.2 μm per pixel. The CellaVision system automatically iden-
tifies and captures an appropriately dispersed area of the smear
adequate for clinical evaluation,14 typically between 500 and
600 μm in width and height, containing ~1000 to 3000 RBCs.
Morphology grading flags (generated by the clinical hematology
laboratory) were recorded as either present, 1+, 2+, or 3+ per the
local clinical laboratory guidelines (supplemental Methods). The
characteristics of the MGH and BWH cohort are given in
supplemental Table 1.

RBC-diff algorithm

The RBC-diff was designed to calculate the relative abundance of
9 types of RBC morphology (normal RBCs, elliptocytes, micro-
cytes, macrocytes, schistocytes, sickle cells, spiculated cells,
teardrop cells, and other abnormal RBCs). The algorithm takes a
smear image, binarizes it, and uses black-white boundary detection
to identify all potential cells. Ten geometric features were used to
classify each potential RBC using a support vector machine clas-
sifier. See supplemental Methods for details on (1) feature calcu-
lation, (2) algorithm training, (3) effects of sample preparation
delay, (4) intrasample variability, (5) robustness against data set
shift, (6) performance with manually collected images, and (7)
approximate normal reference ranges.

Expert estimates

To provide a reference for RBC-diff performance, 5 experts (board-
certified hematopathologists or hematologists) were asked to
estimate the prevalence (%) of specified cell types in 5 sets of
10 smears (10 smears for elliptocytes, schistocytes, sickle cells,
22 AUGUST 2023 • VOLUME 7, NUMBER 16



spiculated cells, and teardrop cells), with each set containing
5 smears with a 1+ flag for the given cell type, and 5 with no flag.
The experts were blinded to the clinical details and morphology
grading flags. To simulate standard high-power microscopic fields,
each smear was presented as a series of 16 smaller images, each
containing ~100 to 200 RBCs. To best reflect clinical practice, the
experts were not given specific instructions on how to perform the
task.

Clinical cohort studies

For further validation, we tested the discriminatory capacity of
RBC-diff counts across 5 clinical cohorts with clear pathophysio-
logic signals: elliptocytosis vs spherocytosis, before and after liver
transplantation, before and after RBC exchange in patents with
sickle cell disease, before and after iron supplementation in
patients with iron-deficiency, and before and after splenectomy.
The cohort inclusion criteria are given in the supplemental
Methods.

Thrombotic microangiopathy (TMA) cohort

Patients with TMA were drawn from the Harvard TMA Research
Collaborative data set.22 Two TMA cohorts were collated: a deri-
vation and a validation cohort. The derivation cohort consisted of
patients presenting at the MGH between 31 March 2017 and
30 November 2020, and the validation cohort consisted of patients
presenting at the MGH and BWH between 1 January 2021 and 19
December 2021. Patient details were gathered through a detailed
chart review by members of the study team. Immune thrombotic
thrombocytopenic purpura (iTTP) was defined as an ADAMTS13
enzyme activity level ≤10% (normal reference range, activity >66%
for assay at Blood Center of Wisconsin) or ADAMTS13 enzyme
activity ≤ 25% with an inhibitor of >1.0 inhibitor units (normal
reference range, <0.5 inhibitor units). Outpatient cases of Upshaw-
Schulman syndrome were not defined as iTTP cases. See the
supplemental Methods for additional details.

Matched cohort mortality analysis

Relationships between RBC-diff counts and all-cause mortality
were estimated using a matched cohort analysis. Using each
patient’s first available smear, for a given abnormal RBC type, each
patient with a corresponding count < 0.5% was matched to
a patient of the same sex, race, comorbidity profile, age (<5-year
gap), hematocrit (<10% absolute gap), and morphology grades,
with the given cell type count between 0.5% and 1% or >1%.
Mortality differences were analyzed using Kaplan-Meier curves
and log-rank test. See the supplemental Methods for additional
details.

Generation of single-cell volume-morphology

distributions

To estimate individual cell volumes, the mean pixel area of each
detected RBC was converted to μm2 (based on image resolution)
and multiplied by 2.5 μm (approximate average vertical height of an
RBC23). Smear-derived estimated volumes were then compared
with blood count-derived mean corpuscular volume (MCV) and
RBC distribution width (RDW), measured as part of standard
clinical care on the Sysmex and Advia instruments, (supplemental
Figure 1). These estimated volumes are based on 2D information
22 AUGUST 2023 • VOLUME 7, NUMBER 16
and are therefore expected to be less accurate than approaches
that include 3D information.24

Statistical analysis

All statistical analysis was performed in MATLAB and R. For
continuous variables, unless otherwise noted, we reported the
means (std) and use 2-sided t tests (for 2 variables) or analysis of
variance (for 3+ variables) for population comparisons. For cate-
gorical variables, we reported percentages and used a χ2 test for
population comparisons. Differences between model sensitivities
and specificities were calculated using χ2 tests based on true
positive and false negative rates (for sensitivity) and true negative
and false positive rates (for specificity). The thresholds for statis-
tical significance in the hypothesis tests were set at P = .05. For
event rates, confidence intervals were calculated assuming bino-
mial distributions.

Ethics

The study protocol was approved by the local institutional review
board (IRB) of the MGH.

Results

The RBC-diff provides rapid and accurate

morphologic assessments

Across a set of 5000 manually labeled single-cell images (2/3 used
for training and 1/3 for testing), RBC-diff accurately classified each
major morphologic class (mean test set area under the receiver-
operator curve [AUC], 0.93, minimum AUC, 0.85; Figure 1A).
Across cell population smear images (typically containing 1000-
3000 RBCs), RBC-diff counts were concordant with expert esti-
mates (R2 = 0.61, 0.71, 0.98, 0.75, and 0.75, for elliptocytes,
schistocyte, sickle, spiculated cells and teardrop cells respectively;
Figure 1B; supplemental Figure 2). The mean algorithm-expert
correlation (R2, 0.76) was comparable with the interexpert
concordance (R2, 0.75) suggesting that the algorithm performance
is limited by the lack of an objective gold standard definition for
each class. Interexpert comparisons were concordant but often
only weakly calibrated, with the average estimated cell prevalence
varying up to fourfold (supplemental Figure 2), highlighting the
potential value of a more objective and consistent approach to
quantitation. Across 8459 cases for which 2 smears were gener-
ated from 1 blood sample, RBC-diff counts showed low intrablood
sample variability (Figure 1C). Across 281 745 smears from MGH,
the RBC-diff counts aligned with the morphology grades assigned
by the hematology laboratory, with higher grade flags (1+, 2+, 3+)
associated with increased cell counts of the given type (Figure 1D).
This consistency was also observed across 56 832 smears from
BWH (supplemental Figure 3), despite significant interhospital
differences in smear grading protocols (see supplemental
Methods).

As a final validation, we tested whether RBC-diff counts would
detect expected qualitative morphology perturbations across 5
clinical cohorts (Figure 2). Elliptocyte elevations were observed in
patients with hereditary elliptocytosis but not in those with hered-
itary spherocytosis (Figure 2A). RBC-diff counts also accurately
tracked expected changes after clinical intervention: spiculated
cells decreased after liver transplantation25 (Figure 2B); sickle cells
AUTOMATED ANALYSIS OF RED CELL SHAPE ABNORMALITIES 4623
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Concordance of RBC-diff counts with expert quantitation on standard smear images (~2000 RBCs per image) (mean algorithm-expert R2: 0.76; comparison with the individual
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density estimates on standard smear images and morphology grading flags at MGH (1+, 2+, 3+ reflect increasing frequency of the given morphology). See supplemental Figure 3

for the validation of this result at BWH. (E–I) Distributions associated with panels C and D are shown in supplemental Figures 10, 11, and 12. The distribution of the flags (panel D)

is shown in supplemental Figure 3. All P values were calculated using a 2-sided Student t test. AUC, area under the receiver operating curve; N.f, not flagged.
decreased after RBC exchange26 (Figure 2C); microcytes
decreased after IV iron supplementation in iron-deficient anemia27

(Figure 2D), and schistocytes increased after splenectomy28

(Figure 2E). These changes typically occurred with stable profiles
for the other morphologies (supplemental Figure 4) and, often, in
settings in which grading by the clinical laboratory did not change.
For example, 20 of 46 (44%) patients who underwent liver trans-
plantation showed no change in spiculated smear grades, as
assessed by the clinical laboratory, from pre to posttransplantation,
whereas RBC-diff detected a decrease in spiculated cells in 17 of
20 (85%) patients (mean absolute decrease, 7.3%).

In addition to its accuracy, RBC-diff was also (1) fast (<1 second
image processing time), (2) accurate with manually photographed
smear images (supplemental Figure 5), and (3) insensitive to
changes in image hue, as is often observed between medical
centers29 (supplemental Figure 6).

RBC-diff facilitates the speed and specificity of iTTP

and HUS diagnosis

To evaluate the diagnostic utility of the RBC-diff, we considered a
cohort of patients with TMA22 with concern for iTTP, a medical
emergency involving a severe acquired deficiency in the von Wil-
lebrand factor-cleaving protease ADAMTS13.11 The definitive
diagnostic test for iTTP is an ADAMTS13 activity assay, which is
typically performed in a reference laboratory, limiting availability in
emergency settings. Patients with thrombocytopenia suspected of
4624 FOY et al
having iTTP were evaluated manually and subjectively for the
presence of schistocytes in the peripheral smear. Therefore, we
sought to test whether RBC-diff counts could facilitate objective
and rapid iTTP diagnosis before the ADAMTS13 activity results
were known. We constructed 2 independent cohorts of 106
(derivation cohort) and 90 (validation cohort) TMA cases, with
etiology determined by physician review of clinical charts
(Figure 3A, see Methods for further details). iTTP and hemolytic
uremic syndrome (HUS) showed higher schistocyte counts than all
other TMA etiologies (Figure 3B), although the relapsed iTTP
cases had lower schistocyte counts than the initial episodes
(Figure 3B). Considering the full differential, iTTP and HUS cases
exhibited a unique fingerprint with schistocyte elevations being
predominant (schistocyte levels being higher than other morphol-
ogies; Figure 3C,D). Elevated schistocytes (with or without pre-
dominance) provided high specificity and sensitivity for the
diagnosis of iTTP or HUS compared with other TMAs, out-
performing hematology laboratory grading (Figure 3E). From the
derivation cohort, the optimal diagnostic criteria were identified as
(1) schistocytes >4% or (2) schistocytes >2% and predominant
(supplemental Figure 7). In the validation cohort, these joint criteria
produced significantly higher specificity (72% vs 42%; P < 1e-5)
and positive predictive value (41% vs 25%; P < 1e-5) than the
hematology laboratory grades, while providing 100% sensitivity
(Figure 3F). Schistocyte counts provided a diagnostic signature
that was not captured via routine blood count measures
(Figure 3G).
22 AUGUST 2023 • VOLUME 7, NUMBER 16



60 50

25

0

40

20

0

60

40

20

0

Ell
ipt

oc
yte

s (
%

)

n = 17

n = 6

n = 46

P < .001 P < .001 P = .04 P = .001 P = .05

Spherocytosis

Elliptocytosis Pre– Pre– Post– Pre– Post–Post–
 Liver transplant Red cell exchange Iron supp.

Pre– Post–
Splenectomy

Sp
icu

lat
ed

 c
ell

s (
%

)

Sic
kle

 c
ell

s (
%

)

Mi
cr

oc
yte

s (
%

)

Sc
his

to
cy

te
s (

%
)2

1

0

n = 9 n = 30
n = 21

6

3

0

A B C D E
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driven by physiologic shifts or clinical interventions: (A) hereditary spherocytosis and elliptocytosis, (B) before and after liver transplantation, (C), before and after RBC

exchange in patients with sickle cell disease, (D) before and after intravenous iron supplementation in patients with iron-deficiency anemia, and (E) before and after splenectomy.

RBC-diff counts for all morphologies of the patients in panels A-E are shown in supplemental Figure 4. The test statistics for panels A-E are 16.0, 6.16, 2.39, 3.90, and 2.09,

respectively. Black lines reflect interquartile range, white circles represent median, and violin shapes the data distribution.
RBC-diff counts are associated with prognosis in

multiple populations

While reviewing the clinical charts, we noted a high mortality rate in
the TMA derivation cohort, particularly among patients who were
ultimately not diagnosed with iTTP or HUS. This led us to investi-
gate whether high schistocyte counts were associated with mor-
tality. In the TMA derivation cohort (excluding iTTP and HUS
cases), elevated schistocytes at the time of ADAMTS13 testing
were associated with a nearly five fold increase in 7-day mortality
(3.7% to 17.7%; P = .027; χ2 = 4.9, df = 1) (Figure 4A). Similar
schistocyte-mortality associations were observed in the earliest
available blood smears from 49 056 patients with MGH. In this
cohort, elevated levels of schistocytes (>1%) were associated with
increased 6-month all-cause mortality compared with low levels of
schistocytes (<0.5%; 11.3% mortality vs 6.4%; P < .001), after
matching cohorts for demographics, comorbidities, hematology
laboratory grading, hematocrit, and other RBC-diff counts
(Figure 4B; supplemental Methods). This signal was validated in an
independent cohort of 9894 patients with BWH and was main-
tained after excluding patients with a cancer diagnosis before or
within 30 days of the blood smear (supplemental Figure 8). A chart
review of 100 randomly selected deceased patients with high or
low levels of schistocytes found no significant differences in the
primary cause of death (supplemental Figure 8; χ2 test; P = .56;
χ2 = 4.9, df = 6), suggesting that this schistocyte signal may be a
complementary predictor of mortality risk and is not specific to 1
pathologic process. This signal was also maintained after control-
ling for RDW, which is a well-known nonspecific risk factor for
morbidity and mortality30,31 (supplemental Figure 9). A weaker
mortality association was observed in elevated spiculated cells
(Figure 4B). No mortality association was observed for other RBC
morphologies (supplemental Figure 8).

The RBC-diff provides single-cell insights into routine

blood count measures

Using the pixel dimensions of each identified cell, the RBC-diff can
provide an estimate of individual RBC volumes (see Methods).
Although less accurate than 3D approaches,24 these estimates are
concordant with the routine complete blood count (CBC) indices
MCV and RDW (supplemental Figure 1), and the RBC-diff can
22 AUGUST 2023 • VOLUME 7, NUMBER 16
therefore be used to investigate how RBC morphology affects
CBC indices by analyzing approximate volume-morphology distri-
butions (Figure 5A). Using this method, across the preoperative
liver transplantation cohort (Figure 2B), spiculated cells were, on
average, 14% smaller than other RBCs but did not significantly
decrease MCV (Figure 5B). In the iron-deficiency cohort
(Figure 2D), the response to iron therapy involved an increase in
the size of all RBCs and not just a reduction in microcytes
(Figure 5C-D). In the derivation iTTP cohort (Figure 3), schistocytes
were, on average, 30% smaller than other cells but only drove a
2 fL mean decrease in MCV (90.5-88.4 fL) (Figure 5E-F).
Conversely, schistocytes drove an average absolute RDW
increase of 1.9% (18.4%-20.3%) (Figure 5G). These 2 results
suggest that previously reported MCV decreases in iTTP32 may be
driven mostly by increased microcytosis rather than by schistocy-
tosis and that a sudden increase in RDW in inpatient settings may
be an early signal of emergent schistocytosis. Single-cell analysis
of iTTP cases also revealed a significant inverse correlation
between average schistocyte size (as a percentage of average cell
size) and schistocyte count, suggesting that higher schistocyte
counts may involve harsher or repeat shearing of cells (Figure 5H).

Discussion

Here, we present a novel machine-learning algorithm for the
quantification of RBC morphologies in peripheral blood smear
images. We validated this method at the single-cell and cell pop-
ulation levels, including comparison with morphology grading flags.
We demonstrate how this method can aid in the differential
diagnosis and evaluation of patient prognosis in multiple clinical
settings. Finally, we illustrate how this method may help elucidate
the effects of RBC morphology on routine CBC indices and help
understand the pathophysiology of disease progression and
treatment response.

Some previously developed machine-learning methods for the
classification of RBC abnormalities have been limited by small or
poor-quality data sets,16 choice of nonstandard classification
categories,33 and limited clinical correlation.17,18 Other
approaches have shown good performance in larger or well-
defined data sets,17,20 and have often focused on individual
cell classification without validation at the smear level or in the
AUTOMATED ANALYSIS OF RED CELL SHAPE ABNORMALITIES 4625
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Figure 3. RBC-diff schistocyte counts improve diagnostic evaluation of TMAs. (A) TMA cohort inclusion criteria and study design. (B) RBC-diff schistocyte counts

according to TMA etiology. (C,D) RBC-diff counts for iTTP (C), and all other TMA etiologies (D). The interrupted y-axis shows a single outlier (93% spiculated, DIC case). For box

plots (B,C,D), center lines show the medians; box limits indicate the 25th to 75th percentiles; whiskers extend 1.5× the interquartile range; and dots represent outliers. (E) The

sensitivity and specificity of diagnosis of iTTP and/or HUS against all other TMA etiologies using schistocyte count with (light blue) and without (dark blue) predominance

(requirement that schistocyte count be higher than that for other abnormal cell types) and using morphology grading flags (brown diamonds). An equivalent plot of the validation

cohort is shown in supplemental Figure 13. (F) Sensitivity, specificity, and positive predictive value (PPV) of the RBC-diff cell count criteria for the diagnosis of iTTP and/or HUS in

derivation and validation cohorts (supplemental Figure 7). Sensitivity and PPV using the joint criteria were significantly higher than those using morphology grading flags (P < 1e-5;

exact binomial test). (G) Volcano plot indicating the statistical significance and fold changes of CBC indices, RBC-diff counts, and ADAMTS13 activity, each for iTTP compared

with non-iTTP/HUS TMA cases. P values using Bonferroni-corrected 2-sided Student t test. DIC, disseminated intravascular coagulation; Hgb, hemoglobin; Plt, platelet count.
context of clinical care. Because human assessment of an
individual morphology of a cell will be informed by morphologic
heterogeneity across the entire smear, the clinical application of
blood smear analysis involves consideration of the overall RBC
population. Our approach overcomes these limitations using a
robust and multipronged validation approach to demonstrate the
accuracy of the method and its potential for diagnostic and
prognostic applications (Figures 1-4). RBC-diff classifications
4626 FOY et al
were also insensitive to changes in image hue and the method
performed well at a separate medical center and on manually
collected images (supplemental Figures 3, 5, and 6). Because it
is possible that alternative or complementary approaches to
classification, such as using neural networks or automating
feature selection,17,20,21 could enhance performance, we pro-
vide single-cell and cell population images (and associated
expert labels) as a public resource (supplemental Data 2).
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One significant challenge in automating the detection of RBC
morphology is the lack of clear definitions of the specific mor-
phologies. Unlike WBCs, RBC types do not have distinct
mechanistic functions that help inform cellular structure, and
morphologic classes tend to arise subjectively. Although
Researchers such as Bessis et al, have elucidated and
described RBC morphology in detail in experimental set-
tings,34,35 the definition of morphology in clinical settings
remains subjective, as demonstrated by the modest interexpert
agreement levels we found (supplemental Figure 2). The type
of objective definitions of morphologic class provided by the
RBC-diff would improve the reproducibility of smear analysis,
interpretation, and clinical utilization.

RBC-diff demonstrates the potential benefits of more precise
and objective quantitation of RBC morphology. Compared with
morphology grading flags, RBC-diff counts improved the sensi-
tivity and specificity of the differential diagnosis of iTTP
(Figure 3). Schistocyte levels are known to be of importance in
ADAMTS13 deficiencies,32,36 but manual differentiation
between different levels (1+, 2+, etc) of schistocytes is chal-
lenging, with expert assessments often differing substantially.13

The RBC-diff provides an objective and reproducible definition
of significant schistocyte elevation, including determination of
predominance, a recommendation in clinical guidelines.37

Different TMA etiologies had distinct RBC-diff count finger-
prints (Figure 3), suggesting that this tool could play a role in the
initial evaluation of patients with TMA, complementing scoring
systems such as the PLASMIC score32,36 to assess the risk of
severe ADAMTS13 deficiency.

Figure 4 shows that RBC-diff counts may in some scenarios be
predictive of patient outcomes or track with patient prognosis.
The surprising associations with mortality in Figure 4B per-
sisted after adjusting for multiple factors, including morphology
grading flags, comorbidities, and RDW, suggesting the pres-
ence of valuable and underutilized clinical information in blood
smears. We note that the population of patients with blood
smears at MGH is not representative of the general patient
population, and further study of this signal in healthy cohorts is
required.

RBC-diff can also help provide single-cell insights into the influence of
morphology on CBC indices (Figure 5) via the estimation of single-cell
volumes. Estimation of blood count parameters from imaging data has
previously been shown to be promising, with prototype approaches
showing similar accuracy to flow-cytometry approaches.38,39 By
connecting estimated CBC indices to morphology, RBC-diff can
generate morphology-corrected CBC indices that may provide
improved discrimination of pathologic states or response to treatment.
It has been shown that hemoglobin levels can be estimated from
blood smear images,39 suggesting that RBC-diff could potentially be
extended to other blood count measures such as hemoglobin and
mean corpuscular hemoglobin.

This study focuses primarily on the quantitation of schistocytes
because they are commonly elevated in important acute care
settings40-44 and existing automated systems show limited
specificity of detection.14,45 Schistocyte counts can be
approximated via the fragmented red cell count (FRC), which
can be calculated via flow-cytometry.46,47 FRC counts are
4628 FOY et al
sensitively but nonspecifically associated with imaging-derived
schistocyte counts47 and may have diagnostic value for
TMAs.48 However, FRC counts do not provide information on
other RBC morphologic classes, a key feature for differential
diagnosis in our study (Figure 3) and a part of the current rec-
ommendations for TMA diagnosis.41 Although FRC is a valuable
correlate of schistocyte levels, it is typically used to highlight the
need for manual smear review,46 and thus may provide value in
tandem with the RBC-diff. A robust comparison of the RBC-diff
schistocyte counts and FRC was not possible in this study
because the primary clinical hematology analyzers at the MGH
and BWH do not routinely record FRC values.

The RBC-diff is not intended to replace manual smear review but
rather to provide technical assistance to improve speed and
objectivity. The CBC and WBC differential currently provide an
objective and quantitative foundation that informs manual smear
review, and the RBC-diff could bolster this foundation. Given its
accuracy with manually collected images (supplemental Figure 5),
this potential application may be of particular benefit in resource-
limited settings in which automated imaging systems are unavai-
lable. However, it should be noted that RBC-diff was designed to
quantify only 5 major morphologic classes and does not currently
assess hypochromia, pallor, polychromasia, or RBC inclusions, and
thus does not yet detect target cells, spherocytes, or RBC para-
sites. Similarly, the algorithm does not use advanced techniques17

to account for cell adhesion or crowding and may be less accurate
in settings of extreme agglutination or poor smear quality. The
expansion of cell classes and adjustments for smear quality are
exciting avenues for future work.

Our application of RBC-diff primarily focused on the clinical setting
of TMAs, where red cell dysfunction is commonplace. However, we
speculate that RBC-diff may be valuable in many other clinical
settings, such as: (1) schistocyte quantitation in disseminated
intravascular coagulation,40 sepsis, or pregnancy-related condi-
tions such as HELLP49; (2) sickle cell quantitation for sickle cell
disease50; and (3) spiculated cell quantitation in severe liver dis-
ease. These reflect avenues for future research with a significant
potential to improve clinical outcomes. More broadly, given its
speed, accuracy, and robustness, we hope that RBC-diff may
provide a powerful new lens to study red blood cell morphology in
disease.
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