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ABSTRACT Methanogenic archaea are the only organisms that produce CH4 as part of
their energy-generating metabolism. They are ubiquitous in oxidant-depleted, anoxic envi-
ronments such as aquatic sediments, anaerobic digesters, inundated agricultural fields, the
rumen of cattle, and the hindgut of termites, where they catalyze the terminal reactions
in the degradation of organic matter. Methanogenesis is the only metabolism that is re-
stricted to members of the domain Archaea. Here, we discuss the importance of model
organisms in the history of methanogen research, including their role in the discovery of
the archaea and in the biochemical and genetic characterization of methanogenesis. We
also discuss outstanding questions in the field and newly emerging model systems that
will expand our understanding of this uniquely archaeal metabolism.
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METHANOGENESIS

Methanogenic archaea are the only organisms on Earth that produce CH4 as part of
their energy-generating metabolism and are essential for the complete reminer-

alization of organic matter in oxidant-depleted, anoxic environments, such as marine
and freshwater sediments, the intestinal tracts of some insects and other animals,
wastewater treatment plants, and agricultural plots that rely on inundation. It is esti-
mated that methanogens account for the annual production of ;750 Tg of CH4 or 560
Tg of C (1). Given that during methanogenesis from biomass, one CO2 is produced per
CH4, methanogenesis is responsible for the annual remineralization of about 1,100 Tg
of C or 1.1% of all the photosynthetically produced organic carbon on Earth.

Cultivated methanogens fall into two metabolic subtypes. The hydrogenotrophs, or
methanogens without cytochromes, generally grow by the reduction of CO2 to CH4 using
either H2 or formate as the electron donor, although some species can also oxidize primary
and secondary alcohols and carbon monoxide or reduce methyl compounds with H2 (2).
Methanogens with cytochromes, which include carboxydotrophic, most methylotrophic,
and all aceticlastic methanogens, can often reduce CO2 as well. However, most species
grow primarily by the reduction of methyl groups (e.g., methanol, methylamines, and
methylsulfides) or the methyl carbon of acetate to CH4 (2). In the case of aceticlastic meth-
anogenesis, the reduction of the methyl carbon of acetate is coupled to the oxidation of
the carboxylate carbon (3). In the case of methanol, methylamines, or methylsulfides, three
methyl groups are reduced using electrons from the complete oxidation of a fourth
methyl group to CO2. Hydrogenotrophic methanogenesis is thought to be an evolutionar-
ily ancient process, possibly arising at or near the origin of life (4), although some have
argued for a methylotrophic origin of methanogenesis (5). In contrast, aceticlastic metha-
nogenesis likely evolved within the last;500 million years (6).

Methanogens represent multiple extremes in biodiversity that have made their study
challenging. They are strict anaerobes and require specialized cultivation techniques.
Many are lithotrophs, and growth with H2 requires specialized gas handling and safety
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equipment. Many are also extremophiles that grow only at high temperatures or concentra-
tions of salt and require additional specialized cultivation techniques and equipment. Finally,
they are archaea, and many of the common molecular biological tools used to study bacteria
are ineffective.

The development of model organisms enabled research in this field to rapidly progress.
Although model organisms often fail to represent the full diversity of a group, they offer
some important advantages. First, model organisms are often selected because they pos-
sess properties that make them easy to study, such as a relatively simple lifestyle or rapid
growth. Second, for fastidious organisms like methanogens, the development of efficient
cultivation techniques is a major initial challenge requiring substantial investments in time
and equipment. Often, the methodology that is developed fails to generalize to more than
a few species. Therefore, once this obstacle has been overcome, the benefits are harvested
by continuing work on the particular group. Finally, knowledge is cumulative, and the dis-
covery of the properties of a model organism enables more detailed investigations. Each
of these points is illustrated below.

While methanogens all belong to the archaeal domain and rely on the formation of
CH4 for energy, the diversity of the organisms is very large, and it was necessary to select dif-
ferent model organisms at different stages in their study. In this review, we give an overview
of the history of methanogen research, highlight significant scientific discoveries resulting
from the study of model methanogens, describe how and why certain species were used as
models to study the two physiologically distinct subgroups, and discuss future directions. A
timeline of major discoveries is highlighted in Fig. 1. Related organisms catalyzing reactions
such as the anaerobic oxidation of methane (reverse methanogenesis) and the reduction of
short-chain alkanes are not discussed here due to our focus on model organisms that form
CH4 as a product of their primary metabolism.

ISOLATION OF CH4 AND THE FIRST CULTIVATEDMETHANOGENS

The phenomenon of “flammable air” was first investigated by Alessandro Volta work-
ing in Lake Maggiore, Italy, in 1776. Volta’s initial experiments focused on the isolation
and identification of this gas as CH4. He characterized CH4 by igniting gas collected from
lake sediments or by using simple combustion chambers to propel a projectile (7); similar
experiments were also being performed in the Americas (8). Even at this time, it was
apparent that CH4 production was a by-product of the biologically catalyzed degradation
of organic matter, but it was not until nearly a century later that scientists began to appreci-
ate that methanogenesis was microbially catalyzed (9–15). Moreover, many of the early stud-
ies were limited due to a lack of pure cultures for characterization. It was not until the 1930s

FIG 1 A timeline of key discoveries involving methanogens.
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that H. A. Barker (16) and M. Stephenson and L. H. Stickland (17) reported the first “pure”
cultures of methanogenic organisms growing with substrates such as H2 and formate to
reduce CO2 to CH4 or with acetate via the aceticlastic reaction. Based on their descriptions
and 20-20 hindsight, it is unlikely that these cultures were, in fact, axenic. They were isolated
by the dilution-to-extinction technique in broth, and many of their properties were inconsis-
tent with those of pure cultures that were subsequently isolated as better methods became
available. Nevertheless, since they have been lost, their purity cannot be reexamined.

In 1931, Stephenson and Stickland described a culture of a hydrogenotroph that was iso-
lated by dilution under conditions where the disproportionation of formic acid to CH4 and
CO2 supported growth (17). Using suspensions of this organism, they found that it was also
capable of the oxidation of H2 coupled with the reductions of CO2, CO, formaldehyde, meth-
anol, and sulfate. Today, methanogens are not known to use sulfate as an electron acceptor
in respiratory metabolism, so it is likely that these cultures contained sulfate-reducing bacte-
ria in addition to methanogens. Several years later, Barker (16) described additional cultures:
Methanococcus mazei (isolated on acetate-containing medium, later reisolated, and now
known as Methanosarcina mazei [18]), Methanobacterium söhngenii (capable of acetate and
butyrate fermentation), and “Methanobacillus omelianskii” (isolated on alcohols). All of these
cultures had properties suggesting that they were mixed cultures containing a methanogen
as well as bacteria. While these early studies demonstrated the existence of these unique mi-
crobial metabolisms, they also illustrated the difficulties in obtaining pure cultures of these
fastidious microorganisms with the techniques available at the time.

The greatest challenge with the growth of methanogens was a strict requirement
to maintain anoxia. Early studies used excess reductants, medium sparged with oxygen-free
gas, and standard microbiological culture tubes capped with rubber stoppers to maintain
these conditions (for example, see reference 19). While often effective, these techniques did
not allow the reliable and consistent growth of axenic cultures. It was not until R. E. Hungate
(19) modified methods and designed glassware designed specifically for the growth of an-
aerobic microorganisms and A. Aranki and R. Frêter (20) and D. Coy (https://coylab.com)
designed a reliable, inexpensive anaerobic chamber that rigorous study of the physiology of
methanogens became possible. The techniques developed by Hungate were further opti-
mized by T. L. Miller and M. J. Wolin (21) and W. E. Balch and R. S. Wolfe (22) to allow growth
in pressurized glassware and incubation vessels. Techniques for large-scale cultivation were
also established (23). Reproducible and reliable growth led to breakthroughs in the bio-
chemistry and genetics of methanogenesis.

THE DISCOVERY OF SYNTROPHY AND THE REALIZATION THAT “METHANOBACILLUS
OMELIANSKII”WAS AMIXED CULTURE

While additional cultures continued to be isolated, much of the work performed in
the early years focused on defining the substrate range of Barker’s cultures, with a par-
ticular focus on “M. omelianskii.” This culture was attractive as a model system because
it grew much faster than the other cultures available at the time and was technically
easier with which to work (16). Moreover, unlike M. mazei, which had a complicated
life cycle with multiple morphological forms, its simple lifestyle allowed the study of
energy metabolism in the absence of complicating factors (16).

“M. omelianskii” was initially cultivated on medium using ethanol as a reductant for CO2

reduction to CH4 (16) and was later found to use other reductants, importantly H2. A key
observation was that “M. omelianskii” failed to ferment ethanol after cultivation in medium
with H2 supplied as the reductant (24). The careful isolation of single colonies on different
media led to the identification of two organisms in the culture, a methanogen that could
grow only via the H2-dependent reduction of CO2 and a bacterium that could ferment
ethanol to acetate and H2. The bacterium became known as the “S organism,” but this culture
has since been lost; the methanogen was later named Methanobacterium bryantii M.o.H. to
recognize the contributions of M. P. Bryant in its isolation (25). The combined activities of two
organisms to catabolize a substrate that neither one can use in axenic culture are known as
syntrophy (from the Greek syn, meaning together, and trophe, meaning nourishment) (26).
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The discovery of syntrophy between the S organism and M. bryantii was a key observa-
tion in the recognition of interspecies H2 transfer, which drives the complete remineraliza-
tion of organic matter in anoxic environments. The overall reaction is thermodynamically
favorable under standard conditions (equation 1). The S organism grows by the fermenta-
tion of ethanol according to equation 2, and M. bryantii grows by methanogenesis accord-
ing to equation 3. The S organism relies on a methanogen to maintain a low partial pres-
sure of H2, which creates conditions where ethanol oxidation is favorable, and M. bryantii
relies on the S organism for the production of H2.

2CH3CH2OH1CO2 ! 2CH3COO
2 1 2H11CH4 DG09 52112 kJmol21

� �
(1)

CH3CH2OH1H2O ! CH3COO
2 1H11 2H2 DG09 519:6 kJmol21

� �
(2)

4H2 1CO2 ! CH4 1 2H2O DG09 52131 kJmol21
� �

(3)

Other substrates can support the syntrophic growth of bacteria (e.g., propanol, propio-
nate, butyrate, and benzoate) and methanogens (e.g., H2, formate, or direct interspecies elec-
tron transfer [DIET]). Today, many studies on syntrophic nutrient exchange have focused on
pairing Methanospirillum hungatei, Methanobacterium spp., or Methanosarcina spp. with syn-
trophic bacteria (e.g., see references 27–29). In fact, these methanogens can be used as “bait”
when enriching or isolating bacterial syntrophs. While the initial cultivation of M. bryantii and
the S organism suggested the importance of interspecies H2 exchange for maintaining these
interactions, recent evidence suggests that alternate intermediates such as formate may be
essential for maintaining a stable syntrophic association (30–32). These small organic acids
are highly soluble and easily diffuse between partners in aqueous medium. New evidence
also suggests that in Methanosarcina-dominated syntrophy, bacterial and archaeal outer
membrane multiheme cytochromes and cytochrome-based “nanowire” filaments may facili-
tate DIET (28, 33, 34). DIET removes the need for a soluble intermediate between partner
organisms and may be more efficient for electron transfer. (For comprehensive reviews on
the topic of syntrophy, see references 29 and 35. For a more detailed account of the labora-
tory experiments surrounding the discovery of syntrophy, see reference 36.)

M. BRYANTII M.o.H. AS A MODEL ORGANISM TO IDENTIFY THE C1 CARRIERS AND
REDOX-ACTIVE COFACTORS OF METHANOGENESIS

The isolation of M. bryantii from the “M. omelianskii” mixed culture led to the develop-
ment of a model system based on a pure culture of a methanogen, and the characterization
of the C1 intermediates, cofactors, vitamins, and enzymes for methanogenesis began in ear-
nest. Much of this work was performed in the laboratory of R. S. Wolfe (see his autobio-
graphical article in Annual Reviews of Microbiology for more details [36]). B. C. McBride and
R. S. Wolfe (37) and C. D. Taylor and R. S. Wolfe (38) isolated the first carbon carrier from
methanogens and identified it as 2-mercaptoethanesulfonate, which carries a methyl group
that is reduced to CH4; therefore, it was named HS-CoM (coenzyme that carries a methyl
carbon). This was one of the first clues that methanogens were a unique biological group
as this “vitamin” had not been previously observed in another biological process (although
today, HS-CoM is also known to be present in bacteria [e.g., see reference 39]). At around
this time, Wolfe’s and Bryant’s laboratories, in collaboration with G. D. Vogel’s laboratory,
also solved the structure of F420 (40–42), a previously unknown electron carrier, providing
more evidence of a unique metabolism. Additional electron and C1 carriers were subse-
quently isolated fromM. bryantii and other methanogens, and a partial list of some of these
molecules can be found in Fig. 2 (reviewed in reference 43).

ARCHAEAAS THE THIRDDOMAINOF LIFE ANDA SWITCH TOMETHANOTHERMOBACTER
SPECIES ASMODELMETHANOGENS

While many of the vitamins and cofactors of methanogenesis have subsequently
been identified in bacteria, the unique (at the time) nature of the biochemistry of
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methanogens was one of the first clues that they were distinct from bacteria. In around
1976, C. R. Woese began his groundbreaking work to create a universal tree of life using the
small-subunit rRNA (16S for prokaryotes) of the ribosome as an evolutionary marker. The initial
findings of Woese’s work were published in 1977 (44), which led to the formal proposal of the
name “Archaea” in 1990 (45). Woese was performing his work at the University of Illinois and
collecting 32P-labeled rRNA from a variety of organisms; naturally, Wolfe’s methanogens were

FIG 2 Coenzymes and C1 and electron carriers used in methanogenesis. H4MPT, tetrahydromethanopterin;
H4SPT, tetrahydrosarcinapterin.
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included in these analyses because of their unique physiology. 32P labeling was particularly
difficult for slow-growing methanogens as there were issues with this radioactive element
killing the cultures before sufficient incorporation could occur. At around this time, J. G.
Zeikus in the Wolfe laboratory isolated Methanothermobacter thermautotrophicus (originally
Methanobacterium thermoautotrophicus) (46). This organism has a short generation time,
which is ideal for 32P incorporation studies, and could be grown easily in large fermenters.
These attributes also made it an excellent candidate for biochemical studies that would
drive the field for the next 20 years (see the next section).

Woese’s analysis of the 16S rRNA of M. thermautotrophicus lead to the realization
that the ribosomes of methanogens were as different from those of bacteria as those
of bacteria were from those of eukaryotes and the conclusion that methanogens were
a different domain of life (44). This was also true when other methanogens and other
archaeal 16S rRNAs were analyzed. In addition to the unique biochemistry of methano-
genesis and the molecular evidence from 16S rRNA, O. Kandler et al. soon found that
the cell walls of archaea were comprised of different polymeric substances than the cell
walls of bacteria (47–49). In 1978, it was found that M. thermautotrophicus contained lipids
composed of phytanyl-glycerol ethers and squalenes, also distinct from bacterial lipids (50).
Additional lines of evidence that archaea were a distinct domain continued to accumulate
(see reference 25 for an argument that was put forward at the time, and see reference 51
for a more recent treatment of the argument that archaea are a domain distinct from bacte-
ria). Over the ensuing decades, additional evidence accumulated. Of note is that the first
archaeal genome sequence, that of Methanocaldococcus jannaschii, was completed in 1996
(52). In addition to providing additional genetic support for this argument, it widely popular-
ized the concept among biologists outside microbiology.

DEVELOPMENT OF METHANOTHERMOBACTER AND OTHER MODEL SYSTEMS FOR
THE ISOLATION OF ENZYMES

The isolation of unique cofactors from M. bryantii provided the impetus for studies on
the enzymology of methanogenesis. During the 1970s, there was a rapid increase in the
isolation of pure cultures of methanogens and the availability of potential model systems.
Improvements to its large-scale cultivation, its rapid growth, and the stability of thermo-
philic enzymes at room temperature made M. thermautotrophicus an attractive model for
the biochemistry of methanogenesis. A closely related species, Methanothermobacter mar-
burgensis, was used as a model organism in the R. K. Thauer laboratory in Marburg,
Germany, for similar reasons (53). Particularly important for the study of the reactions at
the intermediate levels of CO2 reduction as well as methylotrophic methanogenesis were
Methanosarcina strain Gö1, used by the G. Gottschalk laboratory in Göttingen, Germany,
and Methanosarcina barkeri strain MS, used by the G. D. Vogel laboratory in Nijmegen, The
Netherlands. Although their growth was slower than that of Methanothermobacter, the
Methanosarcina spp. were particularly useful model systems because they could be grown
on methanol in the absence of H2, which was technically simpler and much safer than H2

growth. They were also ideal for studies of methyl group oxidation, which was believed at
the time to be the reverse of CO2 reduction.

The first enzyme to receive significant attention was methyl-CoM reductase (Mcr),
the enzyme that catalyzes the CH4-forming step of methanogenesis (54, 55). Mcr is bio-
chemically interesting because it is one of the most oxygen-sensitive enzymes known.
It relies on a low-potential nickel (E09 of less than 2600 mV versus a standard hydrogen
electrode [56, 57]) coordinated by the tetrapyrrole coenzyme F430 to reduce methyl-
CoM to CH4 using electrons from the thiol coenzyme B (HS-CoB), also generating a het-
erodisulfide of HS-CoM and HS-CoB (CoM-S-S-CoB).

After the isolation and characterization of Mcr, the remainder of the pathway for
the reduction of CO2 to CH4 was elucidated, the details of which have been well
described in recent reviews (1, 2, 58–60). Two additional C1 carriers, methanofuran
(MFR) and tetrahydromethanopterin (H4MPT) (61–66), are needed for methanogenesis.
The initial CO2-reducing reaction is carried out by formyl-methanofuran (formyl-MFR)
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dehydrogenase (Fmd), which fixes CO2 to a formyl group covalently attached to MFR (67).
Next, a formyl-MFR:formyl-H4MPT formyltransferase (68) and a formyl-H4MPT cyclohydrolase
generate methenyl-H4MPT (69), which is further reduced to methyl-H4MPT. Finally, methyl
transfer from H4MPT to HS-CoM is catalyzed by a membrane-bound, Na1-translocating
methyltransferase (70). This methyltransferase comprises one of the key steps in the genera-
tion of energy for the cell. Mcr catalyzes the final, CH4-producing step of methanogenesis.
The series of reactions for the reduction of CO2 to CH4 can be found in Fig. 3A.

A side product of CH4 formation is CoM-S-S-CoB, which must be reduced to provide
the thiol forms of HS-CoM and HS-CoB for subsequent rounds of methanogenesis. This
is accomplished by heterodisulfide reductase (Hdr). In hydrogenotrophic methano-
gens, Hdr is a cytoplasmic enzyme that uses H2 as an electron donor via an associated
hydrogenase (71). Several decades later, it was discovered that some methanogens
can use formate as an electron donor for this reaction via an associated formate dehy-
drogenase (72–74). Interestingly, early observations by R. P. Gunsalus and R. S. Wolfe
(54) and T. A. Bobik and R. S. Wolfe (75) found that CoM-S-S-CoB or methyl-CoM, which
is converted to CH4 and CoM-S-S-CoB in the cell, also stimulated CO2 reduction to CH4

in cell extracts. The reason for this became clear in 2011 when A.-K. Kaster et al.
showed that Hdr is capable of generating reduced ferredoxin (an endergonic reaction
with H2 as an electron donor) coupled with the reduction of CoM-S-S-CoB (an exer-
gonic reaction) via flavin-based electron bifurcation (76) (Fig. 3B). Since this discovery,
Hdr from methanogenic archaea has been used as a model enzyme to study electron-
bifurcating reactions. In methanogens from the order Methanosarcinales, both cytoplasmic

FIG 3 The CO2-reducing pathway of methanogenesis. (A) The pathway used by all methanogens (with and without
cytochromes) that reduce CO2. In Methanosarcinales methanogens, tetrahydrosarcinapterin (H4SPT) may replace
tetrahydromethanopterin (H4MPT). (B) Reactions catalyzed by the cytoplasmic, flavin-based, electron-bifurcating
heterodisulfide reductase (Hdr) of hydrogenotrophs. The ferredoxin (Fd) reduced in these reactions is used in the initial
CO2-reducing step of methanogenesis, rendering methanogenesis a cycle in these organisms. The hydrogenotrophic
pathway is known as the Wolfe cycle (195). (C) An example of a membrane-bound electron transport chain found in
Methanosarcina spp. MFR, methanofuran; HS-CoM, coenzyme M; HS-CoB, coenzyme B; F420, coenzyme F420; MP,
methanophenazine; Vht, methanophenazine-reducing hydrogenase; Ech, energy-converting hydrogenase; FAD, flavin
adenine dinucleotide; FADH2, fully reduced form of FAD; FADH, partially reduced flavosemiquinone.
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Hdr and a second membrane-bound isoform of Hdr (Fig. 3C), which is discussed below,
are essential for growth (77).

In addition to the unique biochemistry of methanogenesis, hydrogenotrophic methano-
gens were models for studies of hydrogenases.M. marburgensiswas an early model for char-
acterizing nickel-containing hydrogenases that are found in bacteria, archaea, and eukar-
yotes. In methanogens, there are cytoplasmic F420-reducing (F420H2 donates electrons for the
reduction of methenyl-H4MPT to methylene-H4MPT) and F420-nonreducing (for donating
electrons to Hdr) [NiFe]-hydrogenases and membrane-bound [NiFe]-hydrogenases (for
assimilatory reactions) (58). Similarly, Methanococcus voltae was a model of selenium me-
tabolism and [NiFeSe]-hydrogenases (78). Additionally, some methanogens contain an
unusual [Fe]-hydrogenase (Hmd) that is found only in archaea and catalyzes an alternate
methenyl-H4MPT-reducing reaction (79, 80). Hmd contains no nickel and instead pos-
sesses a novel iron-guanylylpyridinol (FeGP) (Fig. 2) cofactor. The biosynthesis of the
FeGP cofactor is only now being elucidated (58, 81, 82).

THE FIRST GENETIC SYSTEMS IN METHANOGENS

Recombinant DNA technology was invented in the 1970s, and by the late 1970s, it
became obvious that genetics could offer tremendous insights into methanogenesis.
In the Wolfe laboratory, W. E. Balch maintained a collection of methanogens for his
studies on their taxonomy (25). Among this collection, one of us (W. B. Whitman)
selected Methanococcus voltae as a candidate for genetic studies because it possessed
many properties considered ideal. Although its nutrition was not yet characterized, it
grew rapidly in complex media and possessed a single-cell morphology. Therefore, it
was believed to be a good candidate for plating. The absence of a pseudomurein cell
wall was also a key factor because, at the time, it was difficult to isolate intact DNA
from many methanogens. Early studies with M. voltae defined its nutrient requirements
and developed protocols for efficient plating on agar medium (83, 84). Related strains
were isolated to search for plasmids and phages, work that would later lead to the de-
velopment of a shuttle vector (85, 86). This organism is also competent for natural
transformation (87, 88). P. Gernhardt et al. (89) demonstrated the first use of antibiotic
selection in a methanogen by introducing a puromycin resistance cassette from
Streptomyces alboniger (90) via natural transformation into M. voltae albeit with a low
efficiency of ;8 transformants mg21 of DNA (89). Because of its greater sensitivity to
puromycin and the availability of cryptic plasmids in recent isolates, Methanococcus
maripaludis was also explored as a model system. The major advance that enabled re-
producible and efficient transformation was the generation of protoplasts (87, 91),
which increased the transformation efficiencies;102- to 105-fold.

While the natural transformation ofM. maripaludis could be used to generate mutations,
the efficiency of transformation remained relatively modest, with a maximal efficiency of
;103 transformants mg21 DNA (92). A polyethylene glycol (PEG)-based protocol was estab-
lished, which allowed transformation efficiencies of;106 transformants mg21 DNA (91, 92).
The PEG protocol greatly expanded the utility of a genetic system for M. maripaludis and
has been adapted for the introduction of both shuttle and suicide vectors and DNA-protein
complexes (85, 86, 93–96). This has resulted in protocols for markerless mutagenesis (94,
97), heterologous gene expression and the expression of epitope-tagged proteins (97–99),
transposon mutagenesis (96, 100, 101), and the use of fluorescent reporters (102, 103). Both
CRISPR-Cas12a-based and CRISPR-Cas9-based systems have also been recently reported for
mutagenesis (104, 105).

Since the development of genetic tools, Methanococcus spp. have served as models
for several aspects of archaeal biology and methanogenesis, including studies focused
on the genetics of methanogens (95, 106), the substrate range of hydrogenotrophic
methanogens (73, 97, 100, 107–110), archaeal nitrogen fixation (98, 111–113), selenocys-
teine biosynthesis and selenoprotein biochemistry (114–117), archaeal sulfur metabolism
(118–120), pilus and archaellar assembly and function (121–128), the synthesis of the FeGP
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cofactor of the [Fe]-hydrogenase (81, 82, 129, 130), and methanogen transcriptomics and
proteomics (131, 132).

WhileM. maripaludis is an excellent model for the study of the CO2-reducing pathway
and general archaeal cell biology, an expanded understanding of methylotrophic and
aceticlastic methanogenesis required the development of additional model organisms.
From a biochemical perspective, the core CO2-reducing pathway in Methanosarcina spp.
is largely the same as that in hydrogenotrophic methanogens except that membrane-
bound Hdr and methanophenazine, which plays a quinone-like role in electron trans-
port, are used for energy conservation (1, 2) (Fig. 3C). The membrane-bound form of Hdr
has profound implications for energy conservation that have been discussed (1), but this
also means that the first and last steps of methanogenesis are not obligately coupled by
flavin-based electron bifurcation. This expands the substrate range of Methanosarcina
spp. as C1 can theoretically enter the pathway at any oxidation state. For example, the
methyl group of acetate enters the pathway as methyl-tetrahydrosarcinapterin (H4SPT), a
derivative of H4MPT used in Methanosarcina spp. (133), and methanol enters as methyl-
CoM (Fig. 4). In addition to membrane-bound Hdr, additional enzymes are needed to
use methanol, methylamines, and methylsulfides. Thus, Methanosarcina spp. are ideal
models for understanding methanogens with a diverse substrate range. For example, B.
A. Blaylock and T. C. Stadtman performed many of the pioneering experiments with this
organism, showing that methylcobalamin could be reduced to CH4 (134). Pyrrolysine, the
“22nd amino acid,” was also first characterized in methanogens from the Methanosarcinales
where it is essential for the activity of enzymes that catalyze methyl transfer reactions from
methylamines and methylsulfides (135–137; for a recent review of methylotrophic methano-
genesis, see reference 60).

Like Methanococcus, the development of a genetic system for Methanosarcina spp.
was successful only after detailed studies of its nutrition and biology were performed.
In the original media used, Methanosarcina spp. typically grew in large granules or
clumps bound together by an amorphous heteropolysaccharide. However, upon the
isolation and characterization of marine species, it was discovered that growth in high-
salt media suppressed the production of heteropolysaccharide, allowing growth as
single cells (138). Under these conditions, it was possible to lyse the cells with detergents,
isolate high-molecular-weight DNA, and screen for cryptic plasmids (139). These technical
developments enabled the construction of the first methanosarcinal shuttle vector in 1997
using a liposome-based DNA delivery system (140), and recently, CRISPR-Cas9-based tools
have been established (141). These advances resulted in protocols for markerless mutagenesis,
heterologous gene expression, and the expression of epitope-tagged proteins (106, 140, 142);

FIG 4 Additional reactions of methanogenesis catalyzed by Methanosarcina spp. (A) Disproportionation of methanol to CH4 and CO2.
(B) The aceticlastic pathway of methanogenesis. H4SPT, tetrahydrosarcinapterin; HS-CoM, coenzyme M; HS-CoB, coenzyme B; CoA,
coenzyme A; CODH, carbon monoxide dehydrogenase/acetyl-CoA synthase.
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transposon mutagenesis (143); the use of fluorescent reporters (103); and inducible gene
expression (144). Due to the broad substrate range of Methanosarcina spp., mutagenesis has
been successful in the isolation of strains unable to grow on one substrate while supplying
another (e.g., mutagenesis of acetate utilization in cultures grown on methanol and H2) (145,
146). Thus, the effects of eliminating certain enzymes in the core CO2-reducing pathway have
been studied only in members of theMethanosarcinales (145, 147). In particular, the biochem-
istry of membrane-bound hydrogenases has been most extensively studied in these organ-
isms (146, 148). Due to their metabolic versatility,Methanosarcina spp. have also been targeted
for engineering newmetabolic capabilities into methanogens (149–153).

In addition to being excellent models to understand the substrate range of methano-
gens, Methanosarcina spp. have been instrumental for our understanding of archaeal
surface layer structure and chemistry (154), nitrogen fixation (155, 156), genome-scale
metabolic modeling of methanogenesis (157–159), carbon monoxide metabolism (160,
161), dehalogenation reactions (162, 163), g carbonic anhydrases (164, 165), the use of
compatible solutes for salt adaptation (166), extracellular electron transfer (167, 168),
and unique biochemical reactions catalyzed by iron-sulfur proteins (169–172).

EMERGING MODEL ORGANISMS: GENETIC TOOLS IN METHANOCALDOCOCCUS,
METHANOTHERMOBACTER, ANDMETHANOCULLEUS SPECIES

A major criticism of the use of model organisms is that they fail to capture the full
diversity of a group of microorganisms and lead to the perilous assumption that a
model organism is typical of the entire group. With methanogens, we know from com-
parative genomics that they possess substantial diversity and combinations of genes
unexpected from those observed in the model organisms. Therefore, the development
of additional model organisms will prove extremely valuable.

As the first sequenced archaeal genome and due to its hyperthermophilic growth
temperatures, M. jannaschii has been a model organism for structural studies on arch-
aeal proteins (52). However, until recently, this organism lacked a genetic system, so all
structural work required the purification of native proteins or their recombinant
expression. Two groups recently reported the development of positive selection, nega-
tive selection, and genetic complementation in this methanogen (173, 174). Using
these tools, it should be possible to epitope tag proteins for targeted purification,
allowing higher-throughput structural studies. Additionally, Methanocaldococcus spp.
are capable of nitrogen fixation at the highest temperatures known (175), and genetic
tools will lead to a more complete understanding of this metabolism.

Methanogens from the orders Methanobacteriales and Methanomicrobiales are ubiq-
uitous and often numerically dominant in industrial and municipal anaerobic reactors
(e.g., see references 176 and 177). Despite their importance, only in the last few years
have genetic systems been developed in these organisms. While the tools available for
genetic manipulations are still in their infancy, we want to highlight these emerging
model systems that will expand our understanding of these understudied methanogen
groups.

Methanothermobacter spp. have been some of the most important models for
understanding the biochemistry of methanogenesis, but only in the last few years
have tools for robust and repeatable genetic manipulations been described (178, 179).
While early attempts to perform genetic manipulations in this organism aimed to lever-
age its natural competence (180), they had a low efficiency and were difficult to repro-
duce. The new genetic system leverages conjugal DNA transfer from Escherichia coli
(178) similarly to a system that has been used in other methanogens (181). Genetic
manipulations of Methanothermobacter spp. will allow the testing of the roles of vari-
ous methanogenesis enzymes in vivo and enable the exploration of unique physiologi-
cal structures, such as the role of fimbriae in cellular attachment (182).

Methanogens from the Methanomicrobiales grow more slowly and are more difficult
to culture than many of the hydrogenotrophs previously chosen as model organisms.
However, one exception is Methanoculleus thermophilus, which has a doubling time of
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;4 h and can be plated with high efficiency (72, 183). Some strains of M. thermophilus
had been used to study F420-dependent alcohol dehydrogenases to understand how
the oxidation of secondary alcohols to ketones could feed electrons into methanogenesis
(184). It was recently discovered thatM. thermophilus is naturally competent, providing the
basis for a genetic system (92). Using this genetic system, the epitope-tagged purification
of Hdr led to the finding that formate dehydrogenase is the only electron-donating
enzyme for the reduction of CoM-S-S-CoB (Fig. 3) (72). This was also shown with Hdr puri-
fied from cells of M. hungatei (74), which, along with Methanobacterium formicicum, was
an early model organism for the enzymatic characterization of F420-dependent formate de-
hydrogenases (185–187). While more work needs to be done with organisms from this
group, these results suggest that, unlike other hydrogenotrophic methanogens, organisms
from the Methanomicrobiales may be formate specialists. A functional genetic system for
M. thermophilus will enable future studies focused on formate and alcohol oxidation in
hydrogenotrophic methanogens.

FUTURE DIRECTIONS

While advances in the study of methanogenesis have historically adapted tools used for
the manipulation of model bacteria, innovations leading to improved anaerobic manipula-
tion and cultivation are usually required before these tools are useful for strict anaerobes. To
leverage state-of-the-art approaches in genetic engineering and structural biology (e.g.,
large-scale screening of mutant libraries, high-throughput screening of protein structures,
microfluidic manipulations of cultures, and direct monitoring of live cells using microscopy),
researchers will need to adapt these tools for inexpensive and efficient use under anoxic
conditions. The greatest advance could come from the use of robotics designed to work in
environments with high levels of CO2 and sulfide, which are required for the growth of most
methanogens. Additionally, many databases and algorithms that predict metabolic networks
and protein structures have been developed with bacterial and eukaryotic systems in mind,
with a bias toward easily cultured aerobic organisms. Anaerobes, especially methanogens
that use electron carriers and cofactors not commonly found in other model organisms, are
poorly represented in the data sets used to construct these tools. Thus, concerted effort is
needed before large-scale predictive data sets can be applied for the optimization of metha-
nogenic metabolism.

The use of model organisms to study methanogenesis has been vital for an understand-
ing of the metabolic versatility of this diverse group. However, many additional questions
remain to be answered. Due to their importance in the complete degradation of organic
matter in anoxic environments, a detailed understanding of the interactions between
methanogens and their syntrophic partners, whether they require DIET or the exchange of
small molecules like H2 or formate, is vital for the optimization of anaerobic remediation
processes. In addition to archaeon-bacterium interactions through syntrophy, many
methanogens can grow as intracellular symbionts with single-celled eukaryotes (188, 189)
or as members of the microbiota of humans and animals, where they are correlated with
altered health outcomes (190, 191). In particular, Methanobrevibacter spp. have been useful
models for understanding host-methanogen and methanogen-bacterium interactions in
the human oral cavity and gut (192–194); the establishment of genetic tools in these organ-
isms will be vital for an in-depth understanding of these interactions. Finally, leveraging the
growing number of model methanogenic organisms will empower efforts to understand
the biochemistry of the Hmd hydrogenase (the uniquely archaeal hydrogenase), Mcr, and
flavin-based electron bifurcations catalyzed by Hdr. While the number of model organisms
used to study methanogenesis has expanded in recent years, efforts to isolate methanogens
from other phyla and relatives of methanogens that catalyze the anaerobic oxidation of
methane will be essential to harness the full potential of this unique metabolic pathway.
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