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Abstract

Most approaches to transcript quantification rely on fixed reference annotations. However, the 

transcriptome is dynamic, and depending on the context, such static annotations contain inactive 

isoforms for some genes while they are incomplete for others. Here we present Bambu, a method 

that performs machine-learning based transcript discovery to enable quantification specific to 

the context of interest using long-read RNA-Seq. To identify novel transcripts, Bambu estimates 

the novel discovery rate (NDR), which replaces arbitrary per-sample thresholds with a single, 

interpretable, precision-calibrated parameter. Bambu retains the full-length and unique read 

counts, enabling accurate quantification in presence of inactive isoforms. Compared to existing 

methods for transcript discovery, Bambu achieves greater precision without sacrificing sensitivity. 

We show that context-aware annotations improve quantification for both novel and known 

transcripts. We apply Bambu to quantify isoforms from repetitive HERVH-LTR7 retrotransposons 

+corresponding author: gokej@gis.a-star.edu.sg.
*contributed equally
Author contribution statement
Y.C. and A.S. designed and implemented the computational method. J.G. conceived the project. Y.C., A.S., and J.G. designed the 
study and experiments and analysed data. Y.K.W., K.Y., J.J.X.L., and M.H.L. contributed to implementation of the computational 
method. M.L. contributed to the design of the computation method. Y.C., A.S. and J.G. organised and wrote the paper with 
contributions from all authors.

Competing Interests Statement
Jonathan Göke received travel and accommodation expenses to speak at the Oxford Nanopore Community Meeting 2018. All other 
authors declare no competing interest.

Reporting summary
Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Code Availability
Bambu is a R package for transcript discovery and quantification across multiple samples that is maintained on Bioconductor: https://
www.bioconductor.org/packages/bambu/. The source code and a detailed documentation is available on GitHub: https://github.com/
GoekeLab/bambu/. We used the BambuManuscriptRevision branch version of Bambu for analysis done in this manuscript: https://
github.com/GoekeLab/bambu/tree/BambuManuscriptRevision. All analysis code is available on code ocean56.

HHS Public Access
Author manuscript
Nat Methods. Author manuscript; available in PMC 2024 February 01.

Published in final edited form as:
Nat Methods. 2023 August ; 20(8): 1187–1195. doi:10.1038/s41592-023-01908-w.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.bioconductor.org/packages/bambu/
https://www.bioconductor.org/packages/bambu/
https://github.com/GoekeLab/bambu/
https://github.com/GoekeLab/bambu/
https://github.com/GoekeLab/bambu/tree/BambuManuscriptRevision
https://github.com/GoekeLab/bambu/tree/BambuManuscriptRevision


in human embryonic stem cells, demonstrating the ability for context-specific transcript expression 

analysis.
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Introduction

Transcription of DNA is a complex process where multiple alternative RNA transcripts can 

be expressed from the same gene loci1–4. Transcripts which are derived from alternative 

gene isoforms can be functionally distinct, making it essential to quantify not just the level 

of transcription for each gene, but for each individual gene isoform5,6.

The expression levels of these transcripts can be inferred through high throughput 

sequencing of RNA or cDNA (RNA-Seq)7–10. Sequencing reads are then assigned to known 

gene isoforms that are catalogued in reference genome annotations. Reference annotations 

aim to be a comprehensive atlas of an organism’s isoforms that capture all possible tissues 

and cellular stages. However, due to the dynamic nature of the transcriptome only a 

fraction of the annotated transcripts are expressed in any given sample, while additional, 

sample-specific isoforms might be missing from the reference11,12. This particularly 

impacts transcripts originating from repetitive sequences such as retrotransposons that are 

challenging to annotate, or cell types such as early embryonic cells that can have a large 

number of cell-type specific transcripts13–15.

The ability of long read RNA-Seq to generate reads corresponding to full-length transcripts 

provides an opportunity to discover novel transcripts and thereby enable the quantification of 

isoform expression using context-specific annotations16. Tools such as FLAIR17, TALON18, 

StringTie219 or IsoQuant20 have been developed for transcript discovery from long read 

RNA-Seq and have been shown to identify novel transcripts even in well annotated 

genomes. However, RNA degradation, sequencing, and alignment artefacts can introduce 

false positive transcript candidates and impact quantification21.

To deal with possible false positive novel transcripts, existing methods rely on user defined 

thresholds such as the minimum read count to filter novel transcript candidates17–19. 

However as these parameters are dependent on sequencing depth, the same threshold 

can generate vastly different results across multiple samples18,22,23 This can partially 

be addressed with additional thresholds such as a minimum relative isoform expression 

or transcripts-per-million. While these thresholds correct for sequencing depth, they are 

still influenced by aspects such as expression level or number of isoforms per gene and 

may erroneously filter out valid novel transcript candidates. Therefore, as none of these 

thresholds provide an intuitive way of controlling false positive transcript candidates, 

bounding the error rate of the resulting novel transcript set remains a challenge.
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To overcome these limitations we have developed Bambu, a method for multi-sample 

transcript discovery and quantification. Bambu estimates the likelihood that a novel 

transcript is valid, allowing the filtering of transcript candidates with a single, interpretable 

parameter, the novel discovery rate (NDR), that is calibrated to guarantee a reproducible 

maximum false discovery rate across different samples and analyses. Bambu then employs 

a statistical model to assign reads to transcripts that distinguishes full-length and non full-

length (partial) reads, as well as unique and non-unique reads, thereby providing additional 

evidence from long read RNA-Seq to inform downstream analysis. We demonstrate that the 

NDR implemented in Bambu enables transcript discovery with greater accuracy and with 

a wider dynamic range compared to existing tools. Additionally we show that Bambu’s 

context-specific annotations improve quantification even for annotated transcripts, and that 

the ability to track unique and full-length reads reduces the impact of inactive transcripts. 

We apply Bambu to long read RNA-Seq from human embryonic stem cells (hESCs) 

and illustrate the ability to quantify individual isoforms from highly repetitive HERVH 

transposons with full-length read support. Together, Bambu addresses the limitation of 

static reference annotations while providing a quantitative measure of confidence for novel 

transcripts, enabling the comprehensive, context-aware quantification of individual isoforms 

from long read RNA-Seq.

Results

Context-aware quantification of long read RNA-Seq data

Bambu consists of 4 steps: Firstly, a probabilistic model is employed to correct junction 

alignments24,25 using reference annotations, genome sequence, and features obtained from 

the data (see Methods). Corrected reads that use the same splice junctions are summarised 

into read classes (Figure 1a). In the second step, read classes from all samples are combined 

and a cross-sample NDR is calculated. Read classes below the specified NDR threshold are 

treated as novel transcripts, resulting in context-specific reference annotations (Figure 1b). 

Thirdly, each read class is assigned to compatible transcripts allowing for inexact matches 

to account for possible alignment errors (Figure 1c). In the fourth step, transcript expression 

estimates are obtained with an expectation-maximisation (EM)7,9,10,26 algorithm for each 

sample using the same set of context-specific transcript annotations. Bambu estimates 

expression levels using reads that are uniquely assigned to a single transcript (unique 
reads) as well as reads which are assigned to multiple transcripts. Bambu then provides 

final expression estimates that include the number of full-length reads and unique reads 

that support each transcript. While Bambu models expression jointly using all reads, the 

individual contributions from each group are tracked to provide an intuitive measure of 

evidence for each transcript and gene to support their expression in the samples of interest 

(Figure 1d). Bambu is available through Bioconductor27–30, it runs with a single command 

and a single, interpretable transcript discovery parameter, and can efficiently be applied to 

a large number of samples (Supplementary Text Section 9, Supplementary Text Figure 4, 

Supplementary Text Table 4–5), thereby greatly simplifying the quantification with context-

specific annotations from long reads.
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Bambu infers a probability score to rank novel transcripts

In order to obtain a single parameter for transcript discovery, Bambu extracts nine different 

features that summarise read count, read alignment, and read sequence characteristics and 

trains a supervised machine learning model31 that infers the probability for each read 

class to be a valid transcript (transcript probability score) (Figure 2a, see Methods and 

Supplementary Text Section 1). The multi-sample transcript score is then defined as the 

probability that a transcript is valid in at least one sample (see Methods and Supplementary 

Text Section 3), enabling the ranking of transcript candidates across multiple samples 

without the need to apply any threshold on individual samples.

Bambu uses existing annotations as training data, and learns a model for each sample 

assuming that the majority of valid transcripts are annotated. However, for genomes which 

are poorly annotated or samples with a very high number of expected novel transcripts, 

a pretrained model can be used. Bambu includes a model that was trained on Nanopore 

RNA-Seq data from a human cell line (see Methods). However, for cases where the 

pretrained model is not suitable due to species and technology differences, Bambu provides 

the option to train a new model on related data with comprehensive annotations that is 

more appropriate for the sample of interest (see Supplementary Text Section 5 for additional 

information).

To evaluate the performance of the transcript score to identify valid transcripts, we first 

applied Bambu on sequin spike-in RNAs32 where the ground truth is known, using 

Nanopore long read RNA-Seq samples from the Singapore Nanopore Expression (SG-

NEx) project33. On these data, the transcript score shows a high level of precision34, 

outperforming the baseline parameters of read counts and relative isoform gene expression 

(gene proportion) as parameters for transcript discovery (Figure 2b). While the sample-

specific model shows the highest performance, the pre-trained model still outperforms 

baseline statistics (Figure 2b). Next we tested the performance for transcript discovery on 

the human chromosome 135 for which annotations were removed before running Bambu. 

The results similarly show that both the sample-specific and the pre-trained model have 

a higher level of precision compared to the baseline parameters, and it is consistent 

when applied on single samples or multiple samples (Figure 2c, Supplementary Figure 

1a). We repeated this analysis using Arabidopsis36,37 and PacBio RNA-Seq data38, which 

further confirmed that the sample-specific model and the pre-trained model show better 

performance than read count or gene proportion (Supplementary Figure 1b–c). The TPS 

was even able to rank candidates that were lowly expressed or which consisted only of a 

single isoform, something not possible when using baseline read count and gene proportion 

thresholds (Supplementary Figure 1d–e).

To test the robustness of the supervised approach used in Bambu when annotations are 

incomplete, we trained a model providing 25%, 50%, 75% and 100% of human annotations 

respectively. Even with 50% of annotations we observe that the model trained in Bambu 

shows a high level of accuracy (Supplementary Figure 1f, Supplementary Text Table 

1). When less than 50% of annotations are known, the model still generates accurate 

predictions, however a pretrained model using more complete annotations is able to provide 

improved performance (Supplementary Figure 1f). To catch such a scenario in practice, 
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Bambu automatically infers the completeness of reference annotations and recommends 

using a pre-trained model when the expected fraction of missing transcripts is higher 

than 50% (Supplementary Figure 1g–h, see Methods and Supplementary Text Section 

5). Even when trained on very poorly annotated genomes (25% of annotations), the 

sample-specific model shows a higher overall accuracy than read count (Supplementary 

Figure 1f, Supplementary Text Table 1). Together, these results indicate that the transcript 

score predictions in Bambu provide a robust and accurate way to rank and identify valid 

transcripts on both well annotated and poorly annotated genomes (Figure 2c, Supplementary 

Figure 1f, Supplementary Text Table 1).

The NDR, a single, interpretable, and comparable parameter

In order to make the transcript discovery parameter interpretable and comparable across 

samples, we define the novel discovery Rate (NDR) as the fraction of unannotated 

transcripts among all transcripts with an equal or higher transcript score. The NDR can 

be interpreted as an upper limit on the false discovery rate (or 1-precision) under the 

assumption that reference annotations are complete: a NDR of 0.1 indicates that at least 90% 

of transcripts with a similar score or higher are annotated, thereby providing an intuitive 

estimate of precision. As the expected number of novel transcripts differs depending on 

the completeness of the annotations, the same NDR can correspond to different levels of 

precision across different species or when alternative annotations are used. However, in 

practice most analyses are done within the same species and annotations where the number 

of expected novel transcripts is similar, in which case the same NDR threshold guarantees a 

similar FDR and precision across independent analysis.

To evaluate this, we identified novel transcripts with different NDR thresholds on the core 

SG-Nex data (Supplementary Table 1). Here we provide the human genome annotations 

without chromosome 1 during transcript discovery, using annotations from chromosome 

1 as ground truth to estimate the precision of transcript discovery for each sample. A 

comparison of the observed precision for different NDR thresholds confirms that it is 

indeed well calibrated (Figure 2d). We find that the same NDR threshold provides a very 

similar level of precision across all samples, whereas an equivalent read count or gene 

proportion threshold results in a wide range of precision (Figure 2d–f). Furthermore, unlike 

thresholds such as read count, TPM, or relative read count that are used by other methods, 

the NDR provides a continuous metric that is linearly related to the expected precision 

(Figure 2d–f). This property enables transcript discovery across the complete dynamic range 

of precision, facilitating either conservative but accurate extension of annotations in the case 

of well annotated genomes, or more sensitive transcript discovery for genome annotation 

of species or samples with many unknown transcripts. To optimise results for each analysis 

where samples have varying levels of annotation completeness, Bambu infers an analysis-

specific default NDR threshold using the estimate of the fraction of missing transcripts (see 

Methods). Using the pretrained model, Bambu is able to estimate the fraction of missing 

annotations accurately in ONT, PacBio and other species (Mouse and Arabidopsis) data 

(Supplementary Figure 1g, Supplementary Text Table 2). This dynamic default threshold is 

calibrated to ensure high levels of precision, however it can be changed for more sensitive 

transcript discovery. As the NDR is calculated on the multi-sample transcript probability 
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score, it replaces sample-specific thresholds with a single, interpretable, and comparable 

parameter for transcript discovery.

Bambu achieves a higher dynamic range and accuracy

Next we benchmarked Bambu against FLAIR, TALON, StringTie2 and IsoQuant using 

the SG-NEx long read RNA-Seq samples. First we compared the impact of transcript 

discovery parameters on precision, confirming that read-count based parameters generate 

vastly different levels of precision for identical thresholds (Figure 2g). In contrast, the same 

NDR threshold provides a comparable precision across independent samples (Figure 2g). 

Next, we evaluated the precision and sensitivity to identify valid multi-exon transcripts when 

50% of the transcript annotations were removed from chromosome 1 in the reference (see 

Methods). A comparison of the different methods demonstrates that Bambu achieves higher 

precision at a comparable sensitivity when samples are analysed individually (Figure 2h). 

StringTie2 provides a threshold parameter for read counts and gene proportion, therefore to 

compare all tools we applied a manual gene proportion threshold to the output of FLAIR 

and TALON, which resulted in improved performance for these tools in the tested sample, 

but did not outcompete Bambu (Supplementary Figure 1i). The same results are obtained 

when applied to spike-in transcripts and when no annotations were provided (Supplementary 

Figure 1j–m). Furthermore, Bambu enables transcript discovery with a wider dynamic range 

of precision compared to all other tools (Figure 2h).

A unique feature of Bambu is its ability to analyse results across multiple samples with 

a single, calibrated threshold. When all SG-NEx samples are jointly analysed, Bambu 

maintains the ability to perform transcript discovery across the full dynamic range of 

precision, while other methods that use non-calibrated thresholds applied to each sample 

showed a smaller range of precision or sensitivity (Figure 2i). This property is particularly 

relevant for well annotated genomes (e.g., human), where high sample numbers with high 

sequencing depth and using read-count-based thresholds would otherwise result in high 

numbers of novel transcripts that might impact downstream quantification. Together these 

results show that Bambu is more accurate, provides a wider range of precision and is the 

only method where the precision can directly be controlled with a single transcript discovery 

parameter.

Context-aware annotations improve transcript quantification

After transcript discovery, Bambu estimates transcript expression using the full length and 

partial length read classes for all samples. We first compared the quantification in Bambu 

without transcript discovery (NDR=0) to existing quantification-only methods Salmon10, 

NanoCount39, featureCounts40, and LIQA41 using the sequin spike-in RNAs with complete 

reference annotations. We find that quantification with Bambu on spike-in RNAs had 

comparable or better performance to the existing quantification-only tools (Figure 3a–b).

Next, to evaluate the impact of transcript discovery on quantification, we specified different 

NDR thresholds and compared the accuracy of abundance estimates for spike-in RNAs with 

partially missing annotations. Quantification after transcript discovery in Bambu (NDR>0) 

allows the abundance estimation for missing gene isoforms, reducing the overall estimation 
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error (Figure 3c–d, Supplementary Figure 2a–c, Supplementary Figure 3a). More sensitive 

transcript discovery will increase the number of false positive transcripts, highlighting the 

importance of choosing a threshold that is appropriate for the analysis (Figure 3e).

Our results further suggest that transcript discovery also stabilises abundance estimates for 

isoforms which are already present in the reference annotation, leading to more consistent 

results on the same data and higher reproducibility with increasing NDR (Figure 3f–g, 

Supplementary Figure 2d–e, Supplementary Figure 3b). The same observation is made when 

the extended annotations from Bambu are used with other quantification-only tools, where 

we observe that transcript discovery reduces the quantification error of annotated transcripts 

(Supplementary Figure 4–5).

A comparison of quantification after transcript discovery in Bambu with other transcript 

discovery methods17–20,42 shows higher variation across the tools (Supplementary Figure 

2). These results reflect the differences quantification methods, but also in the extended 

annotations that differ for each tool and which are defined by tool-specific default 

parameters, precision, and sensitivity, further highlighting the impact of transcript discovery 

on quantification and emphasising the value of the single parameter in Bambu that enables 

the control of false positive transcripts and their impact on quantification.

Bambu estimates full-length and unique read support

Even in long read RNA-Seq data, reads that match multiple transcripts are still frequently 

present (non-unique reads: 13.8 – 49.5%, Supplementary Figure 6a). Similar to existing 

methods, Bambu uses an EM algorithm to probabilistically assign non-unique reads to 

transcripts. While this approach has been previously demonstrated as effective39, there is 

no guarantee that transcripts which are only supported by non-unique reads are indeed 

expressed in the samples of interest. To address this, we calculate for each read if it matches 

a complete transcript (full-length), and if it can be uniquely assigned to a single transcript 

(unique) (see Methods). Bambu then provides estimates of the full-length and unique read 

support in addition to the total abundance estimation in counts per million (CPM) for 

each gene isoform. When we compared transcript expression estimates across biological 

replicates, we found that transcripts with a higher number of unique or full-length reads 

show higher correlation, suggesting that they provide additional information that is not 

captured by the total CPM (Figure 4a, Supplementary Figure 6b–e).

To evaluate if CPM, unique, and full-length read counts can be used as evidence that a 

transcript is expressed in the samples of interest, we included artificial isoforms containing 

a unique splice junction (exon skipping) in the reference annotation prior to quantification 

(Figure 4b). These artificial isoforms are not expressed, however, due to probabilistic read-

assignment and approximate read matching in Bambu, they can still be estimated to be 

active (Figure 4c, Supplementary Figure 6f). Increasing the CPM threshold reduces the 

number of such transcripts, indicating that read-misassignment mostly affects transcripts 

with lower overall read count, and suggesting that a basic expression filter already provides 

some evidence that a transcript is expressed (Figure 4c). Using the presence of unique reads 

or full-length reads further improved the ability to identify expressed transcripts, achieving a 

higher precision at the same level of sensitivity when compared to the basic CPM expression 
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filter (Figure 4c, Supplementary Figure 6g). While Bambu considers all reads to obtain 

the CPM estimate, the ability to track full-length and unique reads enables Bambu to 

quantify transcript abundance in the presence of unexpressed reference annotations, as well 

as providing an additional layer of evidence to inform downstream analysis or follow up 

experiments.

Quantification of retrotransposon-derived transcripts

Among the most difficult genes to quantify are those that are derived from retrotransposons, 

as they are highly repetitive and often not accurately annotated. One of the most striking 

examples of retrotransposon expression is the HERVH-LTR7 (Human endogenous retrovirus 

subfamily H-Long Terminal Repeat) family which has been reported to be a highly specific 

marker of pluripotency in hESCs43–46. The human genome contains several thousand 

annotated HERVH-LTR7 elements. However, the number of expressed elements is expected 

to be much smaller47. To test48,49 if Bambu can enable the detailed reconstruction of 

HERVH-derived transcripts purely from RNA-Seq data, we analysed the hESC samples 

from the SG-NEx data. We observed a significant enrichment of repetitive sequence50 in 

novel genes (p < 0.001), with HERVH-LTR7 being the dominating repeat family (Figure 

5a). In total, 242 genes (encompassing 464 transcripts) are transcribed from HERVH, 64 

of them contributing to 90% of the HERVH RNA in hESCs, suggesting that only a small 

minority of HERVH elements are actually transcribed (Figure 5b, Supplementary Figure 

7, and Supplementary Table 2). These HERVH-derived genes are supported by full-length 

reads, and they generate distinct transcripts with alternative splicing patterns that are unique 

to each locus, suggesting that they might be functionally distinct (Figure 5c–f). Quantifying 

transcript expression in hESCs without the extended annotations from Bambu results in an 

overestimation of existing transcripts such as ESRG, where the majority of reads originate 

from previously undescribed isoforms (Figure 5d, Supplementary Figure 7c). Together, these 

results illustrate how context-aware quantification with Bambu reduces quantification error 

while enabling the estimation of individual retrotransposon-derived isoform expression from 

long read RNA-Seq without any additional experimental or computational requirements.

Discussion

While static reference annotations simplify the quantification of transcript expression, they 

do not necessarily reflect the samples or analysis of interest, with unknown transcripts 

continuing to be discovered even in well annotated species22,23,51. To address this, we 

developed Bambu, a method that enables quantification of transcript expression with 

annotations that are inferred specifically for the context of interest using long read RNA-

Seq.

The accuracy of transcript discovery is influenced by the parameter thresholds that are 

applied to identify novel transcripts52,53. Bambu employs a machine learning approach to 

control the false positive rate using a single transcript discovery parameter (the NDR). In 

contrast to parameters such as read count, relative expression and TPM, the NDR ranks 

transcript candidates by their probability of representing a valid full-length transcript. 

Therefore, unlike arbitrary thresholds for parameters used in other tools17–19, a more 
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stringent NDR threshold guarantees higher precision while providing an upper bound on the 

FDR. This is especially relevant for well annotated genomes or analyses which involve high 

numbers of samples where precision is more important than sensitivity to obtain accurate 

annotations and quantification results. However, even analyses where a high number of 

novel transcripts are expected will benefit from this property as the NDR identifies the most 

precise set of annotations even when more sensitive thresholds are selected.

In most cases, the expected number of novel transcripts is unknown before transcript 

discovery. To avoid arbitrary and often inappropriate default thresholds, Bambu estimates 

the fraction of annotations that are missing in the sample, which is then used to recommend 

a suitable NDR for the analysis. Therefore, unlike other tools that rely on fixed default 

thresholds17–19, Bambu infers a threshold to achieve high precision in transcript discovery 

and accurate quantification.

While Bambu uses annotations for training the transcript prediction model, splice site 

correction and NDR calibration, it also works well on poorly annotated genomes and 

those without any annotation. In these scenarios a pretrained model predicts the transcript 

probability score without the need for reference annotations. Bambu provides a model 

trained on nanopore RNA-Seq data from human cell lines, however, for samples with 

vastly different genomes or alternative sequencing technologies, Bambu includes the option 

to pre-train a model on a similar dataset. Without reference annotations the NDR is not 

estimated, and transcripts are instead ranked by the uncalibrated transcript probability score 

from the pretrained model. While the transcript score is not calibrated to be comparable 

across analysis, its ability to rank transcript by precision is identical to the NDR, making it 

possible to discover novel transcripts with low false discovery rates even in the absence of 

annotations.

Very sensitive transcript discovery provides more novel transcript candidates, however, we 

observe that the increasing complexity of annotations can impact quantification due to reads 

which are assigned to multiple transcripts. Long-read RNA-Seq is able to generate reads 

which match full-length transcripts, thereby providing evidence that transcripts are present 

in the samples of interest22,52–54. In Bambu we use all reads for quantification, while 

providing the full-length read count estimate for each transcript. However, the classification 

of reads as full-length in Bambu is influenced by both sequencing and alignment errors 

as well as RNA degradation, with non-unique full-length reads still being ambiguous. 

Approaches have been developed to enrich full-length reads experimentally55, or selectively 

analyse full-length reads during quantification42. These approaches are more effective in 

identifying which transcripts are truly expressed, however, as they significantly reduce the 

number of reads used for quantification, the overall abundance estimates are likely to be less 

accurate. Here we find that non-unique full-length reads only represent a minor fraction of 

reads, suggesting that for most genes, Bambu’s approach provides accurate quantification 

while still preserving the key information about full-length reads for each transcript.

However, there are a few limitations in Bambu. One challenge with long read RNA-Seq 

data is the presence of incomplete reads, which limits the ability to identify precise 

start and end positions for transcripts. Reference annotations can not be relied upon to 
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overcome this challenge as they often incorrectly describe longer or shorter first and last 

exons. Therefore to minimise the impact of imprecise start and end coordinates in reads 

and annotations, Bambu heavily relies on splice junctions for transcript discovery and 

quantification. While this increases the robustness for most transcripts that have unique 

splicing patterns, transcripts which only differ due to alternative start or end coordinates will 

currently not be identified with Bambu. Furthermore, even though single exon transcripts 

can be identified and quantified, their predicted start and end coordinates might be incorrect, 

which particularly impact genomes that are rich in single exon transcripts such as yeast 

or microbes. Finally, this also impacts transcripts that are subsets of other transcripts and 

which are indistinguishable from degradation products. Bambu by default excludes subset 

transcripts to mitigate high numbers of false positives originating from truncated reads. 

While this procedure ensures high precision in transcript discovery, Bambu may potentially 

overlook valid novel subset transcript candidates, and thus leading to biased quantification 

results towards non-subset transcripts. These limitations can potentially be addressed with 

statistical modelling of transcript degradation and truncation, resulting in more precise 

inference of start and end coordinates, identification of alternative start or end sites from 

long read RNA-Seq data, and improved quantification for single exon transcripts, subset 

transcripts, and non-subset transcripts. Doing so will form a key component in the future 

direction of improving Bambu.

The ability to perform context-specific quantification is particularly relevant for applications 

where novel transcripts are expected. When applying Bambu to hESCs, we discovered many 

retrotransposon-derived genes that are missing from current annotations, with full-length 

reads providing an additional layer of evidence. Furthermore, Bambu enables applications 

in other areas, including identifying and quantifying individual fusion transcripts when 

reads are aligned to the breakpoint-corrected genome, or combined with tools for detection 

of RNA modifications from direct RNA-Seq data, Bambu can provide insights into 

epitranscriptomic changes at novel transcripts. Yet, Bambu is not just limited to long read 

RNA-Seq. With a small set of representative long read samples, Bambu can be used to 

generate context-specific annotations to further improve quantification from large-scale short 

read data sets. In conclusion, Bambu simplifies transcript discovery and quantification 

across multiple samples to a single command with a single parameter, while improving 

accuracy and interpretability of expression estimates, suggesting that quantification with 

context-specific annotations could become a routine approach to analysing transcript 

expression with long reads.

Methods

Transcript Discovery and Quantification with Bambu

Bambu performs both transcript discovery and quantification with the following steps:
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(1) Construction of Read classes

1.1 Alignment error correction

Firstly, to utilise long reads which can have high noise during basecalling resulting in 

errors in splice-junction alignments, we trained a machine learning model with scalable tree 

boosting to effectively predict the probability of a true splicing junction. This was performed 

for every 5’ and 3’ splice site considering information from splicing junctions within 15 

base pair (bp) distance. The model is trained using R XGBoost31 function with default 

parameters and uses 5’ and 3’ distances between read alignments and annotation, strand 

information, the presence of splice motifs, and read support relative to the reference splicing 

junctions as features. Splicing junctions that are predicted to be true will be noted as high 

confidence junctions and maintained, while junctions which are predicted to originate from 

mis-alignments are noted as low confidence junctions and will be corrected to the closest 

reference splice site within 10 bp, or kept with the original alignment if no reference splice 

site is within this range.

1.2 Construction of Read Classes

Here we assume that reads with identical splice patterns originate from the same transcripts. 

Under this assumption, we summarise all reads spanning the same (error-corrected) 

junctions into read classes (RC). The start coordinate of the read class is defined as the 

position that includes 80% of all read start positions for this read class, the end coordinate 

is similarly defined to include 80% of the read end positions for each read class. Only read 

classes with high confidence junctions (and optionally read classes which are unspliced) are 

retained for transcript discovery, whereas all read classes are used for quantification. Novel 

read classes are matched to genes on the basis of exon overlap with reference annotations. 

Read classes which do not overlap with reference annotations are classified as belonging to a 

novel gene, assigned a new gene id, and grouped together with other read classes which they 

overlap.

(2) Feature extraction and Model Training

To predict the probability that a read class represents a valid transcript, Bambu uses a 

supervised machine learning approach using XGBoost. Firstly, Bambu extracts 9 features 

from the read classes: read counts-per-million (referred to as read count), the proportion 

of contribution to the total read count of its corresponding gene (referred to as gene 

proportion), the proportion of reads mapping to the strand with higher read count, the 

standard deviation of supporting reads’ 5’ and 3’ ends positions, and the frequency of A/Ts 

in the first and last 20 bp of the read class as features. (See Supplemental Text Section 1 

for additional details). Bambu then represents each read class i from sample j with a feature 

vector xi, j and an associated binary class label yi, j that indicates if a read class is a valid 

transcript:

RCi, j  =   xi, j, yi, j

with xi, j =   read count,  relative read count,  ….
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and  yi, j =   1  if RCi, jis a valid transcript;  0  otℎerwise .

The probability that a read class represents a valid transcript (the Transcript Probability 

Score) for read class RCi, j is then defined as

TPSRCi, j =  P yi, j =  1   =  f xi, j

Here, f x  represents the sample-specific model that is trained for each sample j using 

scalable tree boosting with the XGBoost (with default parameters and 50 stumps used in 

the decision trees). During training, yi, j is defined using the set of all reference transcript 

annotations T :

yi, j =    1  if intronsRCi, j =  intronst for any  t  ∈  T ,  0  otℎerwise

To reduce the noise during training, we exclude any read class with only single read 

count and read classes that do not overlap with any reference annotation (novel genes). 

Because Bambu relies on splice-junction coordinates to define yi, j during training, single 

exon read classes are excluded. However, Bambu optionally trains a separate model for 

read classes which consist of only a single exon, and which can predict the TPS for these 

transcript candidates (option min.txScore.singleExon = 0 in Bambu argument opt.discovery, 

see Supplementary Text Section 4).

2.1 The pre-trained model in Bambu

Training of f x  requires annotations to define class labels. When less than 1000 annotated 

transcripts are expressed in the sample (very poorly annotated genomes), training a sample-

specific model is not supported due to insufficient training data from annotated transcripts. 

In this case, a pre-trained generic model can be used. Model pre-training can be done 

with a well annotated genome that is closely related to the genome of interest, or a 

pre-trained model from Bambu can be used. The default pre-trained model is based on 

the SGNex_HepG2_directRNA_replicate5_run1 sample from SG-NEx resource33 which is 

applicable to any species with similar characteristics as the human genome (Supplementary 

Text Figure 1.b). The pre-trained model is also used to recommend a transcript discovery 

threshold, see Methods (below), Supplementary Text Section 5 and the Bambu online 

documentation for additional details.

2.1.1 Automatic recommendation procedure to use a pre-trained model—
More complete annotations will result in a more accurate transcript discovery model learned 

by Bambu. As the pre-trained model is assumed to be learned on very well annotated 

genomes, it shows higher accuracy compared to a sample-specific model when annotations 

are poor or the data is very noisy. If the estimated fraction of missing transcripts is below 

50% (see below for details on the estimation of the fraction of missing transcripts), Bambu 

will recommend to use a pre-trained model, resulting in a mean improved performance for 

these samples even when the minimum annotation threshold to train a sample-specific model 

is satisfied (Supplementary Figure 1h).
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2.2 Multiple Sample Transcript Discovery

In Bambu, transcript discovery is performed across all samples j  =  1, …, N. Here we define 

the Transcript Probability Score for a read class i as the probability that it is a valid transcript 

in at least 1 sample:

TPSi  = P(( ∑
j = 1

N
yi, j) > = 1)   =  1 −  P( ∑

j = 1

N
yi, j = 0)

To avoid that technical replicates inflate the multi-sample TPS, we provide a greatest lower 

bound using the maximum TPS for read class i across all samples:

TPSi =  1 −  P ∑
j = 1

N
yi, j = 0   =  1  − ∏

j = 1

N
P yi, j = 0   =  1  − ∏

j = 1

N
1 − P yi, j = 1 > = 1

− minj = 1, …, N 1 − P yi, j = 1 = maxj = 1, …, N P yi, j = 1 = maxj = 1, …, N TPSRCi, j

For a comparison of alternative definitions of the multi-sample TPS, see the Supplementary 

Text 3. In the case of a single sample, TPSRCi =  TPSRCi, j , therefore we use TPS to refer to 

the multi-sample TPS for simplicity.

(3) Prediction of novel transcripts using the Novel Discovery Rate (NDR)

3.1 Transcript discovery threshold using the TPS

To identify novel transcripts, the TPS for each read class is estimated. Novel transcripts are 

then identified based on a TPS threshold p:

yι =   1  if TPSi >  p,  0 otℎerwise

For each threshold p, the number of read classes predicted to be valid transcripts is defined 

as

Rp = ∑
i = 1

M
yι

3.2 Limitations of sample-specific thresholds

Refer to Table 1 for definition of error rates in the following section. The TPS can be used to 

rank transcripts by their probability of being valid. The rank of read class i is defined as the 

number of read classes with less or equal TPS:

Ki = ∑
r = 1

M
1 TPSr  ≤  TPSi

with the function r providing the map between i and Ki:
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r Ki :Ki i, i.e., RCi RCr Ki .

The number of true positive (valid) novel transcripts associated with threshold p is then 

defined as

V p TP =   ∑
Ki = 1

Rp
y′ r Ki

with y′i indicating the unknown true class label of read class i. The number of false positive 

novel transcripts associated with threshold p is defined as

V p FP = ∑
Ki = 1

Rp
(1 − y′ r Ki )

The False Discovery Rate (FDR) associated with p is then defined as

FDRp = E V p FP /Rp

Furthermore, we define the Valid Discovery Rate (VDR) as the expected number of valid 

novel transcripts associated with p:

V DRp = E V p TP /Rp

The VDR can be interpreted as the expected fraction of missing transcripts in the 

annotations. Since the scale of the TPS can differ with each new analysis based on the 

samples and annotations that are provided during model training (i.e. fj x   ≠  fj′ x ’ for any 

two different analysis samples j and j′), the same threshold p can lead to results with a 

different false discovery rates (FDRpj ≠  FDRpj′) making the selecting of a meaningful and 

consistent threshold p difficult in practice (the same limitation applies to all sample-specific 

parameters such as read count). To address this in Bambu, users can specify the expected 

novel discovery rate. Bambu then selects the optimal threshold p for the specified NDR.

3.3 The Novel Discovery Rate: definition and calculation

To obtain a calibrated score that provides comparable and interpretable thresholds, we define 

the Novel Discovery Rate (NDR) as the expected number of non-annotated transcripts:

NDR = E V /R = E (V FP + V TP /R =   E V FP /R +E V TP /R]
= FDR + V DR

Therefore, the NDR can be interpreted as an upper limit of the FDR for very well annotated 

genomes (FDR>VDR) or as an upper limit of the VDR for poorly annotated genomes 

(FDR  ≪  V DR) (see below for additional information on interpretation of the NDR). To 
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select the threshold p that maximises the number of novel transcripts for the specified target 

NDR, we first calculate the number of novel transcripts associated with each candidate 

threshold p’ as:

V p′ = ∑
Ki = 1

Rp′
(1 − yr Ki )

With yi indicating if read class RCi matches any annotation that is provided (see above). The 

observed NDRo
p′ for p’ is then calculated as:

NDRo
p′ = V p′/Rp′

We then select the threshold p which corresponds to the largest number of novel transcripts 

such that the observed NDR is below or equal the target NDR:

p = argmaxp NDRo
Rp sucℎ tℎat NDRo

Rp  ≤ NDR

The maximum number of novel transcript candidates for the target NDR is then

RNDR = Rp

Each read class is then associated with an optimal threshold p  ≤  TPSi such that 

NDRP ≤  NDRi, and the NDR associated with each read class is then estimated as

NDRi = minp NDRp  sucℎ tℎat p < TPSi

Therefore, NDRi  ≤ NDRi ′ if TPSi ≥ TPSi′

3.4 Properties and Interpretation of the NDR

The interpretation of the NDR differs for very well annotated genomes (transcript discovery) 

and poorly annotated genomes (genome annotation):

3.4.1 Transcript discovery for well annotated genomes (FDR>VDR)—For well 

annotated genomes such as the human genome, it is expected that most transcripts are 

annotated (FDR>VDR). In this scenario, the NDR provides an upper limit of the FDR:

FDRp ≤ NDRp

Here, the NDR enables the selection of a threshold p that maximises the number of novel 

transcripts for a desired maximum FDR. Unlike sample-specific threshold, the NDR ensures 

that the maximum FDR is comparable across samples or analyses: FDRpj ≤ NDR ≥ FDRpj′

with pj and pj′ corresponding to the optimal threshold for the target NDR in sample j and j′
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respectively. Since VDR>0 in most cases, the NDR is a conservative estimate of the FDR, 

with the true FDR  ≪  NDR.

3.4.2 Genome annotation (transcript discovery for poorly annotated 
genomes)—For poorly annotated species (for example from newly assembled genomes), it 

is expected that a large fraction of novel transcripts are missing, in which case FDR<<NDR. 

In this scenario the NDR does not provide a meaningful upper limit of the FDR. However, 

the FDR is expected to increase dramatically once the NDR exceeds the expected VDR. To 

avoid this when Bambu is used for genome annotation, the NDR can be used as an a upper 

limit on the expected fraction of novel transcripts:

V DRp ≤ NDRp

In this scenario, the NDR enables users to select a threshold for transcript discovery that 

ensures that the maximum number of transcripts is selected such that the expected VDR 

for high quality annotations is not exceeded, thereby preventing over-annotation with false 

positive transcripts. Here the NDR is also a conservative estimate of the VDR to ensure that 

the number of false positive transcripts is minimised.

3.5 Automatic estimation of fraction of missing transcripts

Bambu automatically estimates the fraction of missing annotations (1- completeness of 

annotations) at a maximum FDR of 0.1 to (1) recommend a default NDR threshold and 

(2) suggest the use of a pre-trained model for increased accuracy (see above for additional 

details). To estimate the completeness of the annotations that are pvided, the TPS from 

the pre-trained model is used. During model training, it is assumed that a complete set 

of annotations is provided, which ensures that 1 - NDR provides an approximation of the 

precision. Based on this assumption, Bambu identifies the TPS threshold (TPS) from the 

pre-trained model corresponding to a precision of 0.9 (i.e., NDR = 0.1). Using the default 

pretrained model across the SG-NEx data, the mean TPS at this NDR threshold is 0.891 

with a SD of 0.065 suggesting the relationship between the TPS and NDR is robust. Bambu 

then infers the completeness of annotations as the fraction of novel transcripts among all 

transcripts with TPS > TPS when the pre-trained model is applied. While the Bambu default 

pre-trained model is based on human RNA-Seq data, any pre-trained model can be used to 

estimate the completeness of annotations.

3.6 Estimation of a dynamic default NDR

The completeness of the reference annotations should be considered when choosing a NDR 

threshold: For well annotated genomes, a stringent NDR is recommended, whereas in the 

case of largely unannotated genomes, a larger fraction of novel transcripts is expected, and 

a more sensitive NDR threshold is recommended. To moderate the impact of the number 

of reference annotations on transcript discovery when the NDR is not explicitly specified, 

Bambu uses a dynamic default NDR which corresponds to an expected maximum False 

Discovery Rate of 10% for the samples and annotations of interest. To achieve this, Bambu 

uses the estimated fraction of missing annotations at a FDR of 10% as the default NDR. 
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We would like to note that this is a conservative estimate to minimise the number of false 

positives. For use cases when sensitivity is most important and higher false discovery rates 

are acceptable (e.g., genome annotation), this will be an underestimate, and we recommend 

manually specifying the desired NDR.

(4) Additional filtering and final annotation output of transcript discovery

4.1. Additional filtering

Bambu provides additional user-defined filters for which read classes will be considered as 

novel transcripts. In particular, read classes that (1) are possible degradation or sequencing 

artefacts (remove.subsetTx, default: TRUE), (2) have a read count below a minimum 

threshold (min.readCount, default = 2), or (3) have a gene read proportion below a minimum 

threshold (min.readFractionByGene, default = 0.05) can be removed. Furthermore, the 

minimum number of samples in which a read class has to pass the min.readCount and 

min.readFractionByGene filters can be adjusted. Bambu also allows the specification of 

the minimum distance to annotated transcripts for read classes (min.exonDistance) to be 

considered as novel, and the minimum overlap (min.exonOverlap) to merge novel unspliced 

transcript candidates with annotations. Read classes that pass all the filters, contain high 

confidence junctions and which have a NDR below the (user defined or default dynamic) 

NDR threshold will then be retained as novel transcript candidates (novel read class 

candidates). All read classes that pass and that do not pass these filters will be retained 

and used for quantification.

4.2. Integration with reference annotations

Bambu compares all novel read class candidates with the reference annotations. Read classes 

which have similar exon junctions compared to reference annotations will not be considered 

novel transcripts (see online documentation for additional distance thresholds that can be 

specified). Remaining novel read class candidates will then be included as new transcripts 

in the reference annotations that are provided (if any are provided). Novel transcripts which 

overlap with any existing gene are assigned to this gene id, and novel transcripts which 

overlap with any other novel transcript that is assigned to an annotated gene are iteratively 

assigned to the same gene id. Bambu then classifies novel transcripts of annotated genes 

according to the overlap with reference annotations as containing new first exons, new 

last exons, or new internal exons. Overlapping novel transcripts which are not assigned to 

any annotated gene will be grouped as novel genes and assigned a novel gene id. Bambu 

returns the combined reference annotations and novel transcript (referred to as the extended 

annotation).

(5) Quantification

5.1 Read class to transcript assignment

Using the extended reference annotations, Bambu then assigns each error-corrected read 

class to a set of reference transcripts based on the compatibility of splice junctions and 

the distance to the most similar reference transcripts. To avoid mis-assignments due to 

incorrect start and end sites, the first and last exons are optionally excluded. Quantification 
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is performed separately for each sample using the same set of extended annotations. In the 

following we refer to transcripts as ti, with i  =  1, ..,  N, using j as the index for reads, read 

classes or equivalent read classes (see below for definition).

5.1.1 Compatibility of read classes with transcripts and genes—Read classes 

are assigned to all transcripts and genes which are compatible:

5.1.1.1 Transcript compatibility: For a read class RCj to be considered compatible with 

transcript ti, Bambu requires that all splice junctions of RCj are similar to a continuous set 

of splice junctions from ti. By default, Bambu allows for up to 35 bp distance for each exon 

such that a read class is considered compatible with a transcript. Read classes which are not 

compatible with any transcript are considered incompatible and not considered for transcript 

quantification. All incompatible read classes are still assignable to genes, which allows us to 

use them for gene quantification.

5.1.1.2 Gene compatibility: For a read class RCj to be considered compatible with gene gi, 

Bambu requires that any exon of RCj overlaps by at least 35 bp with any exon from gene gi. 

Read classes which are incompatible with all transcripts, but compatible with genes are still 

used to obtain more accurate gene expression estimates (see below for additional details).

5.1.2 Definition of full length (equal) and partial read classes—Read classes for 

which (a) all splice junctions are present in a transcript and (b) which are compatible with 

this transcript are considered to be equal to that transcript. All reads that correspond to equal 

read classes are counted as full-length reads. Compatible read classes which are not equal to 

any transcript are considered to represent non-full length (partial) reads.

5.1.3 Definition of equivalence read classes (equiRCs)—Read classes which are 

compatible with the same set of transcripts will be summarised into equivalent read classes 
(equiRCs). To leverage the advantage of long read RNA-Seq to generate full-length reads, 

equal and partial read classes are summarised as different equiRCs. For each equiRC j, we 

observe the number of reads that form this read class (nj), and the set of transcripts Ij that are 

compatible.

With this definition, equiRCs can be summarised into five categories (Table 1, 

Supplementary Figure 8): 1) Full Intron Match equiRC (FIM): equiRCs equally aligned 

to a unique transcript; 2) Subset Intron Match equiRC (SIM): equiRCs partially aligned to a 

unique transcript; 3) Multiple Full Intron Match equiRC (MFIM): equiRCS equally aligned 

to multiple transcripts (due to the existence of very similar transcripts where only first or 

last exons are different); 4) Full and Subset Intron Match equiRC (FSIM): equiRCS equally 

aligned to a transcript while partially aligned to one or more longer transcripts; this occurs 

when transcripts are subsets of other (longer) transcripts, and; 5) Multiple Subset Intron 

Match equiRC (MSIM) : equiRCs of fragmented reads that aligned partially to multiple 

transcripts.
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5.2 Generative model

We followed the conventional generative model used for transcript quantification with 

specific changes to allow quantification of total expression and full length and unique reads 

from long read RNA-Seq data7,9,10:

Bambu estimates the read count τi for each isoform i  =  1, …, M in the sample. We assume 

that each read r  =  1, …, N originate from a single transcript i, which we describe as Rt
ri:

Rt
ri = 1  if read r originates from transcript i,  0  else

with P Rt
ri  =  1 = θi describing the probability that a read r originates from transcript i, 

which we also refer to as the relative transcript abundance, and St
i describing the set of 

reads that originate from transcript i. Then τi is defined as:

τi = ∑r = 1
N Rt

ri = St
i

with the expected value for τi obtained as:

E τi  = E ∑r = 1
N Rt

ri = ∑r = 1
N E Rt

ri NP Rt
ri =   1 = Nθi

Bambu summarises reads that have the same set of compatible transcripts into equivalent 

read classes (equiRCs). The assignment of a read r to equiRC j is then described as:

Rrc
rj = 1  if read r matcℎes equiRC j,  0 else

with j = 1…K. Here we refer to the set of reads that are assigned to equiRC j as Src
j with

Src
j = ∑r = 1

N Rrc
rj = ∑r ∈ Src j Rrc

rj = nj

The set of transcripts that are compatible with equiRC j is described as T rc
j, and the set of 

equiRCs which are compatible with transcript i are described by RCt
i. The observed value 

of Rrc
rj, is always conditional on the (unknown) true read to transcript assignment Rt

rj. 

Here we define the conditional probability that a read r matches read class j given that it 

originates from transcript i as aij:

aij  =  P(Rrc
rj  = 1 Rt

ri = 1)

with ∑j  = 1
K aij =  1 for each transcript i. Without prior information, aij is assumed to be equally 

distributed among the set of equiRCs that are compatible with transcript i (RCt
i with 

RCt
i = Ki), and 0 otherwise: aij = 1

Ki
if j  ∈ RCt

i; 0  if j ∉ RCt
i .
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For each read r, Rrij
rc, t denotes if a read that is assigned to equiRC j originates from transcript 

i:

Rrij
rc, t = Rrc

rj × Rt
ri = 1  if Rrj

rc = 1  and Rt
ri = 1,  0  else

We can then calculate the probability as

P Rrc, t
rij =  1   =  P Rrc

rj = 1  ∩ Rrc
rj = 1 = P(Rrc

rj  = 1 Rt
ri = 1)P  Rt

ri = 1 = aijθi

given Rrc
rj is dependent on Rt

rt.

The set of reads in equiRC j being generated from isoform i is then denoted as Src, t
ij, with 

the number of reads in equiRC j that originate from isoform i defined as nij:

Src, t
ij = nij

As nij is a sum of i.i.d. Bernoulli random variables (Rrij
rc, t), nij follows a binomial distribution:

nij = ∑
r = 1

N
Rrij

rc, t Binom N, pij

with pij = P Rrij
rc, t = 1 = aijθi.

As Bambu works at the level of read classes for increased computational efficiency, first nij is 

inferred (see below) and the read count for each isoform i, τi is then calculated as

τi = ∑
j = 1

K
nij

5.3 Parameter estimation using Expectation Maximisation (EM)

To estimate the transcript abundance, we use an Expectation Maximisation (EM) 

algorithm, that iteratively optimises the likelihood of the relative transcript abundance 

parameter (θ = θ1, θ2,  … ,  θM ) given the observed read-to-read class assignments 

(R′rc = R′rc
rj,  r = 1…N,  j = 1…K , with S′rc

j = n′ j ) and the latent data that describes 

for each read r the transcript that generated this read (R′t = R′t ri : r = 1…N,  i = 1…M , 

with S′t i = τ′ i). In practice Bambu works at the level of read classes, therefore 

the latent data used in Bambu’s EM is the read assignment within each read class 

( R′rc, t = R′rij
rc, t,  r = 1…N,  i = 1…M,  j = 1…K , with n′ ij = S′rc, t

ij  and τ′ i = ∑j = 1
K n′ ij).

The complete likelihood function can be written as:
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L(θ |R′t, R′rc)   = L(θ |n′, n′)

= ∏
i = 1

M
∏

j = 1

K
P nij = n′ij ∣ θi

= ∏i = 1
M ∏j = 1

K N!
n′ij! N − n′ij ! ∏r ∈ Src, tij P Rrij

rc, t = 1 ∣ θi

∏r ∉ src, tij P Rrij
rc, t = 0 ∣ θi ∏i = 1

M ∏j = 1
K N!

n′ij! N − n′ij ! aijθi
n′ij 1 − aijθi

N − n′ij

Expectation Step: In the ktℎ expectation step (E-step), the latent data n ij
k  is estimated as 

the conditional expected value of nij given the observed data R′rc and θ i
k − 1

:

nij
k = E[nij |Rrc =  θ k − 1 ]

Since we observe the read to read class assignment (R′rc), we estimate the conditional 

expected value for nij as

E[nij |  Rrc =  R′rc] = ∑
r = 1

N
P(Rrc, t

rij = 1  |  Rrj
rc = R′rj

rc) = ∑
r ∈ Src

j

P(Rrc, t
rij = 1  |  Rrj

rc = R′rj
rc)

Using the following 2 relations (1) P Rrc, t
rij = 1 = P(Rrc, t

rij = 1  |  Rrj
rc = R′rj

rc)P Rrj
rc = R′rj

rc  and 

(2) P Rrj
rc = R′rj

rc = ∑i = 1
M P Rrc, t

rij = 1  we obtain:

E[nij |Rrc =  R′rc] = ∑
r ∈ Src

j

P Rrc, t
rij = 1

∑i = 1
M P Rrc, t

rij = 1

Therefore

E[nij |Rrc  =  R′rc] = nj
θiaij

∑i = 1
M θiaij

During the E-Step, we use the estimated values θ i
k − 1  from the previous ((k − 1)tℎ) 

iteration (with  θi
1 = 1

M ), the observed read count for equiRC j n′ j , and the predefined 

values for aij to calculate the estimated value  nij
k  for the ktℎ iteration:

nιj k = n′ j
θi k − 1 aij

∑i = 1
M θi k − 1 aij

With the estimated transcript abundance for iteration k being calculated as τi
k :

τι
k = ∑j = 1

K nij
k
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Maximisation Step—In the Maximisation Step (M-Step), we obtain the maximum 

likelihood estimate for the unknown parameter θ given the estimate for the latent data (nij
k ):

θ k = argmaxθ  log(L(θ |nij
k ))

The maximum likelihood estimate can be obtained as follows:

log L θ|nij
k = log ∏

i = 1

M
∏

j = 1

K N!
nιj

k ! N − nιj
k !

(aijθi)nιj
k

1 − aijθi
N − nij

k
)

= ∑
i = 1

M
∑

j = 1

K
(nij

k log(θiaij + N − nij
k log 1 − θiaij + log( N!

nij
k)! N − nij

k !
)

Taking derivative with respect to θi:

ϑl L(θ |nιj k
ϑθi

= ∑
j = 1

K nιj k aij
θiaij

−
N − nιj k aij

1 − θiaij

= ∑
j = 1

K nιj k 1 − θiaij   − N − nιj k θiaij

θiaij 1 − θiaij

= ∑j = 1
K nιj (k) − Nθiaij

θiaij 1 − θiaij

By setting the above equation to 0, therefore, we have

θ i k = ∑j = 1
K nij k

∑j = 1
K Naij

= ∑j = 1
K nij k

N =
∑j ∈ RCit nij k

N

5.4 Zero-count equiRCs

Since long read RNA-Seq does not include a fragmentation step, most equivalent classes 

that are theoretically possible based on overlapping transcript intervals will not be observed 

in practice. For most transcripts (with moderate to high expression) the set of possible read 

classes is equal to the set of observed read classes. However, for transcripts which are very 

lowly expressed or inactive, the equiRCs representing the full-length transcript may not be 

observed, which can lead to an overestimation when such transcripts share read classes with 

highly expressed transcripts. To address this, we define the set of possible read classes as the 

set of observed read classes plus the set of full length read classes which are not observed. 

We set the read count for non-observed read classes to zero (zero-count, or empty read 

classes). This set of read classes will be used for quantification and to obtain the parameter 

aij.

5.5 Full-length and unique support

To keep track of full-length reads, we define a (observed) indicator variable If
ij, which takes 

a value of 1 if reads in read class j that originate from transcript i are full length reads and 0 
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otherwise. We can use 1 − If
ij to denote the indicator variable when reads in read class j that 

originate from transcript i are partial (non-full-length) reads. We then obtain the full-length 

transcript estimate for each transcript (τf
ι) as:

τf
ι = ∑j = 1

K nιjIf
ij

And we have the partial transcript estimate for each transcript (τp
ι) as

τp
ι = ∑j = 1

K nιj(1 − If
ij)

Similarly, to keep track of unique read support, we define a (observed) indicator variable 

Iu
ij, which takes a value of 1 if reads in read class j that originate from transcript i are 

uniquely mapped to transcript i and 0 otherwise. We then obtain the unique transcript 

estimate for each transcript (τu
ι) as

τu
ι = ∑j = 1

K nιjIu
ij

Implementation of Bambu was done in R using Rcpp28,29, Bambu is available through 

Bioconductor.

Long read RNA-Seq data

For this analysis, we have used SG-NEx core cell lines include A549, K562, Hct116, 

HepG2, MCF7, HEYA8 and human embryonic stem cell (hESC) cell line generated using 

cDNA, direct cDNA, and direct RNA protocols. Processed fastq and genome alignment bam 

files were used for different methods.

Transcript discovery evaluation

Details on transcript discovery evaluation can be found in Supplementary Notes 1.

Transcript quantification with context-specific annotations

Details on transcript quantification evaluation can be found in Supplementary Notes 2.

Full-length and unique read support

Details on full-length and unique read support evaluation analysis can be found in 

Supplementary Notes 3.

Quantification of retrotransposon-derived isoforms

Details on quantification of retrotransposon-derived isoforms can be found in 

Supplementary Notes 4.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Bambu enables simultaneous transcript discovery and quantification from Nanopore 
RNA-Seq data
Schematic illustration on how Bambu performs transcript discovery and quantification on 

Nanopore RNA-Seq data in four steps (a) For each sample, Bambu performs error correction 

on splice junctions of the aligned reads using input annotations (b) Performs transcript 

discovery jointly across samples at a given novel discovery rate (NDR) threshold and 

extends the input annotations with the retained novel transcripts (c) Assigns the read classes 

to transcripts in the extended annotation and categorises them as having full-length or 

partial overlaps (d) Performs probabilistic transcript quantification based on the read class to 

transcript assignment
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Figure 2. A calibrated machine learning full-length transcript classifier improves transcript 
discovery accuracy
(a) The schematic of transcript discovery steps performed by Bambu where 1) a machine 

learning model is trained on nine different features from read classes features to predict if 

a read class represents a full-length transcript, 2) the transcript probability score predicted 

in the first step is re-calibrated to a novel discovery rate across multiple samples (b-c) 
Average precision recall curves for the performance of transcript discovery for (b) SG-NEx 

spike-in data (n=8) and (c) all core SG-NEx data (n = 76)The model is evaluated on a 

(b) subset of the spike-in transcripts or (c) chromosome 1 after being trained on the other 

transcripts (blue), predictions from the generic model (green), or when read count (black) 

or gene proportion (red) is used alone as a classifier. The grey shaded area represents the 

mean +/− SE of the precision for each line. Sensitivity is measured as the percentage of all 

detected known transcripts. (d-f) Boxplot of the precisions of chromosome 1 read classes 

passing varying (d) NDR, (e) Read Count and (f) Gene Proportion thresholds across all 

core SG-NEx data (n = 76) all SG-NEx samples. (g) Each dot colour triplicate represents 

the precision from the same SG-NEx sample processed by either: Bambu with a NDR 

threshold of 0.3 (blue), StringTie2 with a read coverage threshold of 2 (green), TALON 

with a read count threshold of 2 (grey) and StringTie2 with a gene proportion threshold of 

0.1 (black). Dotted lines represent a fitted linear regression for each tool (h-i) The average 

sensitivity and precision on (h) core SG-NEx samples (n = 76) and (i) when combining 

HepG2 SG-NEx samples (n=14) with 50% of human chromosome 1 annotations randomly 

removed. Each tool is displayed at several different parameter thresholds: Bambu (blue) 

with NDR thresholds, FLAIR (red), Stringtie 2 (purple) and (h) TALON (yellow) with read 

count/coverage thresholds. StringTie2 was also run with gene proportion thresholds (black) 

and (i) a varying TPM threshold (yellow). IsoQuant (green) points are run with varying 

“--model_construction_strategy”. Error bars represent the mean +/− SD of the sensitivity 

and precision.
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Figure 3. Transcript quantification on spike-in data shows improvement with varying novel 
discovery rates
(a) The mean absolute error (MAE) and (b) the scatterplots between log2 normalised 

transcript abundance estimates and expected spike-in abundance when applying Bambu, 

featureCounts, LIQA, NanoCount, and Salmon using full sequin annotations (c) The 

MAE between the log2 normalised transcript abundance estimates and expected spike-in 

abundance when applying Bambu using partial sequin annotation and with varying novel 

discovery rate (NDR) thresholds, for Bambu annotated transcripts, including annotations 

that are present in the reference (partial) sequin annotations, the annotations that have been 

artificially removed and rediscovered by Bambu, and also the false positive annotations 

discovered by Bambu (green), plus the annotations that are artificially removed from the 

partial annotation and remained missing after transcript discovery, i.e., missing annotations 

(blue) (d) The scatterplots between log2 normalised transcript abundance estimates and 

expected spike-in abundance when applying Bambu using partial annotations: without 

transcript discovery (NDR = 0), with default recommended NDR (0.244), and with a more 

sensitive NDR (0.4) (e) The number of missing (grey) and false positive (purple) transcripts 

when applying Bambu using partial sequin annotations with varying NDR thresholds (f) 
The MAE between log2 normalised spike-in transcript abundance estimates when applying 
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Bambu using full sequin annotation and using partial sequin annotation with varying NDR 

thresholds, for transcripts that are present in reference (light blue), transcripts that are 

present in reference and those rediscovered annotations (dark grey) (g) The scatterplots 

between log2 normalised transcript abundance estimates when applying Bambu using full 

sequin annotation and applying Bambu using partial sequin annotations: without transcript 

discovery (NDR = 0), with default recommended NDR (0.244), and with a more sensitive 

NDR (0.4) For (d) and (g), light blue dots represent transcripts that are present in the partial 

sequin annotations, green dots represent transcripts that have been artificially removed from 

the reference and rediscovered by Bambu, purple dots represent false positive transcripts, 

grey dots represent transcripts that have been artificially removed from the reference and 

remained missing after Bambu discovery. For (c), (e), and (f), the grey dotted line indicates 

the recommended NDR by Bambu (0.244)
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Figure 4. Full-length and unique read support provide evidence on expressed transcripts
(a) The average spearman correlation between the transcript abundance estimates for MCF7 

replicates generated using direct cDNA and the number of expressed transcripts when 

different filtering methods and thresholds were applied to transcripts. Filtering is based on 

mean CPM or unique read count support being greater than the given threshold across the 

replicates (b) Full-length, unique read and partial reads and the potential read-to-transcript 

assignment for each of these read types (c) The sensitivity and precision of using full-length, 

unique read and CPM thresholds to filter out false positive transcripts overlapping with 

highly abundant isoforms that have no unique or full-length reads support at varying filtering 

thresholds from 1 to 20 on Hct116 samples. Filtering was based on the average values across 

replicates being not lower than the threshold.
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Figure 5. Bambu enables the discovery and quantification of highly repetitive genes
(a) Repeat families ranked by the number of expressed elements identified in the human 

embryonic stem cell cell line (H9) (b) Overview of the top 100 expressed novel and 

annotated transcripts that overlap with the HERVH-LTR7 retrotransposon in hESC cell line. 

For novel transcripts, we only include those with high overlap in novel exons. Top: Fraction 

of overlap with HERVH and LTR7. Bottom: Expression estimate in H9 hESCs and in the 

5 SG-NEx cancer cell lines (c-f) Illustrations of highly expressed transcripts in H9 hESCs 

that originate from HERVH-LTR7 repeats that show distinct splicing patterns and transcript 

sequences. Top: transcript annotation colored by estimated full-length read support, with 

ranks in expression highlighted inside the bracket. Middle: mean read coverage for the 

specified genomic ranges for each selected gene. Bottom: show repeat masker colored by 

HERVH (green), LTR7 (light green), and all other repeat types (light grey).
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Table 1:

Definition of error rates during transcript discovery

Invalid transcript Valid transcript

Predicted valid transcript V FP = V   −  V TP S + V TP R

Predicted invalid transcript U + U′ T + U′ N − R
n0 − n′ n1 + n′ M

observed:
V : number of non annotated read classes with TPSi > p
S: number of annotated read classes with TPSi > p
U : number of non annotated read classes with TPSi < p
T : number of annotated read classes with TPSi < p
R: number of read classes with TPSi > p
M: Total number of read classes
n0: total number of non-annotated read classes
n1: total number of annotated read classes

Not observed:
V ′: number of non annotated valid read classes with TPSi > p
U′: number of non-annotated valid read classes with TPSi < p
n′: total number of non-annotated valid read classes
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Table 2.

Definition of equivalence read class types

equiRC type Description Equal (full-length) Partial Unique

FIM Full Intron Match X - X

MFIM Multiple Full Intron Match X -

MSIM Multiple Subset Intron Match - X -

SIM Subset Intron Match - X X

FSIM Full and Subset Intron Match X X -
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Table 3.

Description of mathematical notations for transcript quantification

Mathematical notations Descriptions

r read index

i transcript index

j equivalence read classes (equiRC) index

M total number of transcripts

K total number of equivalence read classes (equiRC)

N total number of reads, i.e., sequencing depth

τi τi
f, τi

p, τi
u true read count for isoform i,superscripts f, p, u, represent true full-length, partial length, and unique alignment 

read count respectively

Rt
ri

the event that whether a read r originates from transcript i: takes a value of 1 when it happens and 0 otherwise (the 
realisation value)

Rrc
rj

the event that whether a read r matches a equiRC j

Rrc, t
rij

the event that whether a read that is assigned to equiRC j originates from transcript i

St
i

the set of reads that originate from transcript i

Src
j

the set of reads that are assigned to equiRC j

Src, t
ij

the set of reads in equiRC j being generated from isoform i

T rc
j

the set of transcripts that are compatible with equiRC j

RCt
i

the set of equiRCs which are compatible with transcript i

aij the conditional probability that a read r matches to a equiRC jconditioning on the read r originates from transcript 
i

θi global true relative expression of isoform i
nij unobserved number of reads in equiRC j originate from isoform i
nj number of reads in equiRC j

If
ij Iu

ij
an indicator variable takes a value of 1 when reads in read class j that originate from transcript i are full length 
reads (unique reads) and 0 otherwise

The realisations of these variables are denoted with a prime symbol (′) on top.
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