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ABSTRACT
Identification of favorable biophysical properties for protein therapeutics as part of developability 
assessment is a crucial part of the preclinical development process. Successful prediction of such 
properties and bioassay results from calculated in silico features has potential to reduce the time and 
cost of delivering clinical-grade material to patients, but nevertheless has remained an ongoing challenge 
to the field. Here, we demonstrate an automated and flexible machine learning workflow designed to 
compare and identify the most powerful features from computationally derived physiochemical feature 
sets, generated from popular commercial software packages. We implement this workflow with medium- 
sized datasets of human and humanized IgG molecules to generate predictive regression models for two 
key developability endpoints, hydrophobicity and poly-specificity. The most important features discov
ered through the automated workflow corroborate several previous literature reports, and newly dis
covered features suggest directions for further research and potential model improvement.
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Introduction

Over the past 25 years, monoclonal antibodies (mAbs) have 
become one of the fastest growing therapeutic modalities, and 
today, they are the predominant treatment for several disease 
areas. As a result of decades of research, advances in the 
understanding of antibody engineering are opening new ave
nues to more sophisticated therapeutic molecules, such as 
antibody drug conjugates, multi-specifics, and other antibody- 
like therapies designed to have increased efficacy and/or higher 
tolerability in patient populations. Regardless of the particular 
antibody modality, a crucial step in the evaluation of lead 
biomolecules prior to clinical and downstream development 
is a careful assessment of molecule quality via properties col
lectively referred to as “developability characteristics.”1,2

Developability characteristics generally evaluate biophysi
cal properties such as poly-specificity, thermostability, 
hydrophobicity, electrostatic properties, self-interaction and 
aggregation propensity. These common assays are often sup
plemented with other custom and/or proprietary methodol
ogies. Although the specific assays may vary, the aim of all 
such developability assessments is to identify well-behaved 
biomolecules that meet the requirements for the production 
of clinical-grade material. Given the crucial role of develop
able characteristics in the selection of lead candidate mole
cules, it is now routine to attempt identification of 
developable molecules at the design or early research 
stage.3,4 Although the approval rate for biotherapeutic candi
dates is notoriously low, early elimination of poorly behaved 

molecules confers considerable advantages in terms of data 
quality, time, downstream cost, and overall efficiency. 
Therefore, assessment of developability characteristics as 
early as possible is the current preferred workflow in lead 
antibody molecule selection, with the result being that the 
field of in silico developability assessment for biologics has 
grown exponentially alongside the clinical advancement of 
mAbs and related antibody platforms.

Recently, structural biology has been propelled forward 
by the integration of machine learning and deep learning 
methods.5–7 These advancements have been made possible 
by the accumulation of data repositories of sequence and 
structural data over several decades. Despite these dramatic 
improvements in de novo structure prediction, prediction of 
the biophysical properties of protein molecules remains far 
behind in terms of both prediction accuracy and public data 
sources. Currently represented datasets of sequence data 
and Protein Data Bank structures are on the order of 108 

and 106 (with 103 antibody structures), respectively.8–11 In 
contrast, experimental data of antibody biophysical devel
opability characteristics in the public domain are generally 
derived from fewer than 500 molecules. Moreover, the dif
ficulty in training generalizable learning algorithms is com
pounded by the vast antibody sequence space, with an 
estimated > 1012 possible antibodies in a single 
repertoire.13 In addition, the number of physiochemical 
features that can be computed for protein macromolecules 
is near infinite, with the result that all the antibody 
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developability datasets currently available to our knowledge 
consist of many more possible features than observations.

In silico features can be sequence-based, including informa
tion based on composition and alignment of homologous 
sequences, or even sequence likelihoods and representations 
from language models trained on natural B-cell repertoire 
sequence databases.12,14–16 Feature information can also be 
obtained through structure-based calculations, which require 
a structure first to be generated, either through experimental 
techniques such as X-ray crystallography or cryogenic electron 
microscopy (Cryo-EM), but more often through homology 
modeling or deep learning methods.5,16–20 With structural 
information, atomic coordination and geometric calculations 
can be performed, resulting in features that take solvent acces
sibility, hydrophobicity, or charge distribution into account. 
Furthermore, structural modeling allows for energetic calcula
tions based on classical force fields, allowing for approxima
tions of the free energy of the protein folded state. However, 
although mostly accurate structural prediction of Fab mole
cules based on homology modeling methods has been available 
for more than two decades, challenges to the accurate model
ing of complementarity-determining region H3 (CDRH3) 
remain.16,19,21,22 The result of such inaccuracies in CDRH3 
structural prediction is a significant amplification of error in 
many of the physiochemical calculations that rely on atomic 
coordinates (e.g., CDR surface patch calculations). Despite the 
potential error introduced by CDRH3 flexibility, structural 
features are one of dominant features used in antibody prop
erty assessment.2

In this study, we calculated and collected protein features 
generated from three of the most popular software packages 
and developed a custom machine learning pipeline designed to 
identify the features which best explain the variance of key 
developability endpoints. We have applied these feature sets 
and data science methods in conjugation with recently col
lected and curated relatively large developability datasets 
(hydrophobic interaction chromatography (HIC) for 770 IgG 
molecules; poly-specificity reagent (PSR) assay data for 390 
IgG molecules) to identify top performers. We describe an 
automated and flexible machine learning developability pipe
line using commercially available protein descriptors and dis
cuss the most salient features for the selected biophysical 
property predictions. By identifying the importance of such 
features collected across the available structural landscape, we 
hope not only to demonstrate the predictive utility of indivi
dual components from each feature set, but also to highlight 
the calculation methods that appear to be the most promising 
avenues for further investigation and refinement.

Results

In this study, we focused on mAb molecules with the pre- 
developability endpoints of HIC and PSR assays. For each 
assay dataset, we limited the datapoints to IgG molecules 
with isotypes or mutations that have no known effects with 
regards to the assay under study.

As described above, the most attractive use case for pre
dictive models in therapeutic antibody developability 

endpoints involves the a priori prediction of sequences yet 
untested by the research group, given the generally unique 
nature of de novo discovered antibodies. However, the training 
data collected here and collated from individual smaller indi
vidual studies pose a non-trivial challenge to the statistical 
validation of these models through the conventional means 
of training, validation, and test sets. To begin, the data for each 
assay are composed of clustered antibody groups, related by 
sequence identity, of unequal sizes ranging from singlets to 
over 50 family members. This aspect poses limitations on the 
use of typical metrics such as cross-validation, which require 
equal divisions of the training data for evaluation of confi
dence and works best on data sets where individual members 
are equidistant from one another (folds have similar distribu
tions). In addition, data collected on developability bioassays 
show us that the predictive machine learning requirements are 
mainly for outlier detection of problem molecules. To explain, 
for both the HIC and PSR assays, the majority of the collected 
datapoints fall within a normal range, but prediction is needed 
for the more extreme and less populated examples, leading to 
a highly skewed dataset. Such skewed data are similarly chal
lenging for machine learning applications which are known to 
perform best with Gaussian or evenly distributed data. The 
result of these data limitations is that evaluation of the result
ing trained model performance technically measured on a test 
set generated from a one-time only dataset split and used in 
a one-time only model prediction call does not accurately 
reflect the power of the input features, but rather the random 
chance in the statistical variation of the machine learning 
pipeline.

We instead propose here a workflow for antibody develop
ability that applies a stringent sequence identity cutoff and 
a single one-time split of the total data into training, validation, 
and test sets. The test data are sequestered from all training and 
validation processes to ensure no data leakage. A large number 
of models (250K), generated only with the training data, are 
then evaluated in their ability to predict the validation data, 
and the top performing features and hyperparameters are 
chosen and used in a final single prediction of test set for 
confirmation. The key advantage to this method is highly 
consistent validation results, which in turn enables unambig
uous comparisons of different computational features and 
methods.

The machine learning strategy described here is designed to 
accommodate any number of feature sets and produces 
a ranking of the most important average features, as well as 
the top scoring models using the available features (Figure 1).

In this study, structural models for all antibodies were 
generated from sequence using the ABodyBuilder2 command 
from the ImmuneBuilder package, and sequence and struc
tural-based descriptors were generated using calculations from 
the popular software suites, Molecular Operating Environment 
(MOE), Schrödinger Software suite (Bioluminate, Maestro), 
and Biovia Discovery Studio.20,23–25

Using these descriptors, we demonstrate a workflow which 
allows for the direct comparison of feature sets to evaluate the 
predictive quality on a specific training/validation/test set of 
data. The feature selection component of the pipeline makes 
extensive use of the eXtreme Gradient Boosting algorithm 

2 A. B. WAIGHT ET AL.



(XGBoost) in a process of iterations.26 Individual feature sets 
are first ranked and selected by feature importance (feature 
type = gain), before merging and reducing further in a second 
round.27 The final selected features from the XGBoost cycles 
are submitted to the machine learning library PyCaret, which 
trains and tests multiple regression models.28 The top scoring 
algorithms from PyCaret are assessed by prediction on the 
validation data, which is held separate until after the model 
has been trained. The search space is sampled through 5000 
complete cycles each resulting in 50 separate PyCaret models 
for a total of 250,000 total machine learning models on each 
individual or comparison of feature sets. The top-ranked 
model, features, and number of features from the validation 
performance are finally confirmed by usage in the prediction 
of the test set.

Processing of collected bioassay data from pipeline 
projects for machine learning

Data collated from the normal course of therapeutic pipeline 
projects are naturally grouped, with certain challenging parent 
sequences or high priority projects often containing 
a disproportionate number of highly related sequence variants. 
These aspects already create a challenge for machine learning 
training, for which diverse datasets are ideal for the model’s 
ability to generalize to new data. For molecules with large 
family clusters or derivatives, sequence similarity is often the 
most reliable predictor of biophysical properties, with highly 
identical molecules such as point mutations tending to behave 
similarly. Although direct sequence information is not sup
plied, machine learning methods trained on such data will 
readily learn from features shared between related sequences 

(e.g., pI, molecular weight,and CDR length). Random splitting 
on such data therefore often results in overfit models with high 
predictive capacity on validation sets, but poor performance 
on low identity sequences and therefore unacceptable general
ization characteristics. To constrain our prediction models to 
learning only on the biophysical property calculations, we 
developed a sequence analysis workflow using identity cutoff 
criterion in the generation of training and validation datasets 
used for model training. First, a pairwise mutation matrix is 
generated, and clusters are assigned based on the identity 
matrix.29 Large clusters (n > 5) are individually curated for 
the datasets ensuring as much as possible to contain sequence- 
related variants with a range of the measured biophysical 
property in question. The remaining sequences are split 
using a stratified group method so that the training set com
prises approximately 60% of the complete dataset. The remain
ing 40% is split approximately equally into a validation and test 
set making sure that family sequences always remain in the 
same split. A final Clustal distance matrix is calculated to 
confirm that no two sequences between training validation 
and test sets exceeds 95% identity over the length of the Fab 
region.30 In our experience, careful curation of such data splits 
to restrict validation and test sets to unseen data, here defined 
by < 95% identity, is crucial to maintain the generalizability of 
the final models.

Hydrophobic interaction chromatography retention time

The hydrophobic interaction chromatography retention time 
(HIC-RT) used in our study contains 770 IgG datapoints (618 
IgG1, 122 IgG4, 30 IgG2) from 39 different clustered projects 
(Figure 2a). The train, validation and test sets (555, 116 and 99 

Figure 1. Schematic of machine learning workflow in this study. For each bioassay endpoint in the Datasets category, the data are split into training validation test sets, 
ensuring low sequence identity, and representative assay variation in the validation set. Fv sequences are modeled using ABodyBuilder2 and features are generated 
using three popular software packages. Individual or multiple feature sets are trained with XGBoost regression models using 32 grouped splits and reduced individually 
to X features (X is a hyparameter 5-150). Multiple reduced feature sets are then combined, resubmitted, and reduced again to X features. The top features selected by 
XGBoost are submitted with the training set to a PyCaret workflow and trained on 19 regression models. For each X value, the top five models are then tested for 
prediction and scored on the validation set for ten random seeds. 5000 cycles (250K) models are evaluated and ranked on the validation data. The top performing 
model on the validation data is confirmed by prediction on the test set.
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mAbs, respectively) were separated using a combination of 
group shuffle split and manual curation to ensure several 
related clusters spanning a range of HIC-RT values (single 
and multiple mutations leading to a large change in measure
ment) as well as individual mAb datapoints representative of 
the dynamic range of the assay (Figure 2b-c). Fab sequence 
identity between pairs of training, validation, and test 
sequences set did not exceed 95%.

The initial process in our workflow explores the best poten
tial features by comparing different combinations (between 5 
and 150 total features) using the machine learning library 
XGBoost. Averaging the XGBoost feature importances for 
160K individual models provides a view of the most impactful 
average features for each dataset.

For the MOE feature set, ASPmax (maximum average sur
face property), hyd_strength_cdr (hydrophobic patch strength 
for the cdr regions), and hyd_idx (calculated on sequence by 
using the Black and Mould hydrophobic index) were the top 
three features by average importance (Supplementary Figure 
S1).31 The best performing model using only MOE features is 
a K neighbors regressor model (R2 = 0.55, ρ = 0.75 on the test 
data) with top features identified by sequential feature selec
tion (SFS) of pro_patch_cdr_hyd (area of hydrophobic protein 
patches near CDRs), HI (hydrophobic imbalance), and 
ASPmax.32 The top features of ASPmax, pro_patch_cdr_hyd, 
HI, and hyd_idx collected for MOE calculated properties are in 
agreement with a previously published reports on HIC 
prediction.1,33,34

For the Schrödinger feature set, the most impactful 
averaged features from 160K individual XGBoost models 
are CDR_Hydrophobic_Patch_Energy_gt15 (the sum of 
residue contributions to strong hydrophobic patches), fol
lowed by CDRH3 loop H3_Aggrescan_a4v_pos calculation. 
AGGRESCAN is a sequence-based algorithm based on 

experimental results obtained from amyloid β-peptide and 
the a4v pos denotes the positive (hydrophobic) values 
average over a sliding window of 5–11 residues 
(Supplementary Figure S2).35,36 The third top feature 
selected is the H3_atomic_contact_energy, an estimation 
of CDRH3 desolvation energies based on transferring side 
chains from n-octanol to water that tracks linearly with 
hydrophobicity.37 The best performing model trained on 
the Schrödinger feature set is a gradient boosting regressor 
model (R2 = 0.48 ρ = 0.69 on the test data) with top 
features of CDR_Hydrophobic_Patch_Energy_gt15 and 
CDR_Hydrophobic_Patch_Energy, (sum of residue contri
butions to hydrophobic patches). Also included in impor
tant features is the Hydrophobicity_Hopp_Woods, which is 
a sequence-based hydrophobicity score calculated using the 
Hopp-Woods scale which combines a moving average with 
six-residue long sliding windows and uses a positive 
numeric value for all charged residues.38

The top XGBoost features from the Discovery Studio fea
ture is Aggr Score (Aggregation Score), equivalent to the SAP 
calculation using the CHARMM force field, which has been 
demonstrated to correlate with aggregation (Supplementary 
Figure S3), followed by ddGsolv (difference between solvation 
energies of water and condensed (crystalline) phase).39–41 

More positive values of ddGsolv correspond to increased 
solubility.42 Solubility score is the third highest aggregate fea
ture from the Discovery Studio feature set, which is calculated 
as a function of net charge, dipole moment, solvation energy, 
and the aggregation propensity score.43 The best performing 
HICRT model using only Discovery Studio features is 
a random forest regressor model using ten features (R2 = 
0.31, ρ = 0.57 on the test data). The top features remain the 
same as in the aggregated XGBoost importances, with the 
addition of dipole moment and developability index which is 

Figure 2. HICRT dataset characteristics and regression performance. (a) Characteristics of the HICRT dataset. (b) Histogram of HICRT values for training validation and 
test sets. (c) Scatterplot of the training set (left), validation set (middle), and test set (right). Individual points represent molecules in the dataset colored by assigned 
sequence identity cluster (families).
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a feature calculated from the aggregation propensity score 
minus the weighted squared total of the charge. The aggrega
tion propensity is a structural feature calculated with the 
CHARMM force field.39

The top models generated with either MOE or Schrödinger 
features corroborate with each other in that they both rely on 
similar top features which are a combination of 3D hydrophobic 
surface patches and sequence-based features based on hydro
phobic amino acid scales. However, the overall best predictor of 
HICRT uses 54 features from both the Schrödinger and MOE 
feature sets exclusively and outperforms top regression models 
using all three feature sets (Supplementary Figure S4). This top 
performing model is an extra trees regressor model (R2 = 0.61 ρ 
= 0.8 on the test data), and, when used for classification (cutoff 
of 25 min to delineate high/low HIC behavior), the model 
correctly identifies 87 of 99 molecules in the test set (28 true 
positive and 59 true negative) (Figure 3). The most important 
feature in the top performing extra trees regressor is the 
ASPmax feature from the MOE feature set, followed by the 
CDR_Hydrophobic_Patch_Energy_gt15, and CDR_Hydro 
phobic_Patch_Energy, and CDR_Aggrescan_a4v_pos, (total 
CDR calculated Aggrescan values) from the Schrödinger feature 
set (Figure 3a). Many of the following top features are the 
sequence-based descriptors using sum of hydropathy scales, 
including Black and Mould, Hop-Woods, and Eisenberg 
scales.44 Other structure-based features of interest are the 
H3_Aggscore and VH_Aggscore (CDRH3 loop and heavy 

chain variable region, respectively) from the Schrödinger feature 
set. AggScore is a 3D structural calculation including hydropho
bic, positive, and negative patch calculations, and the structure 
based patch values are parameterized and smoothed over 
a sliding window of five residues.45 AggScore has previously 
been reported to correlate with mAb HIC profile and clinical- 
stage mAb therapeutics.45–48

As an additional measurement of the performance of the 
top model, the extra trees regressor was also applied to pre
pared sequences from a combined dataset consisting of pre
viously reported HIC values (Figure 3e).49,50 Following feature 
generation and removal of sequences with more than 95% ID 
to our training set, this test set consists of 415 unseen antibody 
sequences. This combined dataset contains experimental data 
for both clinically approved and native B-cell derived 
sequences and is therefore a very suitable test case for our 
prediction algorithm. Despite differences in the exact HIC 
assay protocol, there is a decent correlation between the 
reported values and predicted HICRT from the top performing 
extra trees regressor (Pearson’s R = 0.55).

Poly-specificity reagent binding assay

The PSR data used in the current study consists of 390 IgG 
molecules (313 IgG1, 48 IgG4 and 29 IgG2) that make up 18 
clusters (greater than 5 members) (Figure 4a). As with the 
HIC-RT dataset, the train, validation, and test sets of 277, 59 

Figure 3. HICRT dataset – top model regression performance. (a) Top ten XGBoost feature importance by average over 160K models. (b) HICRT top model regression 
performance on validation data. (c) Top ten feature importance for best performing extra trees regression model. (d) Top HICRT extra trees regression model 
performance on test set data; shaded areas denote false positive (FP) and false negative (FN) classification performance with HICRT = 25 min as cutoff. (e) Top HICRT 
extra trees regression model performance on Jain/Shehata HIC data.
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and 54 mAbs, respectively, were group shuffle split and then 
manually curated to ensure several related families with differ
ent assay results. Fab identity between pairs of training and 
validation and test sequences was less than 95% (Figure 4b–c).

Using only MOE features as input to the feature selection 
module, XGBoost averaged feature importance over 160K models 
ranked pro_cdr_net_charge (CDR net charge) as the most impor
tant feature, followed by the vsurf_ID3, the hydrophobic interac
tion energy moment, a feature that describes the vector from the 
center of mass to the center of the hydrophobic regions for that 
energy level (Supplementary Figure S5).51 This feature resembles 
a dipole moment, and higher values represent a higher concentra
tion of hydrophobic regions on one side or region of the molecule. 
Additionally, among the top averaged features is the vsurf_CW1 
descriptor, or the capacity factor, which represents the ratio 
between the hydrophilic regions and the total molecular surface 
area. The best performing PSR model using only MOE features is 
an extreme gradient boosting regressor model using 127 features 
(R2 = 0.32, ρ = 0.57 on the test data). The top features used in this 
model are vsa_acid, the van der Waals total acidic surface area, 
and vsurf_ID1 and vsurf_ID8, the hydrophobic interaction energy 
at −0.2 and −1.6 Kcal/mol, respectively. Vsurf_HB3, the hydrogen 
bond donor capacity at −1.0 Kcal/mol, is the fourth top feature 
and in this context likely corresponds to the electrostatic 
potential.52 FSASA_H represents the fractional total hydrophobic 
surface area and is approximately equal in importance to 
pro_cdr_net_charge.

For the Schrödinger feature set, the top averaged XGBoost 
features from the selection module include CDR_Zeta_Potential 
(calculated zeta potential), Max_Size_Pos_Patches (maximum 
site of positively charged patches, and Sum_Size_Hyd_Patches 
(sum of sizes of hydrophobic patches) (Supplementary Figure S6). 

The best performing PSR model using only Schrödinger features 
is an extra trees regressor model using 79 features (R2 = 0.44, ρ = 
0.68 on the test data). The top features in this extra trees regressor 
model are CDR_Zeta_Potential, CDR_Formal_Charge (sum of 
formal charges on the CDR), CDR_Positive_Patch_Energy (sum 
of CDR residue contributions to positively charged patches), 
H3_Aromatic_SASA (sum of surface area of aromatic residues), 
CDRH_Zeta_Potential (zeta potential on the heavy chain), 
All_AggScore, and H3_AggScore.

The top aggregate features from XGBoost predictions on the 
PSR dataset from the Discovery Studio features is the pH of 
Maximum Stability or pH-dependent relative folding energy, 
followed by net charge, dipole moment and ddGsolv, described 
above (Supplementary Figure S7).53,54 The best performing 
model on the PSR dataset using only Discovery Studio features 
is a ridge regression model (R2 = 0.24, ρ = 0.51 on the test data) 
using eight features. The features in descending order of impor
tance, evaluated by SFS are Positive Aggr Score, or sum of the 
positive surface aggregation propensity (SAP), followed by net 
charge, dipole moment, and positive QMAP score, which is 
equivalent to the sum of the positive contributions to the surface 
charge map (SCM) for each atom also used in the calculation of 
the SAP technique.55

The overall best predictor of PSR from a binary classifica
tion standpoint is an extra trees regressor model which uses 91 
features from the MOE, Schrödinger, and Discovery Studio 
feature sets (R2 = 0.45, ρ = 0.71 on the test data) (Figure 5). 
Using the regression model for classification (cutoff of 6 to 
delineate good/bad PSR behavior), the model correctly identi
fies 49 of 54 molecules in the test set (10 true positive and 39 
true negative). The most important feature in the top perform
ing extra trees regressor is the pro_cdr_net_charge from the 

Figure 4. PSR dataset characteristics and regression performance. (a) Characteristics of the PSR dataset. (b) Histogram of PSR values for training validation and test sets. 
(c) Scatterplot of the training set (left), validation set (middle) and test set (right). Individual points represent molecules in the dataset colored by assigned sequence 
identity cluster (families).
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MOE feature set followed by CDR_Zeta_Potential from the 
Schrödinger feature set. In confirmation of the analysis using 
the individual feature sets, these two top features have an 
outsized impact on the regressor importances. 
CDR_Positive_Patch_Energy and H3_Aromatic_SASA are 
the third and fourth most important features, followed by 
All_AggScore and H3_AggScore. Unlike the HICRT predic
tion model, the top performing PSR prediction model trained 
on in-house data did not correlate well with the reported 
values from the Jain/Shehata dataset. This is not entirely 
unexpected as the two PSR methods employed vary signifi
cantly, and PSR is known to be sensitive by even relatively 
minor differences in reagent preparation and assay methods.

The overall best predictor of PSR from a correlative 
perspective uses 68 features from the MOE and 
Schrödinger feature sets alone (R2 = 0.5, ρ = 0.72 on the 
test data) (Supplementary Figure S8). While the regression 
metrics reflect better performance, applying this model to 
a classification task results in more misclassified molecules 
with 46 of 54 molecules correctly classified (8 true positive 
and 38 true negative). As our use case for predictive mod
els is more often to a priori flag challenging mAb mole
cules over precise accuracy, we have selected the model 
which uses all three feature sets as our top model for 
production use.

Discussion

Studies in the literature are largely incomparable

Despite the overwhelming need and potential value of 
accurate in silico predictors for biophysical assays and 
developability properties, the field has been challenged 
by a lack of high-quality datasets. Typical analyses often 
require recombinant protein quantities on the order of 
milligrams, and currently even highly automated expres
sion and purification workflows cannot readily generate 
datasets needed for naïve deep learning techniques. In 
addition to compatibility with contemporary datasets, 
another advantage to machine learning with descriptors 
calculated from physiochemical properties is that of inter
pretability, which can aid in guiding the researcher toward 
future research. However, the possible in silico features 
that can be computed for any given protein are possibly 
limitless, with the result being that the data available are 
extremely wide (many features), but not especially deep 
(many samples) by modern data science standards. For 
these reasons, most reports in the literature are conducted 
with a limited group of often related sequences and use 
only a small group of features, often from a single algo
rithm or software package. Moreover, datasets are curated 
differently by individual research groups and often have 

Figure 5. PSR dataset – top model regression performance. (a) Top ten XGBoost feature importance by average over 160K models. (b) PSR top model regression 
performance on validation data. (c) Top ten feature importance for best performing extra trees regression model. (d) Top PSR extra trees regression model performance 
on test set data; shaded areas denote false positive (FP) and false negative (FN) classification performance with PSR = 6 as cutoff. (e) Top PSR extra trees regression 
model performance on Jain/Shehata PSR data.
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incongruent assays, making generalizability of biophysical 
property predictors an ongoing challenge.

Creation and proper curation of dataset splits is 
important for generalizability

Here, we have collected and curated HIC-RT and PSR 
datasets on IgG mAbs larger than any other published 
datasets known to us.1,2,49,50 We used these data in con
junction with the calculated features from the most popu
lar software packages to implement several notable 
technical details, starting with the careful use of < 95% 
sequence identity between train and testing datasets. In our 
experience, unless the protein molecules are generated 
explicitly using sparse sampling, performing simple ran
dom train/validation splits results in overfitted models 
which do not perform well in previously unseen molecule 
applications and are therefore poorly generalizable. To 
further illustrate this point, we performed an identical 
workflow on our HIC-RT data, which consists of train/ 
validation splits derived with clustered versus unclustered 
data, using a typical stratified shuffle split. In this experi
ment, despite similar performance on the validation set, 
performance on the test set dropped significantly (R2 = 
0.41, Pearson’s R = 0.65) (data not shown).

Predictive models constructed with features calculated on 
independently produced AbodyBuilder2 scFv structures 
are comparable to computationally expensive Fab 
structures

Initially, our analysis was conducted using modeled Fab 
structures generated via the native homology modeling 
workflows particular to each software package MOE, 
Schrödinger (Bioluminate), and Discovery Studio. For the 
MOE software, this also includes stochastic titration of 100 
conformations and averaging ensembled features as pre
viously described.56 However, these intrinsic modeling 
workflows are both computationally expensive and cumber
some (multiple models must be stored), and they also intro
duce variability into the feature analysis through differences 
in structural models. The current workflow of using 
AbodyBuilder2 to first generate single-chain variable frag
ment (scFv) structures, followed by structure preparation 
and protonation in each software package prior to feature 
calculation, is both more computationally efficient and bet
ter suited to large scale deployment to discovery end users. 
Importantly, we found no appreciable differences in predic
tive model quality by using either the full Fab structure or 
more computationally expensive structure generation mod
ules (data not shown).

Comprehensive screening of machine learning algorithms 
provides the needed consistency for accurate comparison 
of features

We constructed an automatic workflow using XGBoost as 
the primary method for feature selection and PyCaret to 
search and train for the best performing model on the 

validation set. In our implementation, although there is no 
data leakage between the training and validation set, the 
validation set is used exhaustively to select the best model 
and hyperparameters of feature selection and number of 
features.

The XGBoost and PyCaret workflows each generate inter
nal splits using only the training data for model generation and 
the validation data remains segregated from these processes 
and only accessed in a predictive capacity. We perform the 
prediction on the validation data 250 thousand times and take 
the top performing model(s). This exhaustive search is neces
sary due to the nature of the uneven clustered (and skewed) 
data collected from pipeline bioassay sources, which gives rise 
to highly variable performance when using statistical resam
pling methods such as cross validation. In contrast, because of 
the exhaustive predictive evaluation on the validation set, the 
workflow described here produces consistent results.

This consistency overcomes a significant limitation of the 
data and is crucial for in silico feature ranking and comparison. 
It allows decisions to be made on any available feature set(s) 
with regards to implementation for in-house machine learning 
pipelines. The exhaustive nature of the search ensures that the 
results are reproducible, and feature sets with better perfor
mance using this workflow can be implemented with confi
dence. The caveat to this method is that a separate test set of 
limited identity (<95%) needs to be generated initially and held 
entirely separate until the final one-time prediction from the 
top performing validation models. This necessity even further 
reduces the available datapoints for model training.

In many cases it is not possible, or efficient, to use many 
different and disparate software packages to calculate feature 
sets which give rise to the best predictive models for a given 
developability assay. We aimed to illustrate in this study 
how machine learning techniques, when combined with 
sufficiently powered datasets, can help to identify in silico 
features with the most predictive capacity. Furthermore, this 
workflow is designed specifically with machine learning 
operations deployment and extensibility in mind. To 
explain, as data collection streams increase the size of the 
datasets for HIC, PSR, and other developability endpoints, 
this automated workflow is designed to process and rank 
iterative model development. We expect to see model 
improvement as dataset sizes (and especially outliers) 
increase. Of potentially greater importance is the ability of 
this workflow to accept any number of feature sets and rank 
the importance and contribution of any descriptor sets in 
a head-to-head fashion. Advancements in the field of protein 
descriptors are currently flourishing and include protein 
language embeddings, surface patch descriptors, or confi
dence metrics from deep learning modeling.7,12,15,57–59 The 
workflow presented here is designed for a facile and robust 
evaluation of any new calculatable feature ability to predict 
real therapeutic molecule assay endpoints.

There are also likely limitations and/or possible improve
ments to the methods outlined here. For example, the reliance 
on XGBoost for feature selection likely biases the models 
toward ensembling or bagging algorithms and the brute force 
search of hyperparameters could likely be optimized by more 
elegant approaches such as Bayesian optimization. Exploration 
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of other hyperparameters, such as number of feature selection 
cycles or methods of selecting feature importance, may also 
improve our methods.

Conclusion

Recent advancements in machine learning and artificial intelli
gence have been greatly facilitated by digitally native datasets of 
substantial size and breadth to generate models capable of 
incredible predictive accuracy. Despite breakthroughs in the 
areas of de novo protein design and structure prediction, in silico 
developability prediction of biological therapeutics remains far 
from being a solved problem. Challenges arise from difficult and 
underpowered datasets which are expensive and time consum
ing to produce, but also from an overabundance of possible 
descriptors and calculatable features. We believe that, by imple
menting methods such as are demonstrated here, the field can be 
best positioned to take advantage both of new experimental 
datasets imminently being collected, as well as the next new 
breakthrough in feature descriptors, yet to be discovered.

Materials and methods

Sequence similarity and clustering

Fab sequences are first concatenated (heavy_chain, light chain) 
and a pairwise mutation matrix is generated using the 
BioPython Align.PairwiseAligner function. Hierarchical clus
tering with Ward linkage is generated using the Scipy linkage 
function and returning the flat clusters with a pairwise distance 
of 40 maximum mutations.29,60 Final split percent identity is 
verified by using the Clustal Omega package and generating 
a full identity matrix with the – percent-id option.30

In silico feature calculations

AbodyBuilder2 structure generation
scFv structures were generated for each molecule in the dataset 
using the AbodyBuilder2 predictor from the Immunebuilder 
package through the python API and generated with the Aho 
numbering scheme.56

MOE
A custom svl script was written to pipeline structure prepara
tion (StructurePreparation, _LIGX_Execute) and protonation 
generation (Protonate_3D, pH 7.4) before feature calculation. 
Features were generated by collecting descriptors via the 
QuaSAR_descriptorMDB function and the molecular contact 
surface analysis extension of BioMOE; in total, 269 total MOE 
features were collected for each molecule.

Schrödinger bioluminate
Antibody scFv models were prepared through the protein 
preparation workflow (prepwizard2_driver.py) at pH 7.4. 
Protein descriptors were likewise calculated using the auto
mated protein descriptors script (calc_protein_descriptors.py). 
For each input sequence, Schrödinger Bioluminate calculates 
907 descriptors.

Discovery studio
Protein formulation properties were calculated with custom 
script from BIOVIA Support using the Protonate (pH 7.4), 
Calculate Protein Formulation Properties, and Aggregation 
Scores workflows. Discovery Studio produced 16 individual 
columns for each molecule using this workflow.

XGBoost feature selection and pycaret model generation
For each input set of features, the training set was stratified 
group shuffle split 32 times and separately fit to an XGBoost 
regression model.26 The individual feature set importance 
(importance type = gain) was ranked, collected, and reduced 
to X total selected features, with X being a critical hyperpara
meter (X = 5–150, randomly selected). These reduced feature 
sets were then combined (X * number of input feature sets) for 
a subsequent 32 rounds of combined XGBoost regression to 
result in X total selected features. The top features from the 
XGBoost rounds were submitted to a PyCaret regression or 
classification module. PyCaret trains and compares models 
from the Scikit-learn package (19 different models for regres
sion) and for 10 random seeds, the top 5 scoring models from 
each training run were tested for predictions on the validation 
set (50 total models).61 For each tested set(s) of features, 5000 
total end-to-end runs were performed, leading to a total of 
250,000 models sampled per output. Top performing models 
were chosen by average accuracy on the validation set (average 
of 10 random seeds) and were recapitulated in a separate note
book and evaluated individually on the test set.

Expression and purification (gene synthesis, transfection, 
titer estimation, protein a purification)
Transient transfections were done in TubeSpin® bioreactors 
(TPP Techno Plastic Products AG) using the ExpiCHO 
Expression System (Thermo Fisher Scientific, Waltham, 
MA) for the protein production in this study according to 
the manufacturer’s protocol. Briefly, the cells were grown and 
maintained in ExpiCHO Expression Medium (Thermo Fisher 
Scientific) and seeded in 10mls of media at 6 × 10^6 cells/mL 
on the day of transfection. Complexes were formed with 8ug 
of DNA and 32ul of Expifectamine in OptiPRO™ SFM and 
incubated for 1 min followed by addition to the cells. The 
transfected cultures were grown at 37°C, 5% CO2, 80% 
humidity, and 300rpm rotation in a Multitron incubator 
(Infors HT, Basel, Switzerland) and then shifted to 32°C 24 
hr post transfection and were fed with feed and enhancer on 
days 1 and 5. The cultures were harvested on day 7, the cells 
were pelleted by centrifugation, and the supernatant was 
passed through a 0.2 micron filter. The clarified cell culture 
supernatants were loaded onto Tecan Freedom EVO 200 
(Tecan Life Sciences, Männedorf, Switzerland) for antibody 
purification utilizing miniature columns manufactured by 
Repligen (Waltham, MA) and packed with MabSelect™ 
SuRe™ LX (GE Healthcare Life Sciences, Pittsburgh PA). 
The antibodies were eluted with 20 mM sodium acetate at 
pH3.5 and immediately neutralized with 0.333 M Tris, 1 M 
sodium acetate, pH 8.0, and buffer exchanged into 20 mM 
sodium acetate pH 5.5.
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Hydrophobic chromatography
To determine the hydrophobicity of a given mAb using HIC, 
50 ug of sample at 0.5–1 mg/ml were mixed 1/1 (v/v) with 
a 100 mM sodium phosphate, 2 M ammonium sulfate pH 7.0 
buffer solution. Prepared samples are subsequently filtered 
through a 0.22 um PVDF membrane prior to loading 60 ul 
on a Dionex Pro Pac HIC-10 column equilibrated in 100 mM 
sodium phosphate, 1 M Ammonium Sulfate pH 7.0 (mobile 
phase A). The samples are eluted using an inverted gradient 
from mobile phase A to 100 mM sodium phosphate pH 7.0 
(mobile phase B). The elution is followed by recording the 
A280 nm as a function of time, and the data are then exported 
and analyzed using the Empower software. The retention time 
of each sample is compared to a reference and is characteristic 
of the mAb hydrophobicity with longer elution times correlat
ing with higher degree of hydrophobicity.

Poly-specificity reagent binding assay
The cytosolic preparation is described as SCP (Separated 
Cytosolic Proteins/Preparation), while the membrane- 
enriched preparation is labeled as SMP (Solubilized 
Membrane Proteins/Preparation). The generation of SCPs 
and SMPs is described by Xu et al.62 It is important to note, 
before solubilization (i.e., before detergent addition), the 
respective cellular fractions are randomly biotinylated; stocks 
are often at ~ 0.5–1.5 mg/mL of protein. Post-solubilization, 
the b-SMP stock contains 1% DDM and ~ 0.5–1.5 mg/mL 
proteins. In reference to developability, binding to non-target 
PSRs (e.g., generated from parental CHO cells) has been 
shown to be indicative of compromised binding specificity of 
antibodies tested. Both SCPs and SMPs can be utilized for this 
purpose. If the goal is to examine target-specific binding, SMPs 
derived from transfected mammalian cells are used. This pro
tocol describes the binding assessment method for both SCPs 
and SMPs, collectively described as PSR throughout the docu
ment. PSR binding can be measured with IgG presented on 
polystyrene beads coated with polyclonal goat anti-human 
IgG. Polyspecificity is measured using an Attune NxT Flow 
Cytometer.

Abbreviations

CDR complementarity-determining region
Cryo-EM cryogenic electron microscopy
XGBoost extreme gradient boosting
HIC hydrophobic interaction chromatography
HIC-RT hydrophobic interaction chromatography retention time
MOE Molecular Operating Environment
mAbs monoclonal antibodies
PSR poly-specificity reagent
SFS sequential feature selection
Fv fragment variable
SAP surface aggregation propensity
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