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Abstract

Clonal tracking methods provide quantitative insights into the cellular output of genetically 

labelled progenitor cells across time and cellular compartments. In the context of gene and 

cell therapies, clonal tracking methods have enabled the tracking of progenitor cell output both 

in humans receiving therapies and in corresponding animal models, providing valuable insight 

into lineage reconstitution, clonal dynamics, and vector genotoxicity. However, the absence of 

a toolbox for analysis of clonal tracking data has precluded the development of standardized 

analytical frameworks within the field. Thus, we developed barcodetrackR, an R package and 

accompanying Shiny app containing diverse tools for the analysis and visualization of clonal 

tracking data. We demonstrate the utility of barcodetrackR in exploring longitudinal clonal 

patterns and lineage relationships in a number of clonal tracking studies of hematopoietic stem 

and progenitor cells (HSPCs) in humans receiving HSPC gene therapy and in animals receiving 

lentivirally transduced HSPC transplants or tumor cells.

INTRODUCTION

Genetic labelling permits quantitative tracking of clonal progeny via high-throughput 

sequencing (clonal tracking) and provides opportunities to interrogate clonal dynamics in a 

number of in vitro and in vivo contexts. The two most common clonal tracking approaches, 

cellular barcoding and viral integration site recovery, have been primarily leveraged to 

interrogate hematopoietic stem and progenitor cell (HSPC) or immune cell dynamics both in 

model animals1-6 and in humans7,8. In these methodologies, integrating retro- or lentiviruses 

are used to transduce individual HSPCs or other target populations such that individual cells 

each contain a unique, permanent genetic tag or integration site label that can be recovered 
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from progeny cells via high throughput sequencing (Fig. 1, upper panel). These genetic 

tags are referred to as “barcodes” in the case of cellular barcoding. The genetically tagged 

cell and its progeny are referred to as a clone. Measurement of each label’s abundance 

in the pool of all recovered labels is directly associated with the abundance of that clone 

within the labelled population being assayed, for instance T cells, B cells or myeloid cells. 

These lineage abundance measurements can provide insights not only into the bias, stability, 

and ontogenetic relationships of HSPCs9, but also into the dynamics of clones within 

cell populations whose abundances are largely independent of HSPC behavior, such as 

certain T cell10 and natural killer (NK) cell populations11. Furthermore, such clonal tracking 

methods have also been leveraged to provide valuable insight into the clonal dynamics of 

cancer progression12, in vitro differentiation13, and CAR-T cells14. The biologic and clinical 

relevance of clonal tracking studies has recently been reviewed.15

Given the diversity of labelling and recovery strategies, as well as underlying differences in 

vector constructs, a number of approaches for recovery of sequences from raw sequencing 

data and identification of “true” genetic tags as opposed to sequencing artifacts or other 

confounders have been developed and are largely approach-dependent16-26. However, tools 

with which to perform downstream analyses of the clonal abundances determined by 

these pipelines have not been published or made publicly available; as a result, flexible 

open-source tools, such as those that exist for single-cell RNA-sequencing27,28 have been 

sought after by those in the clonal tracking field in order to derive biological meaning 

in an accessible manner from these large datasets29. Such tools would also allow direct 

comparisons across datasets or meta-analyses.

Here, we present our open-source R package, barcodetrackR. barcodetrackR encompasses a 

variety of flexible tools that can provide insights into clonal dynamics and the relationships 

between cellular compartments starting with clonal abundance data (Fig. 1, lower panel). 
We illustrate the utility of barcodetrackR by analyzing publicly available clonal tracking 

datasets from studies in lentivirally transduced non-human primates9,11,30, immunodeficient 

mice transplanted with human cord blood cells31 or leukemic blast cells32, and lentiviral 

gene therapy patients7,33. More details on each dataset and access paths are summarized in 

Supplementary Table 1.

RESULTS

Infrastructure of the barcodetrackR package

barcodetrackR is an R package and an accompanying Shiny app for the analysis and 

visualization of clonal tracking data (Fig. 1). barcodetrackR depends on the Bioconductor 

SummarizedExperiment (SE) class34 for the organization of user-input clonal tracking data 

and accompanying metadata. By default, the SE object is instantiated with raw read counts, 

from which five assays are automatically calculated and stored in the object for downstream 

analysis and visualization: counts (the raw genetic tag counts), proportions (raw genetic tag 

counts divided by the total count for each sample), normalized (counts normalized to 1 * 106 

or another specified scaling factor), logs (the log + 1 of the normalized assay), and ranks 
(the rank of each genetic tag per sample based on counts). A relative or absolute threshold 

can be specified to remove low abundance genetic tags which are more likely to arise from 
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sequencing error or noise.2 We illustrate the distribution of genetic tag proportions and logs 
for three example datasets across various thresholding parameters in Supplementary Fig. 1 

(see Methods for more detail on thresholding).

The barcodetrackR package contains 25 available functions, including functions for 

visualization of clonal tracking data, functions for conducting statistical tests on genetic 

tag abundances, and a function for estimating a minimum abundance threshold to determine 

reliable genetic tags. All visualization functions allow for the return of a plot object or 

a table of the plot data for storage and reproducibility. The barcodetrackR package also 

includes a graphical user interface or app (built using Shiny35) to allow researchers without 

programming experience to utilize these quantitative tools. In the following section, we 

highlight key functionalities of the barcodetrackR package by analyzing a set of publicly-

available clonal tracking datasets (summarized in Supplementary Table 1).

Pairwise lineage relationships

Pairwise comparisons of clonal abundance profiles in clonal tracking data provide insight 

into the relationships between upstream progenitor pools across cellular compartments. 

Here, we use barcodetrackR to determine and visualize the correlation values and 

dissimilarity indices (Fig. 2) between samples from three clonal tracking datasets (Six7 

et al, Belderbos31 et al, Elder32 et al, Supplementary Table 1) as a means to interrogate the 

similarities of upstream progenitor pools contributing across cellular compartments. The Six 

dataset contains individual viral integration site read counts from longitudinally collected 

patient T cell, B cell, granulocyte (Gr), monocyte (Mo), and natural killer cell (NK) samples 

collected from patients following autologous lentiviral HSPC gene therapy. We find that the 

Gr and Mo samples share high correlation with one another, while the T cell, B cell, and 

NK samples show lower correlation with samples from other lineages, but high correlation 

between different timepoints within the same lineage (Fig. 2a). This trend is supported 

by hierarchically clustering the samples based on their correlation values (Supplementary 

Fig. 2a). A similar pattern is observed when plotting the Bray-Curtis dissimilarity indices 

between samples from the Six dataset, projected into two dimensions using principal 

coordinates analysis (PCoA), where the first axis of variation separates NK cells from other 

lineages based on their clonal abundances, and the second separates T cells, B cells, and 

myeloid (Gr and Mo) cells (Fig. 2b). These analyses suggest that the myeloid lineages are 

closely coupled and thus likely arise from shared pathways originating from the same HSPC 

pool, in comparison to disparate generation of mature T, B, and NK lineages.

These pairwise measures can be also used to compare clonal abundances across anatomical 

compartments. The Belderbos dataset contains clonal abundance information from a number 

of sorted and unsorted immune cell samples from bone marrow (BM) sites and the 

spleen of an immunodeficient mouse transplanted with lentivirally barcoded human cord 

blood CD34+ HSPCs (defined here, barcodes are high-diversity oligonucleotide sequences 

engineered into lentiviruses, typically flanked by known PCR primer sites to facilitate 

genetic tag abundance recovery). We observe high correlation between T cell samples across 

all anatomical sites, while B cell and Gr samples show high correlation to one another 

only within each anatomical site (Fig. 2c). This pattern is evident in the PCoA plot (Fig. 
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2d) and also supported by hierarchical clustering of the samples based on the similarity 

matrix of correlation values (Supplementary Fig. 2b). Unsorted cell samples from the spleen 

and pelvic BM vary in their clonal relationships to other samples, likely because of the 

underlying heterogeneity of the lineage composition of these bulk samples (Fig. 2c). These 

analyses support the notion that geographically isolated HSPC pools are responsible for the 

clonal composition of their respective geographic niches, and that the clonal composition 

of T cells across sites is largely independent from the output of these pools, supporting the 

canonical thymic-dependent developmental pathway for T cells followed by hematogenous 

dissemination.

Comparing clonal distribution across animals from serial transplant experiments can also 

provide insight into the self-renewal capacity of engrafted, clonally marked cells. The Elder 

dataset contains clonal abundance information from serial xenograft mouse transplants of 

lentiviral-transduced ALL blast cells. We observed high correlation of clonal abundances 

between samples collected from primary, secondary, and tertiary transplant recipient mice, 

excluding a few sites in the primary transplant (Fig. 2e). This aligns with the results 

presented by Elder32 et al noting equipotential functional capability of ALL cells with some 

variation between sites, based on random sampling of the population of engrafted ALL cells. 

Samples from the same “generation” of serial transplantation cluster together in principal 

coordinate space, supporting the notion presented in the study that ALL founder cells retain 

self-renewal capacity over several serial transplants (Fig. 2f). The distinct groupings of 

clones based on anatomic sampling site within the primary transplanted animals suggests 

that ALL clonal output also appears to be geographically compartmentalized, at least 

initially. This geographic compartmentalization may be reduced in secondary and tertiary 

recipients because the transplanted clonal pool is smaller and less diverse32, limiting the 

stochastic composition variation.

Altogether, these three examples illustrate the utility of barcodetrackR in probing global 

clonal relationships between samples collected from various lineages, locations or time 

points, providing valuable insights across a number of diverse biologic contexts.

Lineage clonality

In clonal tracking studies, both clonal counts and diversity measures can provide insight 

into the clonality of progenitor cell pools. Here, we utilize barcodetrackR to assess clonality 

by visualizing the detected clone counts and Shannon diversities of samples from three 

datasets over time (Fig. 3). When quantifying clone numbers within the Six dataset, we show 

hundreds of unique integration sites retrieved across five purified peripheral blood lineage 

samples, with a larger number of clones detected in B cells and T cells as compared to 

Gr, Mo, and NK cells at most individual timepoints (Fig. 3a). Decreasing clonal diversity 

(Shannon index) in the NK cell lineage, as compared to other lineages, indicates that over 

time, a smaller number of clones account for a larger fraction of hematopoiesis in the 

NK cell compartment (Fig 3b). This implies a more oligoclonal population of contributing 

progenitors. The finding that the mature NK cell compartment is largely composed of 

a few high-contributing clones post-transplantation is in agreement with rhesus macaque 

autologous HSPC transplant studies11.
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Next, we analyzed patterns in the number of detected clones and Shannon diversities 

over time in peripheral blood samples from a single mouse xenograft obtained from the 

Belderbos dataset. We show that more clones were detected from the bulk peripheral blood 

sample at sacrifice than at the first time point (green line, Fig. 3c). The Shannon diversity of 

bulk samples decreased after the 9-week time point before stabilizing (Fig. 3d), underscoring 

the notion that clone counts alone are not ideal measures of sample diversity. These findings 

suggest that within this xenograft transplantation model, the diversity of HSPC output 

becomes stable over time, in agreement with previous long term clonal tracking studies in 

macaque9 and human8.

Finally, we use barcodetrackR to quantify an extreme case of minimal clonal counts and 

Shannon diversities in the context of clonal hematopoiesis using the Espinoza30 dataset 

(Supplementary Table 1). In this study, multiple lentiviral insertions in a single HSPC 

eventually resulted in clonal erythroid and myeloid expansion and genotoxic abnormal 

dysplastic differentiation, while largely sparing the lymphoid lineages. In agreement with the 

findings of the study, we find that the longitudinal clone numbers contributing to the B and 

T cell lineages fluctuate, but that the Shannon diversity index of these lineages remains high, 

especially at early time points, indicating polyclonal contribution to the lymphoid lineages 

(Fig 3e-f). However, after day 266 post-transplant, we observe a massive drop-off in both 

the number of unique clones detected (Fig 3e) and the Shannon diversity (Fig 3f) within 

the myeloid lineages. This coincides chronologically with the development of dysplastic 

abnormal clonal hematopoiesis in the myeloid lineage.

While in the above examples we utilize unique detected clones at each time point, 

cumulative clone counts can also be calculated (Supplementary Fig. 3) and provide a 

complementary view of clone numbers over time. Altogether, these examples emphasize 

the utility of clonal counts and diversity measures in interrogating the clonal output of 

progenitor pools in a number of contexts.

Longitudinal clonal dynamics

Longitudinal tracking of the abundance of individual clones can provide insight into clonal 

dynamics within lineages. We employed barcodetrackR to analyze longitudinal NK cell 

samples from an animal in the Wu11 et al study (Supplementary Table 1), in which 

NK cell clonal dynamics were interrogated over 3 years in rhesus macaques receiving 

lentivirally barcoded autologous HSPCs. The detected clones in the NK cell compartment 

remained largely independent from the HSPC pool responsible for the majority of non-NK 

hematopoiesis. We first visualize all individual NK cell clones from the Wu dataset in 

a binary heat map that depicts the presence or absence of all clones observed at 0.01% 

abundance or greater in at least one NK cell sample (Fig 4a). We find that new NK 

cell clones are detected at each time point, but that the number of newly detected clones 

decreases at later time points.

Next, we analyzed distinct clonal dynamics in individual NK cell clones using 

barcodetrackR to generate a heat map showing the abundance of the top ten NK cell 

clones from each sample over time (Fig. 4b). We visualize only the top clones in order 

to focus on the clones responsible for the majority of this cellular compartment’s clonal 
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composition, with stars on the heatmap indicating the top ten contributing clones in each 

sample. This analysis reveals the waxing and waning patterns of high-abundance NK cell 

clones over time, which were further interrogated in the Wu study, and suggested underlying 

environmental stimuli such as a viral infection, further investigated in a subsequent study.36 

Lastly, we utilized statistical testing within barcodetrackR to view changes in proportions 

of individual clonal contributions within the NK cell samples, marking clones with a star 

which had a statistically significant change (as assessed by a Chi-squared test with p-value 

adjustment for multiple comparisons) in abundance in the labelled sample in comparison to 

the previous sample (Fig. 4c). This type of visualization and analysis further highlights the 

highly dynamic clonal patterns within the NK cell compartment. Altogether, these results 

indicate that the longitudinal tracking of highly abundant clones within datasets can provide 

insight into clonal dynamics at a single-clone level. Such approaches would have numerous 

applications, such as assessing competitive clonal and subclonal dynamics within a tumor or 

premalignant state or response of specific immune cell clones to various stimuli.

Lineage bias

Clonal tracking studies measure HSPC clonal contributions to different mature blood cell 

lineages. Thus, the lineage bias of a single HSPC clone, such as one that skews towards a 

myeloid or lymphoid lineage, can be inferred from clonal tracking data by calculating a ratio 

of that clone’s abundances between two specific lineages. We define the log2 transformation 

of this ratio to be the log-bias for a particular clone. For example, a clone X with a 

normalized abundance of 100 in lineage A and normalized abundance of 50 in lineage B 

will have a log-bias of log2(100/50) = 1 towards lineage A (and conversely a log-bias of −1 

towards lineage B), while a clone Y with a normalized abundance of 200 in lineage A and 

normalized abundance of 200 in lineage B will have a log-bias of log2(200/200) = 0 towards 

either lineage. Here, we use barcodetrackR to probe this concept of lineage bias in the Six 

clinical gene therapy trial dataset7 and the Koelle rhesus macaque dataset9(Supplementary 

Table 1), both based on lineage-purified samples following autologous transplantation with 

genetically tagged HSPCs.

We first visualize the density of clones along the aforementioned log-bias axis for two 

chosen lineages over time (Gr and T) in the Six dataset (Fig. 5a). The ridge plot silhouettes 

depict kernel density estimators along this log-bias axis, weighted by the sum of their 

abundances in each lineage (to emphasize high-contributing clones), which enables us 

to find where high-contributing clones exist on the log-bias axis. We find the presence 

of three high-contributing sets of clones as determined by Gr/T lineage bias: Gr-biased 

(rightmost peak), balanced clones (middle peak), and T-biased (leftmost peak) (Fig. 5a). By 

systematically comparing each cell type in the dataset, we find that three sets of clones can 

be found when comparing Mo/T, Gr/B, or Mo/B lineages (Supplementary Fig. 4) further 

supporting differences in upstream progenitors accounting for myeloid versus lymphoid 

lineages. In contrast, when comparing Gr/Mo or T/B lineages, we find that a larger 

proportion of clones have balanced contribution to the two lineages, particularly at later time 

points (Supplementary Fig. 4). Interestingly, clones contributing to the NK cell samples are 

predominantly unilineage, sharing very little clonality with other lineages, including other 

lymphoid lineages such as T and B cells (Supplementary Fig. 4). This is in line with clonal 
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tracking studies performed in a rhesus macaque animal model2,11. Conducting the same 

analysis on longitudinal samples from the Koelle dataset reveals the presence of Gr-biased, 

balanced, and T-biased clones at the 4.5-month timepoint (Fig. 5c) consistent with the Six 

dataset. However, there is an increase in abundance of balanced clones at later timepoints 

post-transplant, suggesting a shift away from hematopoiesis from downstream progenitor 

towards hematopoiesis from multipotent upstream progenitors capable of reconstituting both 

myeloid and lymphoid lineages. This is also the case when comparing the T cell lineage 

to the Mo lineage as the majority of clones contribute similar abundances to Gr and Mo 

lineages (Supplementary Fig. 5).

We next use barcodetrackR to construct an abundance-weighted chord diagram between 

three lineages in the Six and Koelle datasets. Chord diagrams show samples of interest 

as regions around a circle with links illustrating the shared clonality between each unique 

combination of samples. The thickness of the links illustrates the number of shared clones, 

or in the case of abundance-weighted chord diagrams (as shown in Fig. 5), the proportional 

contribution of that set of clones to each sample. For example, if there is a population of 

clones found in both samples A and B, with proportional contribution of 40% and 30% 

to the two samples respectively, this would be represented by a link between samples A 

and B which occupies 40% of sample A’s region of the perimeter and 30% of sample B’s 

region of the perimeter. We selected the Gr, T, and Mo lineages at the final 55-month time 

point of the Six dataset (Fig. 5b), finding that a large fraction of detected hematopoiesis 

at this time point is shared between all three lineages (purple). However, there also exist 

clones detected only in two lineages (yellow, blue, green), and biased clones only found 

in one lineage, indicated by the white space around the perimeter. Likewise, a similar 

pattern is observed in the Koelle dataset at the final 38-month time point (Fig. 5d) with a 

large fraction of detected hematopoiesis arising from clones detected in all three lineages 

(purple). The fraction of detected hematopoiesis arising from T-Gr or T-Mo restricted 

clones (blue, yellow respectively), however, is minimal compared to that arising from 

Gr-Mo restricted clones (green) in both datasets, suggesting that myeloid-biased upstream 

progenitors predominate within the total hematopoiesis of the Gr and Mo lineages at this 

time point. Thus, barcodetrackR provides a number of complementary functions useful for 

inferring the lineage biases of upstream progenitors from clonal tracking data.

Package versatility

barcodetrackR’s utility can extend to analyses of other data modalities and experimental 

settings outside of HSPC clonal tracking, provided that the input data is composed of 

genetic tag abundances that are likely to be shared to some degree across multiple 

samples of interest. One example of genetic tag abundance data arises from T-cell receptor 

(TCR) sequencing experiments, in which endogenous TCR sequences are sequenced from 

T cell samples and serve as genetic tags to mark individual T cell clones. Here, we 

highlight the versatility of our software package by extending our analyses to a TCR 

sequencing experiment of longitudinal samples from X-SCID patients treated with HSPC 

gene therapy33. barcodetrackR’s functions seamlessly extend to facilitate the analysis of 

T cell clone numbers and Shannon diversities across T cell samples in this experiment 

(Supplementary Fig. 6).
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DISCUSSION

A recent gathering of over 30 researchers in the clonal tracking field (2018 

StemCellMathLab workshop29) formalized a call for the development of open-source tools 

for the analysis of clonal tracking data in order to promote rigor and reproducibility 

within the field. Here, we provide and showcase our open-source R package and app 

barcodetrackR, which encompasses an extensive, flexible, and accessible set of tools 

in order to address these needs and serve as a critical foundation on which to build 

further analytical approaches in the clonal tracking field. While tools for the processing 

of the raw sequencing data from clonal tracking experiments have been previously 

developed18, barcodetrackR represents the first software package dedicated to interrogating 

the underlying biology represented by these clonal abundances. As shown, barcodetrackR 
is a multifaceted toolkit and has diverse applications, underscoring the utility of using 

complementary data analysis methods and visualizations to probe biological hypotheses. 

The development and implementation of a Shiny app further adds to the utility of the 

package by making it more accessible to the clonal tracking community, which continues to 

expand as sequencing costs decline and methodologies continue to improve.

Although we have designed barcodetrackR to accommodate any clonal tracking dataset 

with clonal abundance quantified per sample, different clonal tracking technologies have 

unique limitations and sources of uncertainty. For example, viral integration site analysis 

is subject to a low capture efficiency as compared to DNA barcode sequencing37, while 

increasing the number of amplification steps in recovery of DNA barcodes can increase 

the abundance of artifactual barcode sequences arising from PCR or sequencing error.38 

Both technologies can be limited by under-sampling the clonal population of interest, 

which can be partially overcome by increasing sequencing depth or sampling more cells.37 

To address potential pitfalls in analysis of clonal tracking data, we briefly recommend 

strategies for experimental design, genetic tag retrieval upstream of barcodetrackR, and data 

analysis within barcodetrackR in Supplementary Note 1, directing readers to more extensive 

referenced reviews when appropriate.

barcodetrackR to encompasses a large number of tools and methods; however, it is by 

no means an exhaustive toolbox, and we envision continuing to add to it in the future 

in order to address new biologic questions that arise. While the majority of prior clonal 

tracking experimental designs have precluded the acquisition of replicate samples and 

often encompassed small numbers of humans and/or animals, future studies will likely 

be able to acquire biological replicates in a number of different contexts to allow for 

more rigorous statistical testing of sample relationships and clonal dynamics. Clustering 

methods to identify populations of clones with similar properties have thus far been 

limited to hierarchical11 and k-means7 in the literature, but the growing development of 

clustering frameworks of single cells in the scRNA-seq field may provide a future basis 

by which to identify clusters of clones based on longitudinal behavior and distribution 

across compartments39. Similarly, the adoption of dimensionality reduction techniques such 

as t-SNE40 in the scRNA-seq field has already appeared to motivate novel clonal tracking 

visualizations41. And although barcodetrackR is designed for analysis of clonal abundance 

data from prospective lineage tracing techniques which involve introduction of an exogenous 
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genetic tag, new technologies allow for retrospective lineage tracing based on somatic 

mutations. A number of software packages have been developed to infer clonal relationships 

from somatic mutations.42-46

As the clonal tracking field continues to grow and tools are further refined, we believe 

it is important as a field to continue to emphasize the aggregation and public availability 

of clonal tracking data. Ultimately, we believe barcodetrackR can be of high utility to the 

clonal tracking field and serve as an important step towards building a more robust and 

reproducible analytical framework in the field.

METHODS

Data collection and genetic tag retrieval

Multiple clonal tracking methodologies exist in the literature47, with the most recent 

methods relying on next-generation sequencing to retrieve lineage tracing elements. Several 

analysis pipelines exist for the retrieval and error-correction of lineage tracing elements from 

sequencing data16-19. The experimental techniques utilized, the number of cells sampled, 

the level of tagged cell within the population, the sequencing platform applied, and the 

computational method of genetic tag extraction affect the number and frequency of tags 

detected in a lineage tracing study.

The barcodetrackR package can operate on any dataset that contains rows as observations 

and columns as samples, regardless of which experimental method for genetic labelling 

and approaches for tag retrieval were used. In Supplementary Note 1, we highlight 

considerations for experimental design and genetic tag retrieval upstream of barcodetrackR 
and recommend strategies for reliable data analysis given some limitations and sources of 

uncertainty which are common across many clonal tracking technologies.

Instantiating an SE object

Instantiating an SE through the function create_SE requires two inputs: counts data with 

genetic tags as rows and samples as columns, and metadata providing information on each 

sample. For the Shiny app, count and metadata can be specified by uploading tabular data 

files. The following assays are created within the SE: counts: the raw values from the input 

dataframe, proportions: the per-column proportions of each entry in each column, ranks: the 

rank of each entry in each column, normalized: the normalized read values in counts-per 

million (CPM), and logs: the log of the normalized values. The default normalization is 

counts per million, and log-normalized values are calculated by taking the log of plus-one 

normalized data so that zeros are retained. Users can supply a custom scale factor and/or 

log base. The use of an SE object permits the addition of custom assays to the object 

to facilitate flexibility (e.g. custom normalization strategies). Additionally, users have the 

option of passing a relative or absolute minimum abundance threshold, described in the 

following section.
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Applying a minimum abundance threshold

When creating an SE object, users have the option of including a relative or absolute 

threshold to exclude low-abundance occurrences that are more likely to come from noise or 

sequencing error. Using a relative threshold of 0.005, for example, retains genetic tags which 

are present at an abundance of 0.5% or greater in at least one sample. Likewise, an absolute 

threshold of 100 would only retain genetic tags which are present at a raw read count of 

100 or greater in at least one sample. Supplementary Fig. 1 shows the effect of varying 

the threshold parameter on the number of unique clones detected and the distribution of 

genetic tag proportions and logs. In general, increasing the genetic tag abundance threshold 

decreases the prevalence of zero-count or low-abundance genetic tags in any given sample 

without significantly affecting the distribution of non-zero abundance genetic tags. However, 

increasing the threshold too much will result in lower number of detected clones and 

exclusion of real, confidently assigned genetic tags.

We include the function estimate_barcode_threshold to help users estimate an appropriate 

minimum abundance threshold for their data. The function estimates a relative threshold R 

(a percentage) based on the following formula:

R = N
FC ∗ 100

Where R is the relative minimum abundance threshold (expressed as a percentage), N is 

the total number of cells/genomes analyzed in the sample, F is the Frequency of genetically 

modified cells within the sample, and N represents the minimum size of clone in the pool 

of cells/genomes that would be expected to be detected. N is calculated from the following 

equation:

P = 1 − (1 − C)N

Where P is the desired confidence level (e.g. 0.95 for 95% confidence level) and C is 

the efficiency of the method to capture a given clone. The value of C depends on the 

clonal tracking technology used and can be estimated by performing simulations or replicate 

sampling. Adair37 et al performed simulations and found that C values of 0.05 and 0.4 

matched experimental data for viral integration site analysis and DNA barcode sequencing 

respectively.

The estimated threshold can be supplied to the create_SE command to exclude genetic tags 

below the threshold upon creation of the SE object. Alternatively, it can be applied to an 

existing SE through the function threshold_SE. In addition to estimating an appropriate 

minimum abundance threshold, we recommend exploring the distribution of genetic tag 

counts across thresholding parameters (as we have done in Supplementary Fig. 1) and 

ensuring that claims made from analyzing genetic tag abundances are not sensitive to the 

choice of thresholding parameter. Within this paper, the Six, Elder, Espinoza, Wu, and 

Koelle datasets were used with a relative threshold of 0.0001. The Belderbos and Clarke 

datasets were used with no threshold.
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Global clonal distributions

The barcodetrackR package contains multiple tools for analyzing global clonal distributions 

between samples on the basis of correlation, pairwise distance measures, or dissimilarity 

indices. Users can view correlations between samples on a grid using the cor_plot function, 

or for two samples using the scatter_plot function.

The dist_plot function calculates pairwise distances between each sample-sample pair 

calculated on the specified assay using any similarity of distance measure included in the 

proxy R package. If desired, the samples can be hierarchically clustered, and a clustering 

tree can be displayed alongside the grid of distance values.

The mds_plot function calculates dissimilarity indices between samples using any distance 

metric within the vegdist function from the R package vegan48. The distance methods 

produce a matrix composed of the distances between samples, given the composition of 

genetic tags in each sample. Principal coordinates analysis is performed on the distance 

matrix in order to display dissimilarity between samples in two dimensions.

Clonal diversity

Three measures of within-sample diversity can be calculated by the function 

clonal_diversity: shannon diversity (H’) , simpson diversity (λ), and inverse-simpson, which 

is calculated as 1/λ. Their equations are as follows:

H′ = − ∑
i = 1

R
pi ln pi

λ = ∑
i = 1

R
pi

2

Where R is the total number of species (in this case genetic tags), and pi is the proportion of 

each genetic tag in the sample. Users can also display the Shannon count calculated as:

Sℎcount = eH′

Additionally, nominal or cumulative counts of each sample can be displayed using the 

clonal_count function. To accurately compare counts or diversity between samples, the 

same number of labeled cells should be used as starting material for quantification. This is 

especially important when assessing diversity based on the nominal count of genetic tags 

retrieved. Belderbos et al showed that the Shannon count is stable with respect to filtering 

thresholds and stays below the theoretical library size upon re-sampling31. Therefore, in 

some cases, it may be beneficial to use Shannon count rather than nominal genetic tag 

counts when comparing diversity between samples.

Clonal patterns

Heat maps created by the function barcode_ggheatmap display clonal abundances across 

samples by coloring cells based on the log-normalized abundance of each clone. By 
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default, the top clones from each sample are marked by a star. Individual clones are 

hierarchically clustered along the y-axis based on their log-abundance (or other specified 

assay) across samples. The dendrogram to depict hierarchical clusters of clones is drawn 

using ggdendro49.

To track the emergence of clones over time, the function barcode_binary_heatmap will 

display a binary heatmaps indicating the presence or absence of clones in each sample. A 

threshold is provided to specify the limit of detection. Clones with percentage abundance 

below this threshold in a given sample are set to “absent” and clones which do not pass this 

threshold in any sample are removed. Providing a minimum-abundance threshold limits the 

role that sampling bias may play on the detection or lack of detection of genetic tags.

Assessing changes in clonal abundance

Users can apply hypothesis testing to clonal abundances through the function 

barcode_stat_test. This function requires the sample size of cells or genomes for each 

sample which cannot be calculated from the genetic tag count data itself. The sample 

size should be the total number of labeled cells before amplification, because this is 

the population of cells which the clonal tracking data represent. To compare genetic tag 

abundances between samples, users can choose from a “chi-squared” or “fisher” exact test. 

The tests operate on a contingency table for each genetic tag to determine whether the tag 

changed in proportion based on its observed abundance and sample size. By default, each 

sample is compared to the previous, but users can also specify to compare each sample to 

a single reference sample (such as the initial time point). The p-values produced by the test 

can be adjusted for multiple comparisons using any adjustment method in R stats, such as 

the Bonferroni adjustment or the Benjamin and Hochberg false discovery rate adjustment.

When conducting hypothesis testing on clonal abundance data, it is important to consider the 

possibility of under-sampling the population of interest. If the two samples being compared, 

for example, represent two longitudinal blood samples meant to approximate the entire 

hematopoietic compartment of an animal, one must consider that the differences in genetic 

tag abundance could be due to both biological changes and sampling bias from two separate 

blood draws. One can estimate the level of sampling bias in an experiment through replicate 

sampling or simulations, but the possibility of under-sampling is likely to affect many clonal 

tracking studies.37 For this reason, we recommend users to use caution when interpreting p-

values from the hypothesis testing. The different p-values for different genetic tags produced 

by the test give indication of each tag’s relative change from one sample to another. It 

is correct, therefore, to say that if clone A has a lower p value than clone B, it is more 

likely than clone B to have changed in abundance between samples given the provided total 

sample size. However, it is not advised to apply a certain p-value threshold such as 0.05 and 

assume that all changes in genetic tag abundance below this threshold represent any kind of 

biological ground truth.
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Clonal bias (log-bias)

The bias_ridge_plot function calculates the log-bias and uses it as a continuous variable in 

order to display the density of clones at each level of log-bias. In order to calculate log-bias 
between clones that are only present in one sample, log-bias is calculated as followed:

log biasb . c . A = log2 b . c . A normalizedsample 1 + 1
b . c . A normalizedsample 2 + 1

The normalized value is taken from the SE slot which is scaled to counts per million. To 

display the distribution of log-bias measures in a ridge plot, the density of clones at each 

value of log-bias can be estimated using a kernel density estimator. The density estimator 

can be weighted by the combined abundance of the clone between the two samples, 

calculated as:

combined abundance = b . c . A normalizedsample 1 + b . c . A normalizedsample 2

Users of the package can also opt to only analyze clones present in both samples which will 

minimize the possible effects of sampling bias but may exclude bona-fide lineage-restricted 

clones.

Chord diagrams

The chord_diagram function utilizes the circlize package in R50 to display shared clones 

between samples. Samples are shown as regions around a circle with their shared clonality 

shown as links between regions. With each unique combination, a new link is created with 

a unique. In the non-weighted setting, the function operates on the counts assay. Therefore, 

the length of each region around the circle represents the number of clones detected in each 

sample, and the width of links between regions is proportional to the number of shared 

clones. In the weighted setting, the function operates on the proportions slot. Each region 

around the circle has the same length corresponding to 100%, and the links between regions 

correspond to the fractional abundance of the shared clones within each sample. Therefore, 

in the weighted setting, the same link can have a different width at each connection to a 

region.

Shiny app

The launchApp function launches a local Shiny app that provides a graphical user 

interface for a number of barcodetrackR’s functions. The app is targeted to users with 

limited coding experience. An identical version of the app is available online at https://

dunbarlabnih.shinyapps.io/barcode_app/ . Once the app is launched, it prompts users for 2 

files of raw text data to be uploaded: the genetic tag counts table and the metadata table. 

There also exists a small example dataset that can be automatically loaded in the app for 

exploration of its capabilities using the button “Load Sample Data” (see screenshots in 

Supplementary Fig. 7). An example barcode genetic tag count table and metadata table are 

linked to in the app, as well as a link to the description and origin of the example dataset. 

Users can download figures or analysis results in tabular format using the download buttons.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Clonal tracking experimental design and barcodetrackR analysis
Clonal tracking experiments generally follow the depicted framework, which encompasses, 

in order, the genetic labelling of cells to create an integrated DNA tag, transplantation or 

adoptive transfer of these cells into a recipient, acquisition of cellular progeny from the 

recipient following transplantation or adoptive transfer, genetic tag retrieval from progeny 

cells followed by high-throughput sequencing, algorithmic quantification of detected 

individual unique tags, and finally, downstream analyses, where the barcodetrackR toolkit 

can be utilized (top panel). barcodetrackR contains functions for analyzing relationships 

between sample clonal distributions, interrogating clonal dynamics over time, inferring 

pairwise lineage bias of upstream progenitors, and analyzing longitudinal sample clonal 

diversity (bottom panel).
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Figure 2: Global clonal distributions
(a) Pairwise Pearson correlation plots between longitudinal samples from the Six dataset. 

Row and column labels indicate months post-transplant (m) and cell type (T, T cell; B, B 

cell; Gr, Granulocyte; Mo, Monocyte; NK, Natural Killer cell). (b) Bray-Curtis dissimilarity 

indices between samples from the Six dataset, grouped by cell type and labeled based 

on months post-transplant. The x and y-axis represent the two main axes of variation 

after conducting principal coordinate analysis on the Bray-Curtis measures of dissimilarity 

(MDS). (c) Pairwise Pearson correlation plots between samples from different anatomical 

sites of a single transplanted mouse at euthanasia from the Belderbos dataset. Row and 

columns labels describe the anatomical site (BM, Bone Marrow) followed by the cell type 

(B, B cell; U, Unsorted samples; T, T cell; Gr, Granulocyte). (d) Bray-Curtis dissimilarity 

indices between samples from the Belderbos dataset grouped by the anatomical site and 

labeled by cell type. (e) Pairwise Pearson correlation values between samples of the same 

set of serial xenograft transplants from the Elder dataset. Row and column labels describe 
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the animal code (e.g. AE12), followed by the anatomical site, then the serial transplant 

designation (pri, Primary; sec, Secondary, ter, Tertiary), followed by the donor animal code 

if it is a sec or ter sample. AE12 is the primary recipient of ALL blast cells, AE32 is 

the secondary recipient receiving cells from the primary animal AE12, and AE88, AE89, 

AE90 are tertiary recipients receiving cells from AE32. (f) Bray-Curtis dissimilarity indices 

between samples from the Elder dataset colored by the mouse of origin and labeled by the 

anatomical site.
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Figure 3: Measures of clonal diversity
(a-b) The number of clones detected (a) and the Shannon diversity index (b) of each sample 

from the Six dataset, grouped by lineage. (c-d) The number of clones (c) and the Shannon 

diversity index (d) of each sample from the Belderbos dataset, grouped by lineage. (e-f) The 

number of clones detected (e) and the Shannon diversity index (f) of each sample from the 

Espinoza dataset, grouped by lineage. X-axes show months, weeks or days post-transplant 

with “sac” corresponding to the timepoint of euthanasia in the Belderbos dataset. The clone 

count reflects the number of unique clones detected in each sample, not the cumulative count 

at each timepoint. Shannon diversity is calculated on a per-sample basis based on the clonal 

population of each sample, not the cumulative number of clones. B, B cell; Gr, Granulocyte; 

Mo, Monocyte; NK, Natural Killer cell; T, T cell; bulk, unsorted population; CD34p, CD34 

positive cell; nRBC, nucleated Red Blood Cell.
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Figure 4: Longitudinal clonal patterns
(a) Binary heat map showing the presence (blue) or absence (white) of 11,799 individual 

clones detected at a proportion of 0.01% or greater in at least one NK cell sample from 

the Wu dataset. Columns represent samples and rows represent individual clones ordered by 

their first time point of detection. (b) Heat map showing the log normalized counts of the 

top ten clones from each NK cell sample from the Wu dataset. Overlaid asterisks indicate 

which clone is one of the top ten contributing clones for each sample, and clones are ordered 

on the y-axis based on hierarchical clustering of their Euclidean distances between their log 

normalized counts across samples. (c) Heat map depicting the same log normalized count 

values as in (b) but with overlaid asterisks instead indicating which clones significantly 

changed in proportion from the previous sample based on a p-value of < 0.05 assessed 

by a chi-squared test of proportions with Bonferroni adjustment of p-values to account for 

multiple comparisons. m, months post-transplant; NK 16, CD3-CD14-CD20-CD56-CD16+ 

NK cells.
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Figure 5: Lineage bias
(a, c) Ridge plot shows clonal bias between Gr and T lineages at multiple timepoints of the 

Six dataset (a) and the Koelle dataset (c). Ridges indicate the abundance-weighted density 

at the value of log-bias on the x-axes, and dots indicate individual clones, sized by their 

overall abundance. Multiple ridge plots along the y-axes correspond to the time point of each 

sample in months post-transplant. (b, d) Chord diagram showing shared clonality between 

Gr, T, and Mo lineages from Six et al (b) and Koelle et al (d) datasets. Each uniquely 

colored chord represents a unique combination of lineages, and the width of each chord as 

it intersects with a lineage indicates the proportional contribution of that group of clones 

to that lineage. The space around the perimeter without a chord indicates the percentage 

contribution of unilineage clones. Gr, Granulocyte; T, T cell; Mo, Monocyte.
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