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SUMMARY

Nonignorable technical variation is commonly observed across data from multiple experimental runs,
platforms, or studies. These so-called batch effects can lead to difficulty in merging data from mul-
tiple sources, as they can severely bias the outcome of the analysis. Many groups have developed
approaches for removing batch effects from data, usually by accommodating batch variables into the
analysis (one-step correction) or by preprocessing the data prior to the formal or final analysis (two-
step correction). One-step correction is often desirable due it its simplicity, but its flexibility is limited
and it can be difficult to include batch variables uniformly when an analysis has multiple stages. Two-
step correction allows for richer models of batch mean and variance. However, prior investigation
has indicated that two-step correction can lead to incorrect statistical inference in downstream anal-
ysis. Generally speaking, two-step approaches introduce a correlation structure in the corrected data,
which, if ignored, may lead to either exaggerated or diminished significance in downstream applications
such as differential expression analysis. Here, we provide more intuitive and more formal evaluations
of the impacts of two-step batch correction compared to existing literature. We demonstrate that the
undesired impacts of two-step correction (exaggerated or diminished significance) depend on both the
nature of the study design and the batch effects. We also provide strategies for overcoming these neg-
ative impacts in downstream analyses using the estimated correlation matrix of the corrected data.
We compare the results of our proposed workflow with the results from other published one-step and
two-step methods and show that our methods lead to more consistent false discovery controls and
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power of detection across a variety of batch effect scenarios. Software for our method is available through
GitHub (https://github.com/jtleek/sva-devel) and will be available in future versions of the svaR package
in the Bioconductor project (https://bioconductor.org/packages/release/bioc/html/sva.html).

Keywords: Batch effect; ComBat; Generalized least squares; Sample correlation adjustment; Two-step batch
adjustment.

1. INTRODUCTION

Because of the high cost of high-throughput profiling experiments or the difficulty in collecting a good
number of samples, data sets are often processed in small batches, at different times, or in different facilities.
These processing strategies often introduce unwanted technical variation into the data, commonly referred
to as batch effects. RNA quality, lab protocol or experimenter, reagent batch, and other known and unknown
factors affect the magnitude of batch effects and can often lead to significant technical heterogeneity and
non-ignorable variation across batches (Leek and Storey, 2007; Leek and others, 2010; Johnson and
others, 2007). It is well-established that batch effects will reduce statistical power and induce substantial
bias for detecting differences between study groups (Leek and others, 2010; Johnson and others, 2007;
Zhang and others, 2018). It is therefore common to perform some form of batch effect adjustment before
the data are used for downstream analyses such as differential expression analysis (Leek and Storey, 2007).

There are many existing batch effect correction strategies, which can be classified as either “one-step”
or “two-step” methods. One-step methods perform batch correction and data analysis simultaneously,
by integrating the batch correction directly in the statistical model, prediction tool, or inference process.
For example, a one-step strategy in a differential expression setting could be to include a batch indicator
covariate in a linear model using common differential expression software tools (Smyth, 2005; Law and
others, 2014; Robinson and others, 2010; Love and others, 2014). One-step approaches have the advantage
of removing batch effects directly and succinctly in the modeling and analysis step. However, the batch
correction is limited by the specific modeling approach, which in some cases may not adequately capture
the batch effects. In addition, one-step approaches may lead to inconsistent models or handling of the
batch effects if multiple downstream steps are desired.

In contrast, two-step methods perform batch correction as a data preprocessing step that is separate from
the other steps of the analysis, outputting batch-corrected data for downstream tasks such as clustering,
modeling, or prediction are applied to the data. There are several common methods for performing two-
step batch correction, including ComBat (Johnson and others, 2007; Zhang and others, 2018, 2020),
SVA (Leek and others, 2012), or RUV (Gagnon-Bartsch and Speed, 2012). Two-step methods such as
ComBat are popular because they output “clean” data with batch effects removed, making the application
of even complex downstream analyses more straightforward. Furthermore, adjusting for batch effects in
a two-step process allows for the application of a richer model for batch adjustment (mean, variance,
or other moments), which is often needed for combining highly heterogeneous batches of data or data
from multiple studies. It is also important to note RUV/SVA and ComBat have different workflows and
assumptions: RUV/SVA uses estimated factors of unwanted variation in a model based on the unadjusted
data whereas ComBat first adjusts the data and uses a separate model for analysis based on the adjusted
data. In addition, ComBat assumes the batch design is known while RUV/SVA does not make such an
assumption. In this article, we assume the batch design is known and focus on workflows similar to ComBat,
i.e., two-step batch adjustment based on known batches. Our purpose in this article is to understand and
correct the impact of two-step batch adjustment on downstream differential expression analysis based on
linear models and known batch design, as is the context where ComBat can be applied.

The main drawback of two-step batch effect adjustment using methods such as ComBat is that it may
lead to exaggerated significance if downstream modeling is not appropriately conducted, especially for
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unbalanced group-batch designs where the samples of a study group are distributed unevenly across batches
(Nygaard and others, 2016). Consequently, the actual false-positive rates (FPR) and false discovery rates
(FDR) for some naïve downstream methods can be much higher than their nominal values, which renders
results misleading. The root cause of exaggerated significance is the first step: removing batch effects with
two-step methods (such as ComBat) introduces a correlation structure into the adjusted data. In a typical
batch adjustment, the batch mean and/or variance are estimated using all the data points in the particular
batch, and then this estimated batch mean is subtracted from each data point in the batch. This means that
the adjusted data points within each batch are correlated with each other, because they are functions of
all the other data from the batch. In addition to the exaggeration of significance established in previous
work, we will show that in some circumstances this correlation structure can also result in diminished
significance or power. Most researchers are unaware of these phenomena or are otherwise unable to
incorporate this correlation structure into their models, which often leads to inappropriate downstream
analyses that assume independent data points after batch correction.

Focusing on log-normalized microarray or log-normalized or variance-stabilized RNA-seq data (e.g.,
voom normalized) (Law and others, 2014), we provide a basic theoretical explanation of the impacts of a
naïve two-step batch correction strategy on downstream gene expression inference and provide a heuristic
demonstration and illustration of more complex scenarios using both simulated and real-data examples. We
show that the group-batch design balance, i.e., whether the study/biological group design is correlated with
the batch design, has a profound impact on the correlation structure induced by batch effect removal and
thus on downstream analyses. We discuss the impact of the group-batch design balance on biological effect
estimation and inference, and point out situations where we expect both exaggerated significance as well as
diminished significance and power. We also propose a potential solution for mitigating the impacts of two-
step batch correction on downstream analyses. Specifically, we show that the sample correlation matrix
can be estimated for batch-corrected data and can be used in regression-based differential expression
analysis (ComBat+Cor). This is equivalent to generalized least square (GLS) estimation based on the
estimated sample correlation matrix in batch-corrected data. The ComBat+Cor approach, combined with
an appropriate variance estimation approach that is built on the group-batch design matrix, proves to be
effective in addressing the exaggerated significance problem in ComBat-adjusted data.

2. METHODS

2.1. Two-step batch adjustment and sample correlation

To illustrate the correlation structure introduced by two-step batch adjustment methods, we describe a
simplified problem with a mean/additive batch effect only. Based on ComBat (Johnson and others, 2007),
we describe gene expression data with only batch effects in the mean with the following linear model:

Yig = αg + X1βg + γig + εig . (2.1)

Yig denotes the gene expression of gene g for samples from batch i, which is the sum of the background
expression αg , the vector of biological effects βg corresponding to a biological group design matrix X1,
the mean batch effects γig for batch i, and the residual term εig . Without loss of generality, we reformulate
the above equation in matrix form:

Yg = X1β1g + X2β2g + εg . (2.2)

For the model above, we define X = [X1, X2] such that the matrix X1 consists of the indicators of
biological groups (the group design) and the matrix X2 consists of the indicators of batches (the batch
design). Therefore, X represents the group-batch design and is of central interest in this article. In this case
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we will assume the errors εg follows a Normal distribution N (0, σ 2
g ). The model (2.2) can be used to adjust

for mean batch effects and we refer to this approach as the “one-step” approach. Alternatively, batch effect
adjustment can be done by a two-step approach. In the first step, the batch effects are estimated by β̂2g

based on the regression (2.2) above and the batch-adjusted data Ỹg is obtained by removing the estimated
batch effects from Yg , i.e., Ỹg = Yg −X2β̂2g . The variance of the adjusted data Ỹg is σ 2

g (I −H12)(I −H12)
T ,

where H12 = X2(X T
2 (I − X1(X T

1 X1)
−1X T

1 )X2)
−1X T

2 (I − X1(X T
1 X1)

−1X T
1 ). For a reference batch (Zhang

and others, 2018), the matrix X1 should also include the all-ones vector 1 (see the Supplementary material
available at Biostatistics online for derivation).

In the second step of the two-step approach using a similar linear modeling approach, the biological
effect β1g is estimated based on the adjusted values Ỹg :

Ỹg = X1β1g + ε̃g , ε̃g ∼ N (0, σ 2
g (I − H12)(I − H12)

T ) (2.3)

As derived above (and in the Supplementary material available at Biostatistics online), the samples in
adjusted data Ỹg are correlated, with the correlation matrix defined by M = (I − H12)(I − H12)

T . Its
important to point out that (2.2) and (2.3) lead to different inferences of β1g despite their point estimates of
β1g are the same, due to the sample correlations induced by batch effect adjustment in M . One interesting
result is that in balanced group-batch designs, i.e., samples of a biological group are uniformly distributed
across batches, the correlations of the adjusted data values are only dependent on the batch design, and not
the group design (see Supplementary Methods available at Biostatistics online, Section 3 for derivation).
However, in unbalanced group-batch designs, the correlations among individual adjusted values, both
within and across batches, depend also on the group design, which may have an influential impact on
downstream analysis. Regardless of whether or not the group-batch design is balanced, researchers need
to apply downstream analyses that are appropriate for correlated data, as these correlations may in some
cases have profound impact on statistical inference of the biological effects if not properly modeled.

2.2. Impact of the design balance on biological effect estimation

One important implication of the covariance structure defined above is that the correlation matrix M may
depend on the biological group design X1, resulting in possible correlations between the residuals and
the covariate itself, a concept often termed as endogeneity. In this section, we will show that this issue is
related to the balance of the group-batch design, i.e., whether or not the group design is correlated with
the batch design. To start, we derive the formula of β̂1g for the one-step approach (i.e., the model (2.2)) as
(see the Supplementary material available at Biostatistics online):

β̂1g = σ̂1Yg − S12S−1
22 S2Yg

σ̂11 − S12S−1
22 S21

, (2.4)

where S12 is the covariance matrix between the group design X1 and the batch design X2, S22 is the
covariance matrix of X2, σ̂1Yg is the sample covariance of X1 and the outcome Yg , and σ̂11 is the sample
variance of X1. The critical piece in (2.4) from an endogeneity perspective is S12. We will now consider
cases where the batch-covariate design is balanced and unbalanced.

2.2.1. Balanced designs If the group-batch design is balanced, S12 = 0, and the expression in (2.4) can

be simplified to β̂1g = σ̂1Yg
σ̂11

. Thus it is only important to accurately estimate the residual variance using
the adjusted data. We note that this still requires knowledge of the batch design X2. However, in gene
expression analysis, the correlation structure for balanced designs is the same for all genes, providing
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ample data to estimate the correlation structure even if the overall sample size is small. It follows that the
biological effect estimates β̂1g are the same for the following three models:

Yg = X1β1g + ηg (2.5)

Yg = X1β1g + X2β2g + εg (2.6)

Ỹg = X1β1g + ˜εg , (2.7)

where ηg ∼ N (0, σ 2
1 I ), εg ∼ N (0, σ 2

g I ), and ε̃g ∼ N (0, σ 2
g M ). We use σ 2

1 to denote residual variance
associated with (2.5) where one performs T-test on unadjusted data. This suggests that the biological effect
estimate β̂1g is not affected by batch effect and therefore the endogeneity issue does not exist in balanced
batch-group design. This is because for balanced batch-group designs the adjusted data correlations do
not depend on the group design X1. We make two important observations here: First, the variance for β̂1g

in the first model will be larger than the variance in the second model, especially if the batch effect is
significant. This means that excluding the batch effect term from the model will not bias the estimate of the
biological effect, but it will inflate the estimate for the residual standard deviation, leading to a reduction
in power. Second, the variance of β̂1g in the third equation can be estimated using ordinary least squares
with the appropriate mean squared error estimate, or using GLS to directly estimate the residual variance
across all genes.

2.2.2. Endogeneity in unbalanced designs In unbalanced design, the expressions in (2.3) and (2.4) have
clear implications in batch correction contexts that must be considered carefully. First, because the columns
of the group design X1 and the batch design X2 are not linearly independent, and the S12 covariance matrix
is nonzero, unlike the balanced design case. Second, the adjusted data correlations are dependent on both
the batch and group designs, and the correlation structure will depend on the nature and magnitude of the
biological effects. Therefore, this correlation structure will be different across the genes and cannot be
easily estimated in gene expression data with small sample sizes.

2.3. Exaggerated and diminished significance in differential expression analysis

The endogeneity in unbalanced designs can bias the biological effect and variance estimates in gene
expression analysis, often leading to incorrect p-values for downstream differential expression. In general,
the correlation structure induced by two-step adjustments leads to the underestimation of the residual error
if correlation is ignored.As a result, the two-step approach for the model in (2.1) usually results in artificially
smaller p-values, and inflates the FPR or FDR if the correlation not properly modeled. Typically, the level
of FPR inflation increases as the group-batch design becomes more unbalanced. This phenomenon is
often referred to as exaggerated significance (Nygaard and others, 2016). To overcome the exaggerated
significance problem, the correlation matrix M needs to be computed and accounted for in the two-step
analyses.

Some batch correction methods, such as ComBat, use a richer model than that of (2.1), in that they
model and correct for both mean batch effects γig , and variance batch effects δig :

Yijg = αg + X1βg + γig + δigεijg . (2.8)

If variance batch effects are not present or negligible, i.e., δig are all close to 1, the model in (2.8) is
equivalent to the mean-only batch model in (2.1), for which we have derived the correlation matrix M for
batch-corrected data. In this case, using ComBat for batch correction will also result in exaggerated sig-
nificance for unbalanced designs, as previously described, if methods for correlated data or the correlation
matrix M are not used in downstream modeling.
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However, if variance batch effects are large, i.e., δig are significantly different among batches and genes,
failure to consider the correlation can have very different effects, possibly leading to either exaggerated
or diminished significance. In this case, the sample correlation matrix M may not be adequate to fully
characterize the sample correlations brought by the two-step batch adjustment described earlier. Intuitively,
one factor that could drive this phenomenon is an underestimation or overestimation of the residual
variance. Specifically, for the ComBat model, the residual variance estimate is given by the following
(Johnson and others, 2007):

σ̃ 2
g ≈

B∑

i=1

ni

n
δ2

igσ
2
g , (2.9)

where σ̃ 2
g is the ComBat estimate for the residual variance, ni is the size of ith batch, and the total sample

size is n. For identifiability, the ComBat model calibrates the δig so that their products are equal to 1.
The variance estimate σ̃ 2

g may be smaller than expected if some or all δig are significantly less than 1
due to estimation error. In this case, this underestimation would lead to exaggerated significance. On
the other hand, σ̃ 2

g would be overestimated if most of the δig are larger than 1, which likely leads to a
conservative FPR and potentially a significant loss of statistical power. Therefore, variance batch effects
mainly affect the estimate of residual variance σ̃ 2

g , as evidenced by the contrast between (2.1) and (2.8),
and large variance batch effects likely lead to a different and much more complicated expression of M .
For the inference of biological effect, this means the statistical significance can be either exaggerated or
diminished using ComBat, depending on the distributions of σ̃ 2

g among batches and genes. We caution
readers to be specific about variance batch effects when discussing the exaggerated significance problem
for ComBat.

2.4. Computing the correlation matrix

We propose additional steps to appropriately address the correlation structure in two-step adjusted data:
first, the sample correlation matrix introduced by batch effect removal needs to be estimated. Then, any
downstream analysis based on batch-corrected data needs to utilize the sample correlation matrix in their
correlated data models. Obtaining M = (I − H12)(I − H12)

T is straightforward given both the batch
and biological design matrices, X = [X1, X2], except that it may not be not full rank due to the batch
correction. Thus, M needs to be approximated by another full rank matrix M̃ in order to make it usable for
downstream analysis. We note that M is not gene-specific and does not consider the differences among
gene-specific covariance matrices in unbalanced group-batch design.

We propose to use the following steps to obtain an approximated sample correlation matrix M̃ : (i)
Apply a spectral decomposition M = Q	QT , where Q consists of the of eigenvectors of M and 	 is the
diagonal matrix with eigenvalues of M as its diagonal elements; (ii) Since the batch-corrected data are
obtained by removing mean batch effect estimates from every observation, M is not full rank and has
some zero eigenvalues. We will replace those zero eigenvalues by a small non-zero number, θ (Cheng
and Higham, 1998; Zusmanovich, 2013). Conceptually, this is equivalent to adding a small amount of
random noise to the data set to make it full rank. We will denote the modified set of eigenvalues, with
zeros replaced by θ , as 	̃; (iii) The approximated sample correlation matrix is computed by M̃ = Q	̃QT .
To enhance interpretability, we will redefine θ as the product of the sum of nonzero eigenvalues and ζ , in
which ζ represents the percentage of noise added by the user. It is recommended that ζ should be chosen
as a value between 0.1

n and 1
n (Knol and ten Berge, 1989), where n is the total sample size of the combined

batches, as both underadjustment and overadjustment may negatively influence statistical power. We will
demonstrate the impact of ζ on batch effect adjustment using our simulation studies below.
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2.5. Use the sample correlation matrix in differential expression analysis

Based on Ỹg and M̃ , the linear model for differential expression analysis becomes:

Ỹg = X1β1g + ε̃g , ε̃g∼̇N (0, σ 2
g M̃ ). (2.10)

The biological group effects can then be estimated through methods for correlated data, such as GLS.
This will require a Cholesky decomposition of M̃ . Linear transformation of both Ỹg and X1 based on the
Cholesky decomposition are also required but will be straightforward. Given that M̃ informs the sample
correlations brought by the unbalanced design, the batch-corrected data is no longer correlated via the
transformation based on M̃ and therefore GLS estimation should lead to proper statistical significance.

Here, we propose an enhanced version of ComBat, ComBat+Cor (the ComBat approach that includes
a correlation adjustment). Incorporating the above procedure will mitigate downstream impacts such as
exaggerated p-values (and q-values) for unbalanced group-batch designs. ComBat+Cor comprises the
following three steps:

1. Use the original ComBat approach to obtain batch-adjusted data.
2. Obtain the sample correlation matrix M̃ based on the design matrix X and the noise parameter ζ .
3. Use downstream analysis methods that accommodate correlated data. For example, estimate the

group effect(s) and variance estimates using GLS based on M̃ .

2.6. Simulation design

To illustrate the effectiveness of ComBat+Cor in addressing the exaggerated significance problem for
unbalanced designs, we first performed experiments on simulated data with batch effects. Data sets were
simulated with mean and variance batch effects at different levels in order to examine the impact of batch
effect sizes on the effectiveness of ComBat+Cor.

In our experiments, we simulated data sets based on the experimental design of a previously evaluated
bladder cancer data set, henceforth denoted as the bladderbatch data (Dyrskjøt and others, 2004; Leek
and others, 2010). The simulated bladderbatch data sets followed the original study design for batches and
cancer status, which was highly unbalanced with respect to status and batch.There were five batches in total,
and the numbers of cancer/control samples in each batch were 11/0, 14/4, 0/4, 0/5, and 15/4, respectively.
For comparison, we also simulated data sets based on a balanced group-batch design. The number of
treated/control samples in the balanced design in each batch were 6/6, 9/9, 2/2, 3/3, and 10/10, respectively.
We simulated the expression of 20 000 genes, of which 2000 were set to be differentially expressed between
the groups (treatment versus control). Group effects for the 2000 differentially expressed genes were chosen
as 2 (500 genes), 1 (500 genes), −1 (500 genes), −2 (500 genes), reflecting scenarios when the group
effect was strongly positive, positive, negative, and strongly negative. The remaining 18 000 genes were
not differentially expressed between biological groups (“null” genes).

Our simulation method follows the hierarchical linear model assumed in ComBat given in Equation
2.8 (Johnson and others, 2007). We also specified the number of samples, batches, and genes in the data,
and the distributions of mean and variance batch effects are given as γig ∼ N (mi, vi) and δig ∼ IG(αi, βi)

for batch i. We then sampled γig and δig from their hyperparameter distributions. The background average
expression αg was set to be 3, and the gene-wise variation followed a gamma distribution �(4.5, 1.5).
For the residuals εijg , the variances σ 2

g were randomly drawn from a gamma distribution �(4, 10) and we
randomly sampled εijg from N (0, σ 2

g ). The above parameters were chosen based on the ComBat estimates
for the original bladderbatch data and were later modified to reflect scenarios where the batch effects
were much larger than the original estimates (see Table 1). With simulated batch effects, the final gene
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Table 1. Hyperparameters of the mean and variance batch effects used in the simulation studies. The
“Data” column refers to the parameter values estimated based on the original data. The “Small” and
“Large” columns refer to the parameter values used for simulating data with small and large batch
effects, respectively

Batch
mi vi αi βi

Data Small Large Data Small Large Data Small Large Data Small Large

1 −0.04 −0.04 −0.4 0.15 0.15 0.15 60 60 100 60 60 100
2 0.15 0.15 1.5 0.35 0.35 0.35 100 100 120 100 100 40
3 −0.15 −0.15 −1.5 0.82 0.82 0.82 56 56 100 50 50 60
4 −0.1 −0.1 1.0 0.46 0.46 0.46 30 30 60 30 30 100
5 −0.08 −0.08 −0.8 0.12 0.12 0.12 100 100 40 100 100 120

expression Yijg was calculated as Yijg = αg + X1βg + γig + δigεijg . To set a benchmark for simulation, we
generated data without batch effect as Y bench

ijg = αg + X1βg + εijg .
We ran a differential expression analysis using a linear model on data without batch effects, and used

the p/q-values obtained in this approach as the benchmark for the uncorrected and batch-corrected data.
After including the batch effects, we compared ComBat and ComBat+Cor in terms of their distributions
of p-values and FDR. ComBat+Cor, as mentioned earlier, relies on the value of the noise parameter θ .
Therefore, we ran ComBat+Cor with different values of θ to check the sensitivity of ComBat+Cor with
regard to the choice of θ . T-tests based on the unadjusted raw data were conducted in order to illustrate
the necessity of batch effect adjustment. Results based on the one-step approach, which controls for both
the group and batch indicators in regression model, were also included.

2.7. Empirical examples

In addition to the simulation study based on the bladderbatch data, we provide three real data examples that
have unbalanced group-batch designs. The first example is a data set from Towfic and others (2014), which
is used to compare the effects of Copaxone and Glatimer. The second example is a data set from Johnson
and others (2007), which is used for comparison of TAL1 inhibited cells. The first and second examples
were actually used by Nygaard and others (2016) to illustrate the exaggerated significance problem in
ComBat. The third example is from several tuberculosis (TB) gene expression studies (Zak and others,
2016; Suliman and others, 2018; Leong and others, 2018), and we compare the gene expressions of
progressors versus nonprogressors in TB. For each example, we compare the p/q-values of ComBat and
ComBat+Cor. We also conduct simulations based on mean and variance batch effects estimated by ComBat
for all three examples, and for each simulation we compare the p-values based on the benchmark approach
(data set without batch effects), ComBat and ComBat+Cor, to illustrate the effectiveness of ComBat+Cor
in these examples.

3. RESULTS

We provide results for our primary bladderbatch simulation experiment (Example 1), re-analyses of two
examples described by Nygaard and others (2016) (Examples 2 and 3), and an additional case in TB gene
expression with pronounced variance batch effects (Example 4).

3.1. Example 1: Simulated bladderbatch datasets

For data sets simulated based on the original bladderbatch data, we found that ComBat generated exag-
gerated p-values compared to the benchmark p-values (Figure 1(a)). The FPR for ComBat was 18.3%
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Fig. 1. Three figures are used to illustrate that ComBat+Cor reduces the exaggerated significance seen when ComBat is
applied based on simulated data that mimics the bladderbatch experimental design. Note that the original bladderbatch
data has unbalanced group-batch design and small (mean and variance) batch effects. The benchmark approach refers
to the approach that applies ordinary differential expression analysis to data without any batch effects. (a) QQ plot of
p-values using ComBat and the p-values using the benchmark approach. The line falls above the y = x identity line,
suggesting that p-values generated by ComBat concentrate at smaller values than those generated on the data without
batch effect. (b) QQ plot of p-values using ComBat+Cor (ζ = 1%) and p-values using the benchmark approach. (c)
line chart comparing the distributions of p-values using ComBat, ComBat+Cor, and the benchmark approach.

which was much higher than the nominal rate of 5% (Table 2). In contrast, ComBat+Cor (with ζ = 1%)
was able to appropriately control the false positive rate (Figure 1(b)). The FPR for ComBat+Cor (with ζ =
1%) was 4.8%. The distributions of p-values for the benchmark, ComBat and ComBat+Cor are depicted
in Figure 1(c). Unsurprisingly, ComBat also yielded an exaggerated FDR that was much higher than the
nominal one. We identified 3264 genes as differentially expressed using ComBat and an FDR = 5% as the
threshold. Of these genes, 1978 were truly differentially expressed, yielding a detection power of 98.9%.
The remaining 1,286 were actually œnullž genes (i.e., genes not differentially expressed), meaning the
actual FDR was inflated to 39.4%. Using ComBat+Cor with ζ = 1%, 2001 genes were identified as sig-
nificant using the same FDR cutoff, 1926 of which were truly differentially expressed (power = 96.3%).
Only 75 of the genes identified as differentially expressed were null genes, yielding an actual FDR for
ComBat+Cor of 3.7%. Therefore, the ComBat+Cor method provided considerably improved FDR control
while retaining high detection power as compared to ComBat.

In addition, we conducted a sensitivity analysis using multiple values of ζ . Our earlier recommendations
for ζ (between 0.1

n and 1
n for sample size n) yield values in the [0.17%, 1.7%] range for the sample size of

this study (n = 57). We ran ComBat+Cor with different values of ζ in order to evaluate the recommended
range, as well as check the sensitivity of ComBat+Cor to values outside the range. Figure 2 presents the
true positive rate (TPR) associated with different ζ values. These results suggest that when ζ is smaller than
2% and larger than 0.1% (consistent with the recommended range), ComBat+Cor achieved acceptable
power (>95% for both unbalanced and balanced designs) for detecting differentially expressed genes.
ComBat+Cor lost power when ζ was either above or below the recommended range. Meanwhile, the
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Table 2. Results from bladderbatch simulation with unbalanced design. For each approach, results were
obtained under the conditions where the mean and variance batch effects could be null (N), small (S), or
large (L). For each condition, the results are formatted as FPR (TPR)

Approach
Mean(N) Mean(S) Mean(L)

Var(N) Var(S) Var(L) Var(N) Var(S) Var(L) Var(N) Var(S) Var(L)

T-test
4.9% 4.8% 4.2% 34.0% 33.3% 22.6% 37.8% 38.0% 31.2%

(99.7%) (99.9%) (95.9%) (97.8%) (97.3%) (93.1%) (78.9%) (79.1%) (76.8%)

Benchmark
4.9% 4.8% 5.3% 5.3% 5.0% 5.1% 4.8% 5.0% 5.0%

(99.7%) (99.9%) (99.8%) (99.7%) (99.9%) (99.9%) (99.9%) (99.7%) (99.8%)

One-step
4.9% 5.0% 8.4% 5.2% 5.1% 8.1% 4.9% 5.0% 8.3%

(99.1%) (99.0%) (89.0%) (98.8%) (98.5%) (90.0%) (98.7%) (99.1%) (89.7%)

ComBat
5.6% 10.9% 1.0% 14.6% 18.3% 3.4% 15.5% 18.5% 3.5%

(99.7%) (99.9%) (98.4%) (99.7%) (99.6%) (98.2%) (99.6%) (99.6%) (98.2%)

ComBat+Cor(ζ = 10%)
0.0% 0.0% 0.0% 0.2% 0.2% 0.0% 0.2% 0.3% 0.0%

(94.8%) (96.1%) (78.8%) (94.9%) (95.7%) (78.1%) (94.7%) (95.3%) (78.4%)

ComBat+Cor(ζ = 1%)
0.4% 1.6% 0.2% 2.7% 4.8% 0.6% 3.0% 4.7% 0.6%

(99.0%) (99.2%) (93.2%) (98.7%) (98.6%) (94.0%) (98.6%) (99.1%) (93.4%)

ComBat+Cor(ζ = 0.1%)
0.2% 1.1% 0.1% 1.3% 6.3% 0.3% 2.1% 6.6% 0.3%

(97.4%) (99.1%) (92.1%) (98.3%) (98.8%) (92.4%) (98.2%) (99.4%) (92.1%)

ComBat+Cor(ζ = 0.001%)
0.0% 0.0% 0.0% 0.0% 1.3% 0.0% 0.0% 2.5% 0.0%

(23.8%) (51.3%) (21.7%) (17.8%) (97.9%) (23.0%) (33.6%) (98.8%) (28.8%)

0.6

0.8

1.0

10% 5% 2% 1% 0.5% 0.1% 0.01% 0.001%
ζ

T
P

R

design

balanced
unbalanced

Fig. 2. Plot of TPR for different choices of ζ for ComBat+Cor. The results were simulated based on the
unbalanced/balanced group-batch design for the bladderbatch study.
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Fig. 3. Plot of FPR for different choices of ζ for ComBat+Cor. The results were simulated based on the
unbalanced/balanced group-batch design for the bladderbatch study.

FPR was consistently below 5% across this range of ζ values, signaling that Combat+Cor will produce
conservative results regardless of choice of ζ (Figure 3).

Because the mean and variance batch effects were small in the original data, we conducted a second
simulation with the bladderbatch data where we introduced large mean and variance batch effects to
examine the performance of ComBat and ComBat+Cor (ζ = 1%) under more difficult conditions (see
Table 2). We have two key observations: first, ComBat led to exaggerated significance in all cases where
mean batch effects existed in an unbalanced design, and the level of exaggeration did not appear to have
a relationship with the size of mean batch effects. Second, the size of variance batch effects had a strong
impact on the performance of both ComBat and ComBat+Cor. When the variance batch effects were
small, ComBat+Cor had much lower FPR than ComBat, which was clearly exaggerated in this case, in
exchange for slightly worse TPR. This suggested that ComBat+Cor was a better choice than ComBat
for small variance batch effects. When the variance batch effects were large, the TPR of ComBat+Cor
reduced significantly while the exaggerated significance problem of ComBat disappeared, which suggested
ComBat+Cor was overly conservative and less desirable than ComBat in this case. This is probably due
to the advantage that ComBat has in dealing with variance batch effects and the fact that large variance
batch effects would inflate the residual variance estimate and thus reduce statistical power.

For the comparison among all the approaches included in simulation, we found that for unbalanced
design (Table 2), ComBat+Cor (ζ = 1%) consistently had FPR lower than 5% while maintaining a good
statistical power. Notably, ComBat+Cor (ζ = 1%) was a better choice than the one-step approach as
the one-step approach also tended to have exaggerated significance and decreased power when variance
batch effects were large. The T-test without batch correction predictably performed the worst among all
the candidates, which demonstrated the necessity for adjusting for batch effects in the data. When the
group-batch design was balanced (Table 3) there were no significant differences among all approaches,
except that the unadjusted T-test was still the worst performing approach. In general, we observed that
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Table 3. Results from bladderbatch simulation with balanced design. For each approach, results were
obtained under the conditions where the mean and variance batch effects could be null (N), small (S), or
large (L). For each condition, the results were formatted as FPR (TPR)

Approach
Mean(N) Mean(S) Mean(L)

Var(N) Var(S) Var(L) Var(N) Var(S) Var(L) Var(N) Var(S) Var(L)

T-test
5.0% 5.3% 4.9% 0.9% 0.9% 1.9% 0.0% 0.0% 0.2%

(99.9%) (99.9%) (97.9%) (99.9%) (99.9%) (97.5%) (98.0%) (97.4%) (93.7%)

Benchmark
5.0% 5.3% 5.1% 4.9% 5.0% 4.8% 5.2% 5.1% 5.2%

(99.9%) (99.9%) (99.9%) (99.9%) (99.9%) (100%) (99.9%) (100%) (99.9%)

One-step
5.0% 5.2% 4.6% 4.9% 4.8% 4.6% 5.2% 4.9% 4.8%

(99.9%) (99.9%) (97.8%) (99.9%) (99.9%) (97.9%) (99.9%) (100%) (97.6%)

ComBat
5.2% 6.9% 0.0% 4.6% 6.8% 0.1% 5.4% 6.9% 0.0%

(99.9%) (99.9%) (99.4%) (99.9%) (99.9%) (99.2%) (99.9%) (100%) (98.8%)

ComBat+Cor(ζ = 10%)
0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

(98.5%) (99.1%) (91.2%) (99.0%) (99.0%) (91.0%) (99.0%) (98.8%) (89.3%)

ComBat+Cor(ζ = 1%)
2.6% 3.9% 0.0% 2.3% 4.0% 0.0% 2.8% 4.0% 0.0%

(99.8%) (99.8%) (99.0%) (99.9%) (99.9%) (98.8%) (99.9%) (100%) (98.4%)

ComBat+Cor(ζ = 0.1%)
1.2% 3.6% 0.0% 1.1% 6.2% 0.1% 2.1% 6.4% 0.0%

(99.3%) (99.8%) (98.9%) (99.9%) (99.9%) (99.2%) (99.9%) (100%) (98.7%)

ComBat+Cor(ζ = 0.001%)
0.0% 0.0% 0.0% 0.0% 1.7% 0.0% 0.0% 2.5% 0.0%

(41.5%) (69.6%) (47.1%) (32.9%) (99.9%) (94.9%) (54.2%) (100%) (96.6%)

ComBat+Cor was a safer choice than ComBat across all scenarios and protected against large FPR and
consequent exaggerated significance for unbalanced group-batch designs.

3.2. Example 2: Towfic and others (2014)

Towfic and others (2014) conducted an experiment to compare the effects of Copaxone and Glatimer,
which are immunomodulators used to treat multiple sclerosis, and that was also used by Nygaard and
others (2016) to illustrate how ComBat can lead to exaggerated significance for an unbalanced batch-group
design. There were 34 samples treated with Copaxone that were compared with 11 samples treated with
Glatimer. In total, there were 17 batches and the batch-group design was highly unbalanced. Following
the data processing and analysis procedure of Nygaard and others (2016), there were 1928 genes found to
be significant at the 5% FDR threshold using ComBat adjusted data. We subsequently used ComBat+Cor
(ζ = 1%) to adjust for correlations introduced by the unbalanced batch-group design and found no genes
were significant at 5% FDR level. However, we recognize that different models for differential expression,
including mixed effects effects models, have led to deferentially expressed genes in this data set (Towfic and
others, 2017; Nygaard and others, 2017). These can be further explored in the future with ComBat+Cor,
but for the sake of this work, our goal was to recreate the work of Nygaard and others (2016). The
simulation results based on this data (Figure 4(a)) uncovered that the statistical significance was highly
exaggerated by ComBat and there was a strong need of adjustment for the unbalanced design, which is
also consistent with the finding of Nygaard and others (2016).

3.3. Example 3: Johnson and others (2007)

Johnson and others (2007) demonstrated ComBat using a data set on the comparison of TAL1 inhibited
cells. The experiment has 30 samples and 3 batches. The number of treated/control samples in each batch
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Fig. 4. Simulation results for examples 2, 3, and 4. In each plot, we illustrate the distributions of the p-values for
the benchmark approach, ComBat, and ComBat+Cor. (a) Simulation results based on Towfic and others (2014). (b)
Simulation results based on Johnson and others (2007). (c) Simulation results based on the TB data for comparing
progressors versus nonprogressors.

is batch 1: 6/2, batch 2: 3/4, and batch 3: 9/6. Importantly, Batch 3 consisted of technical replicates of the
samples from Batches 1 and 2. Nygaard and others (2016) also used this experiment to illustrate the exag-
gerated significance problem in ComBat. Following their processing procedure, we found 730 significant
genes at 5% FDR using ComBat, but only 269 genes significant at 5% FDR using ComBat+Cor (ζ = 1%).
Simulation results (Figure 4(b)) suggested that ComBat had a mild exaggerated significance problem due
to the unbalanced design, which is consistent with the finding of Nygaard and others (2016). ComBat+Cor
provides better control of the FDR and corrects the previously reported exaggerated significance problem.

3.4. Example 4: progressors versus non-progressors in TB

We present a final example of TB gene expression data sets which have been used to detect differentially
expressed genes that distinguish progressors from non-progressors in TB (Zak and others, 2016; Suliman
and others, 2018; Leong and others, 2018). This data example had three batches with each batch from
a separate study. The ratios of the number of progressors and the number of nonprogressors in each
batch were 77/104, 95/304, and 0/19. We chose ζ as 0.1% as guided by the recommended range and the
sample size, and simulation results supported this choice (Figure 5). Of 24 391 genes, We found 9659
significant genes at 5% FDR using ComBat and 8403 significant genes at 5% FDR using ComBat+Cor
(ζ = 0.1%). We observed that the significant genes found by ComBat contained all the genes found
by ComBat+Cor. Our simulation results (Figure 4(c)) showed that most of the discovered genes were
expected to be differentially expressed, as both ComBat and ComBat+Cor had diminished significance in
the simulated data due to large variance batch effects. We also included SVA and RUV in our simulation
and found that they were not effective in terms of removing large variance batch effects in this case, as
they both led to exaggerated significance and reduced statistical power (see results in the Supplementary
material available at Biostatistics online).

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab039#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxab039#supplementary-data
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Fig. 5. Plot of TPR for different choices of ζ for ComBat+Cor. The results were simulated based on the original TB
data set.

4. DISCUSSION

ComBat is an established tool for batch effect adjustment, but we have shown it can often lead to inflated
(or deflated) significance in gene expression studies, particularly for unbalanced group-batch designs. The
exaggerated significance of ComBat results from the fact that samples are correlated after batch adjustment,
because removing the estimated mean batch effect from the original data relies on all observations within
a batch. To avoid this problem, downstream analysis must account for the correlation induced by batch
adjustment.

We have shown that the sample correlation matrix can be derived based on the group-batch design
and should be incorporated into downstream analyses. Because the derived sample correlation matrix is
not full-rank, we proposed a procedure that adds a small amount of random noise into the data using
a parameter ζ . This recovers approximate estimability of the covariance structure and enables approxi-
mation through a spectral decomposition approach. The ComBat three-step approach with a correlation
adjustment, ComBat+Cor, is defined as follows: (i) use the original ComBat to obtain batch-corrected
data; (ii) compute the approximated sample correlation matrix; (iii) conduct downstream modeling with
appropriate accommodations for correlated data, such as GLS, using the estimated sample correlation
matrix.

Our simulation results based on a real data set with substantial group-batch imbalance and both mean
and variance batch effects demonstrate that accounting for the sample correlation matrix via Combat+Cor
provides consistent control of the false positive rate for differential expression analysis. This is espe-
cially important considering the exaggerated significance problem of ComBat in unbalanced group-batch
designs. ComBat+Cor is consistently more conservative than ComBat regardless of the choice of ζ and
thus protects against inflated FDR. For a recommended choice of ζ (i.e., between 0.1

n and 1
n ), ComBat+Cor

can also achieve good statistical power, making it more desirable than ComBat for unbalanced group-
batch designs without large variance batch effects. It is also noteworthy that ComBat+Cor maintains a
better balance between TPR and FPR and is more flexible than the one-step approach for unbalanced
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Fig. 6. Guidance about the choice of ComBat and ComBat+Cor for addressing the exaggerated significance problem
in batch correction.

group-batch designs, as the one-step approach is not always available. We still recommend using ComBat
for balanced group-batch designs, as it consistently yields higher statistical power and has no signs of
exaggerated significance in the balanced designs.

We caution readers that ComBat+Cor is less desirable for data with large variance batch effects, as it
may become too conservative and underreport the number of truly significant features. The exaggerated
significance problem for ComBat may not always be present in data examples where batches have large
variance batch effects. Given ComBat+Cor actually loses TPR in exchange for a reduction in FPR, such
a tradeoff would be undesirable when the ComBat approach does not lead to exaggerated significance.
Therefore, we recommend using ComBat for data with large variance batch effects and ComBat+Cor
for data with small variance batch effects. BatchQC, an interactive R shiny app, could be used to detect
the existence and the degree of batch effects based on statistical significance tests and data visualizations
(Manimaran and others, 2016). The one-step approach is also a good alternative for differential expression
analysis when variance batch effect is small. To facilitate the decision-making process, we illustrate the
guidance about the choice of ComBat and ComBat+Cor in Figure 6.

In this article, we focus on log- or variance-normalized data where the exaggerated significance issue is
well-known. However, this issue is not well-studied for unnormalized RNA-seq data and thus beyond the
scope of this article. In the absence of future studies on raw RNA-seq data, the exaggerated significance
issue indeed appears in batch-adjusted RNA-seq data as long as RNA-seq data is normalized (plausibly
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normal-distributed). For unnormalized RNA-seq data, there are three possible options to leverage our
theoretical framework to address it: First, one can transform the raw data (such as logCPM) to make
them more appropriate for Gaussian-based models such as ComBat. Second, one can define a working
correlation structure where the samples are clustered based on both the batch and group designs for
differential expression analysis based on generalized estimating equations. Third, one can choose the
one-step approach based on GLM with known batches. Further research is needed for investigating the
impact of exaggerated significance in batch-adjusted unnormalized RNA-seq data, and also for customary
solutions for popular RNA-seq methods such as DESeq (Anders and Huber, 2010; Love and others, 2014),
limma (Smyth, 2005), or edgeR (Robinson and others, 2010).

Future research is needed in the following three directions: First, more in-depth discussions about
the role of variance batch effects in downstream analyses as well as the inference of biological effects
are needed. Second, correlations in the batch-corrected data given by ComBat may be partially due to
empirical Bayes (EB) processing, and therefore learning the impact of EB processing is necessary for
a comprehensive understanding of the sample correlations induced by ComBat. Its noteworthy that the
sample correlation matrix M is an approximation of the underlying sample correlation matrix whose
expression is difficult to derive as it is intertwined with all different processing steps in ComBat. However,
via the simulation, we have shown that such approximation is adequate for addressing the exaggerated
significance problem brought by unbalanced group-batch design and given recommendations about finding
such approximations based on empirical results (i.e., choice of ζ ). Third, further investigations regarding
the impact of batch adjustment on downstream machine learning applications, such as classification or
clustering, are needed.

5. SOFTWARE AND CODE

Software in the form of R code, together with a sample input data set and complete documenta-
tion is available online at GitHub (https://github.com/tenglongli/ComBatCorr). Function for outputting
the adjusted p-values or the M̃ matrix (function name: design_adj) is also available in GitHub
(https://github.com/jtleek/sva-devel) and will be available in future versions of the sva package in
Bioconductor (https://bioconductor.org/packages/release/bioc/html/sva.html).

SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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