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Abstract

Even though the demand of head computed tomography (CT) in patients with mild traumatic

brain injury (TBI) has progressively increased worldwide, only a small number of individuals

have intracranial lesions that require neurosurgical intervention. As such, this study aims to

evaluate the applicability of a machine learning (ML) technique in the screening of patients

with mild TBI in the Regional University Hospital of Maringá, Paraná state, Brazil. This is an

observational, descriptive, cross-sectional, and retrospective study using ML technique to

develop a protocol that predicts which patients with an initial diagnosis of mild TBI should be

recommended for a head CT. Among the tested models, he linear extreme gradient boost-

ing was the best algorithm, with the highest sensitivity (0.70 ± 0.06). Our predictive model

can assist in the screening of mild TBI patients, assisting health professionals to manage

the resource utilization, and improve the quality and safety of patient care.

Introduction

The increase in the demand even in mild cases of illness associated with low capacity of health

care services leads to overcrowding of emergency health services in different countries of the

world [1, 2]. Among the diseases with low severity which is on expansion, there is the mild

traumatic brain injury (TBI), which corresponds to 81.01% of all registered 69 million cases

annually or approximately 740 cases per 100,000 people worldwide [3, 4]. Previous studies

have shown the overuse of the head computed tomography (CT) in patients with suspected

mild TBI. [5, 6]. However, only 5.2 to 9.4% of patients have intracranial lesions and 0.2 to 3.5%

require neurosurgical intervention [7–9].
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An example of this overcrowding can be seen in Brazil, where the probability of hospitaliza-

tion due to TBI has tripled between 2001 and 2017 [10]. In 2019 alone, the country witnessed

over 100,000 cases of TBI-related hospitalizations, resulting in an estimated cost of

18,489,452.36 Brazilian reals (equivalent to U$4,587,953.44). On average, each patient required

approximately 6.3 days of hospitalizations [10].

Early recognition of high-risk clinical factors can help identify a subset of patients who are

likely to have intracranial lesions and increase the survival of individuals [11–13]. However,

performing CT in all patients is not feasible, and time and resources should be focused on

those most likely to have lesions that require neurosurgical intervention [14].

To solve this problem several studies have been carried out, and guidelines have been devel-

oped and validated bringing a set of prediction rules to help in making appropriate decisions

to determine which patients with mild TBI are indicated to undergo CT of the head. Among

them, the most cited are the Canadian CT Head Rule and New Orleans Criteria [15, 16].

Although these guidelines aid in screening patients with mild TBI in their countries of ori-

gin, the application of these guidelines in Brazil leads to external validity issues, which is lim-

ited to patients who had loss of consciousness, post-traumatic amnesia or witnessed

disorientation [8, 11, 17–20]. Furthermore, these guidelines performed differently in countries

with distinct socioeconomic situations, due to the difference in the target audience profile [9],

mechanism of trauma [21, 22] and availability of financial resources [8, 23].

These gaps demonstrate that protocols should be validated and applied according to the

intrinsic characteristics of the target audience, including culture, sociodemographic patterns,

epidemiological profile, and the availability of medical resources and equipment in each loca-

tion [11, 17]. Thus, finding and improving the most contextually relevant and location-specific

clinical decision protocol has been the aim of study of Fournier et al., which adjusted the Cana-

dian CT head rule to people 75 years old or over [24]. Vedin et al., in their turns, studied the

applicability history of patients in the final decision of the people under 59 years old [13].

Previous research has shown that machine learning techniques, specifically grouping and

analyzing variables that indicate an inclination to certain pathology, can provide a global view

of the patients’ clinical status [25, 26]. This global view can then assist in complex clinical deci-

sion making, and reduce patients’ time spent in health centers by automating several functions

[27]. In addition, machine learning models have been shown useful in predicting hypertension

in Qatar [25], diabetes in Brazil [28] and TBI in Tanzania [26].

Despite these advancements, there are still no studies focused on the development of risk

predictor tools for intracranial injuries in adults with mild TBI in Brazil. Hence, this study

aims to evaluate the applicability of machine learning to screen patients with mild TBI eval-

uated at the Regional University Hospital of Maringa using a supervised classification

model.

Methodology

Study design

This is an observational, descriptive, cross-sectional, and retrospective study, using machine

learning (ML) developed computational models to predict which patients with an initial diag-

nosis of mild TBI are recommended to undergo head CT. We evaluated the need for imaging

as lesions identified on CT which required evaluation by neurosurgeons and presented the fol-

lowing outcomes: requiring hospitalization for neurological observation or neurosurgical

intervention, requiring transfer to advanced neurosurgical care, and patients who died with

TBI as the main cause.
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Data sources

This project was approved by the Ethics Committee on Research Involving Humans at the

State University of Maringá (Registration No. 3.952.659/20). We used secondary data from

electronic medical records of patients with mild TBI evaluated at the Regional University Hos-

pital of Maringá (HUM) in 2018 available in the Hospital and Outpatient Management System

of the Unified Health System. For this reason, the resolution number 466/2016 of the Brazilian

Ministry of Health allows us to work with this data without an informed consent form.

The Regional University Hospital of Maringa (HUM) is one of the referral hospitals in the

Northwest macroregion of the state of Paraná and is responsible for the care of individuals

with complex traumatic injuries. Patients suffering injuries who are suspected or confirmed to

have TBI are attended first by surgical clinic physicians who decide to do a CT and requests

neurosurgeon evaluation when it is necessary. The HUM is equipped with, among other

equipment, a computerized tomography (Lightning Aquilion 80-row multi-detector—Canon

Medical System), which works with 80-slices, 24 hours a day seven days per week.

Data selection

Patients’ selection. In compliance with data protection regulations, for safeguarding indi-

viduals’ personal data, the hospital provided the data after strictly followed after strictly follow-

ing the principles about the principles regarding the treatment and processing of data for this

study. Data anonymization techniques were employed to protect privacy and confidentiality.

The initial dataset was composed of data of 2,360 patients 14 years old or older with TBI

who presented at the HUM emergency Department, between January 1st and December 31st of

2018. Of all these reports, 96.91% or 2,287 patients had Glasgow Coma Scale (GCS) scores

between 13 and 15.

Previous literature cites people over 65 years old [29] and/or with GCS scores equal or less

than 13 have an increased risk of being diagnosed with intracranial lesions [30]. As this infor-

mation can induce the predictive model to provide a positive output, it is recommended to per-

form head CT for such individuals regardless of other clinical conditions [29, 30]. Furthermore,

to avoid the possibility of duplicated data, when a patient presents at the HUM Emergency

Department less than one week after their prior visit with the same mechanism of trauma, the

second visit was excluded from the dataset, resulting in 1851 remaining observations.

Variables’ selection. Initially, twenty-eight variables were available; we excluded time of

attendance, variables with more than 25% missing data, as well as those that generated doubts in

the interpretation, to avoid underestimation of the data. Other variables such as change in cogni-

tive responses (ie, pupil dilatation, neurological deficit and loss of consciousness) since there was

almost none with visual or neurological alteration during clinical analysis were also excluded.

To mitigate overfitting, lesions suggestive of a potential brain injury, including those con-

firmed by imaging tests like Skull x-ray and cranial tomography performance were excluded.

Additionally, elements displaying a Pearson correlation of over 70% (38) were also removed

from the data.

Hence, after evaluating the reliability of the variables and their association with the occur-

rence of intracranial lesions, only 10 variables, which were not directly correlated among

them, were selected for machine learning prediction model development (Box 1).

Outcome

We evaluated the performance of six machine learning models to correctly identify individuals

with head CT findings among patients with mild TBI attended by the HUM ED based on

physiological characteristics as predictor variables.
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Statistical test

The chi-square statistical test through the software RStudio version 4.1.0 [31] was used for

comparisons between patient data with and without head CT finding, adopting a significance

level of 5% (p�0.05).

Development of prediction models and predictors

The TRIPOD (Transparent reporting of a multivariable prediction model for individual prog-

nosis or diagnosis) protocol [32] was adopted to standardize the development of supervised

and classificatory machine learning algorithms. The package caret [33] was used to train and

create the models.

The model development process was as follows: data selection by exclusion and inclusion

criteria, imputation of missing data and cross-validation, testing of six computational algo-

rithms to assess their effectiveness, and selection of the best model based on sensitivity. Based

on the performances of the algorithms, a prototype of a risk equation to predict changes in

head CT, called predict CT-Calculator, was built using the best models (Fig 1).

The data selected in this research was divided into a 70/30 (train/test) ratio and the missing

values were imputed 10 times using the package MICE (multivariate imputation by chained

equations) [34] for 3 tree-based algorithms (Random Forest, Gradient boosting machine and

C5.0) and 3 non-tree-based algorithms (K-nearest neighbors, Linear extreme gradient boost-

ing and Naive bayes generalized linear models), using caret package [33] as described below.

1. Random forest (RF): a combination of decision trees that makes the analysis more complex,

increasing the efficiency of prediction [35, 36];

2. K-Nearest Neighbors (KNN): a method used to classify a given parameter based on the

results obtained from its closest neighbors, that is, it uses likelihood to classify data [37, 38].

3. Gradient boosting machine (GBM): a strong model that combines several weak models (e.g.,

decision tree), optimizing the predictions through a boost gradient [39].

4. Linear extreme gradient boosting (XGB): a linear highly efficient gradient boosting model

[40].

5. C5.0: a model based on a decision tree or collection of rules. It preserves factors and other

classes, prevents the automatic creation of false variables, and facilitates their implementa-

tion and understanding compared to other models, such as Supporting Vector Machine

and neural networks [41, 42].

6. Naive Bayes generalized linear models (NBglm): a classificatory Bayesian model based on

the occurrence of a given event for data with a normal distribution [43, 44].

Box 1. Variables selected for this study

*The following parameters were considered as high impact trauma: traffic crashes

involving pedestrians, ejection of the driver and/or passenger from the vehicle in move-

ment, vehicle speed above 60 km/h, physical aggression with a blunt object, and fall

from at least one meter or five steps, according to Canadian protocol [18]*.

**For the evaluation of post-traumatic amnesia, loss of consciousness, and dizziness, the

signs and symptoms reported by the patient were analyzed along with those described

by third parties and/or observed during the medical examination.
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Since more than 90% of patients did not have a finding on imaging, the proportion of nega-

tive and positive imaging results were corrected using the package Random Over-Sampling

Examples (ROSE) to lead with binary class imbalance [45]. The cross-validations were per-

formed 100 times. The test and train datasets were divided in 10 parts/each (for each of 10 vali-

dations, nine parts were used to train and one for internal validation) and this process was

repeated 10 times, according to cross-validation methodology described by Bergamini et al.

[46], adapted by the authors.

Fig 1. Predictor model development process.

https://doi.org/10.1371/journal.pone.0290721.g001
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We chose the performance metrics that would show the accuracy of the model in predicting

a binary classifier of mild brain injury. We chose the standard general performance metrics of

accuracy (ACCU), sensitivity (SENS), specificity (SPEC), and area under the receiver operating

characteristic curve (AUROCC) [28, 47–51].

We also report the balanced accuracy (BALACCU) as a measure of a classification perfor-

mance that takes into account both positive and negative. It is calculated as (SENS + SPEC) / 2.

Balanced accuracy can be useful when the class distribution is imbalanced, as it considers both

classes equally [28, 47–51]. Finally, we decided to report the probability of false negatives

(PFN) because we wanted to know the probability of misclassification of a positive instance as

negative [25, 28, 47–51], taking in account the variation of results for each imputation.

Based on sensitivity, the probability of the true positive results among all positive samples,

we chose the best model and plotted its mean receiver operating characteristic curve for each

imputation using the package pROC [52]. The algorithm with highest sensitivity was also used

to develop the prototype of the risk equation [26], to help set the priority of CT scans. This

algorithm was built into a website where health professionals can input patient data. The soft-

ware then calculates the probability of the individuals to have head CT findings, as described

in the discussion of this paper.

Results

The mean age of participants was 43±20 years and 1556 (67.60%) were male. In addition, 1609

(70.35%) patients were referred to the hospital by the prehospital care service, Mobile Emer-

gency Care Service (SAMU) or the Integrated Emergency Trauma Care Service (SIATE), 173

(7.56%) were transferred from another hospital, and 504 (22.04%) self-presented to HUM ED.

The most common mechanism of trauma was road traffic injuries (42.59%), followed by a

fall from standing height (29.56%), physical aggression (14.25%), and a fall from height

(8.61%). Of these, 407 (17.80%) were classified as dangerous mechanisms. In the initial evalua-

tion of the patient with mild TBI, there was a predominance of GCS equal to 15 (86.84%), fol-

lowed by GCS equal to 14 (10.10%) and GCS equal to 13 (2.17%).

It was also observed that 19.14% (438/2287) of patient encounters occurred in July and

December 2018, but 20% (15/74) of the positive head CT findings occurred in May. Further-

more, although head CT was performed in 70.09% (1603/2287) of the patients, only 4.62% of

them (74/1603) showed positive imaging results.

When analyzing only the patients chosen for the prediction (1851), it was observed that

there were statistical differences between patients with and without changes in the head CT in

the following parameters: dangerous mechanism, GCS, amnesia, dizziness, headache, vomiting

and/or nausea, and convulsion (Table 1).

The mean values and standard deviation of the computational models were 0.84±0.04 for

accuracy, 0.51±0.13 for sensitivity, 0.84±0.04 for specificity, 0.68±0.05 for balanced accuracy,

0.78±0.03 for AUCROC (Fig 2).

Among the tested models, the Extreme Gradient Boosting was considered the best compu-

tational model because it showed higher sensitivity (Table 2).

The chosen computational model (linear extreme gradient boosting) also presents a similar

ROC curve profile for each data imputation (Fig 3).

Discussion

Research focused on developing better performing prognostic methods has increased due to

scientific advancements and the emerging use of machine learning (ML) algorithms. However,

gaps in literature indicate that ML has not been used in screening patients with mild TBI
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specifically in developing countries. Hence, we aimed to fill that gap by examining the perfor-

mance of six classification supervised ML algorithms.

All of the algorithms tested showed good accuracy (80 to 86%) and specificity (80 to 87%)

but low sensitivity (43 to 70%). To determinate the best model, we adopted sensitivity as a ref-

erence, since it identifies the positive outcome among the samples (show the probability of

true positive outcome among all the results predicted as positive) [25] and observed that XGB

had the best performance agreeing with the results obtained to predict the clinical outcome of

patients undergoing surgery for lumbar spinal stenosis in the Netherlands [53].

Even though the sensitivity is lower than the predictions the risk of recovery in patients

with TBI in general [26] or optimizing the sensitivity with a very low specificity [54], the meth-

odology developed in this study can help to set priority of CT scans in developing countries,

but it cannot yet be used to make the final decision.

Finding the patients with higher probability of positive imaging results can aid in prioritiz-

ing attendance, reducing the patient exposure to ionizing radiation, and decreasing financial

Table 1. Comparison of attendances of patients with and without changes in head computed tomography among

patients with mild traumatic brain injury treated at the University Hospital of Maringa in 2018.

Parameter Change in tomography p-value

Yes No

High impact trauma 0.005

Yes 0015 0340

No 0025 1471

GCS <0.001

14 0019 0177

15 0021 1620

Amnesia <0.001

Yes 0026 0.437

No 0009 1029

Not available 0000 0345

Loss of consciousness 0.100

Yes 0014 0390

No 0020 1056

Not available 0006 0365

Dizziness 0.016

Yes 0005 0068

No 0035 1743

Headache 0.003

Yes 0029 0477

No 0019 1217

Not available 0001 0117

Vomiting and/or nausea <0.001

Yes 0012 0188

No 0028 1616

Not available 0000 0007

Convulsion <0.001

Yes 0005 0014

No 0035 1797

Supraclavicular lesion 0.515

Yes 0017 0887

No 0023 0924

https://doi.org/10.1371/journal.pone.0290721.t001
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costs associated with Emergency Department examinations for traumatic brain injury [5, 29,

55]. However, some adjustments must be made to increase the sensitivity for better applicabil-

ity in health centers.

In the United States of America, when the electroencephalogram was associated with the

clinical symptoms of the patients, such as loss of consciousness, headache, nausea and/or vom-

iting, light and/or sound sensitivity, confusion and memory dysfunction, for the brain injury

prediction in people affected by mild TBI, the researchers obtained an accuracy of 91% using

Fig 2. Line graphic of accuracy, sensitivity, specificity, balanced accuracy and area under the receiver operating

characteristic curve for different models tested.

https://doi.org/10.1371/journal.pone.0290721.g002

Table 2. Mean values and standard deviation of accuracy (ACCU), sensitivity (SENS), specificity (SPEC), balanced accuracy (BALACCU), and area under the

receiver operating characteristic curve (AUROCC) for the different models tested.

Metric

Model

ACCU SENS SPEC BALACCU AUCROC

RF 0.86±0.03 0.43±0.05 0.87±0.03 0.65±0.03 0.75±0.01

KNN 0.84±0.04 0.49±0.11 0.85±0.04 0.67±0.05 0.76±0.03

GBM 0.86±0.04 0.43±0.14 0.87±0.05 0.65±0.06 0.76±0.01

C5.0 0.86±0.02 0.45±0.06 0.87±0.02 0.66±0.03 0.78±0.02

XGB 0.80±0.04 0.70±0.06 0.80±0.04 0.75±0.03 0.79±0.02

NBglm 0.81±0.02 0.59±0.06 0.82±0.02 0.70±0.03 0.82±0.02

Label: RF = Random Forest, KNN = K-nearest neighbors, GBM = Gradient Boosting Machine, XGB = Linear Extra Gradient Boosting, NBglm = Naïve bayes

generalized linear models.

https://doi.org/10.1371/journal.pone.0290721.t002
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the gradient boosting model [5] and sensitivity of 86% and specificity of 71% with the genetic

algorithm model based on linear discriminant functions [56].

Since the main injury mechanism in developed countries is the fall of elderly people [21],

while for low- and middle-income countries it is traffic accidents and violence involving

young people [22], usually, it is not possible to use the same algorithms in the countries with

different socioeconomic conditions, since it can generate divergent results.

The divergence in the performance from place to place and from mild TBI to general TBI,

turn the comparison and use of the same algorithms in different environments, where the

available variables are different, to be difficult [8]. For these reasons, it is still a challenge to

find a tool that accurately detects all brain injuries in patients with mild TBI and safely dis-

charges them from hospital, while avoiding unnecessary head CT. This obstacle is due to the

fact that the chosen model must have a high sensitivity while keeping the specificity within sat-

isfactory values [57], since sensitivity and specificity are inversely proportional [58].

Fig 3. Imputation repetitions of the receiver operating characteristic curve of the best prediction model (linear

extreme gradient boosting) among the parameters selected in patients with mild traumatic brain injury attended

at the University Hospital of Maringá, in 2018. Imp01 = Result of first imputation; Imp02 = Result of second

imputation; Imp03 = Result of third imputation; Imp04 = Result of fourth imputation; Imp05 = Result of fifth

imputation; Imp06 = Result of sixth imputation; Imp07 = Result of seventh imputation; Imp08 = Result of eighth

imputation; Imp09 = Result of ninth imputation; Imp10 = Result of tenth imputation; Agreg = Mean value of all

imputation.

https://doi.org/10.1371/journal.pone.0290721.g003
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This way, our study has some limitations. First, the use of the retrospective secondary data

can lead to insufficient data and record failures. In addition, the evaluation of data from a sin-

gle emergency department reflects a restricted scenario. So, these models must be tested and

validated in other health centers as well. Considering that occurrence of mild TBI usually is

not an isolated event, other variables like sociodemographic and clinical aspects can influence

the outcome of the patients with mild TBI, so they should be analyzed to strengthen our study.

Another limitation observed in this study is the low amount of positive imaging results,

since the effectiveness of a computational model can be reduced if there is a class imbalance,

since most of the time, the majority group tends to overcome the minority, increasing the

probability of false-negative results [59].

These limitations show us that although the computational models currently in practice

allow researchers to work with easily obtained clinical data, it is important to conduct more

robust studies and validate methodology in other health centers. Moreover, future refinements

of the algorithm may incorporate other non-invasive measures of traumatic brain injury. For

this reason, it is important to develop an integrated and systematic tool to objectively and

quantitatively identify patients with mild TBI, with high precision for sensitivity and

specificity.

Moreover, to transform the risk equation into a user-friendly tool that can help physicians

to decide whether to perform a brain CT by inserting data in real time during the clinical eval-

uation of the individuals, a software prototype was developed to calculate the probability of

patients having a brain injury (Fig 4).

Conclusion

Best model (XGB) correctly identified around 70% of all patients with mild TBI, indicating

that after the improvement in its performance, this model has a high potential to be used in

screening patients with mild TBI. The methodology developed in our study also uses the vari-

ables usually collected in Brazilian healthcare services, so it can be used to assist health profes-

sionals to manage the financial resources, and improve the quality and safety of patient care in

Brazil and other countries with similar conditions, reducing the overcrowding of emergency

Fig 4. Image of the risk equation prototype.

https://doi.org/10.1371/journal.pone.0290721.g004
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healthcare services and time to diagnostic of whose show lesions which require neurological

intervention in these geographical regions.
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