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Abstract

The immunological hallmarks of sepsis include the inflammation-mediated cytokine storm, 

apoptosis-driven lymphopenia, and prolonged immunoparalysis. While early clinical efforts were 

focused on increasing the survival of patients through the first phase, studies are now shifting 

attention to the long-term effects of sepsis on immune fitness in survivors. In particular, the most 

pertinent task is deciphering how the immune system becomes suppressed, leading to increased 

incidence of secondary infections. Here, we introduce the contribution of numerical changes 

and functional reprogramming within innate (NK cells, DCs) and adaptive (T cells, B cells) 

immune cells on the chronic immune dysregulation in the septic murine and human host. We 

briefly discuss how prior immunological experience in murine models impacts sepsis severity, 

immune dysfunction, and clinical relevance. Finally, we dive into how comorbidities, specifically 

autoimmunity and cancer, can influence host susceptibility to sepsis and the associated immune 

dysfunction.

Introduction

Sepsis is defined as an immune dysfunction and multiple organ failure stemming from 

dysregulated responses to an initial acute infection, which subsequently allow the instigating 

pathogen to go systemic (1). This disorder affects 1.7 million people on average in the U.S. 

annually, and leads to 300,000 deaths each year (2). Globally, ~50 million people experience 

a septic event each year, of which ~11 million will die (3). Additionally, sepsis continues 

to be the most costly inpatient hospitalization per patient, with aggregate hospital costs 

at $3.8B and >2000 hospital stays annually (4). Respiratory, intestinal, and genitourinary 

infections are responsible for the majority of sepsis cases (5). The incidence of sepsis 

increases in those with comorbidities, including diabetes, COPD, and cancer (6). Sepsis is 
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diagnosed clinically when a patient reaches specific Sequential Organ Failure Assessment 

(SOFA) scores based on physiological responses such as blood pressure, respiratory rate, 

and mental awareness changes (1). However, other components of sepsis, including cellular 

and metabolic changes, also occur.

There are three canonical immunological hallmarks of sepsis (Figure 1). The first is the 

cytokine storm, which is a hyperinflammatory response to the disseminated infection. 

During this phase, both pro- and anti-inflammatory cytokines are released systemically, 

including TNFα, IL-6, and IL-10 (7-9). In the midst of the cytokine storm, profound 

lymphopenia develops – the second immunological hallmark of sepsis. Lymphocytes within 

the circulation and secondary lymphoid organs undergo apoptosis, resulting in septic 

patients experiencing a significant reduction in absolute lymphocyte count (10, 11) as 

well as numbers of CD4 T cells, CD8 T cells, B cells, and NK cells (12). It is believed 

that lymphopenia serves to help counterbalance the cytokine storm, but the extent of 

lymphopenia vary among hosts such that it can both predict and contribute to the poor 

outcomes after the septic event (13). Finally, there is a prolonged phase marked by 

immune suppression termed immunoparalysis which follows patients long after their time 

in the hospital. The immune cells that were maintained during the lymphopenia and those 

that recovered by post-lymphopenic homeostatic proliferation undergo a reprogramming 

rendering them hyporesponsive to subsequent stimulation. Clinically, this phase of sepsis is 

defined as persistent inflammation, immunosuppression, and catabolism syndrome (PICS). 

PICS is suggested to contribute to the chronic critical illness (CCI) seen in patients who 

recover from sepsis, wherein they exhibit increased susceptibility to secondary infections 

because of their immunosuppressed state. Sera from these patients with CCI indicate 

increased concentrations of immunosuppressive markers, such as soluble PD-L1 and IL-10, 

and stress metabolism markers, such as CRP and GLP-1 (8, 11). At the same time, these 

patients have decreased amounts of hematopoietic growth factors such as GM-CSF (8). 

In addition, T cells from sepsis patients are less able to produce IFNγ in response to 

TCR signaling (14) and IL-6, TNFα and IL-1β after LPS stimulation compared to healthy 

controls (15). Sepsis patients, consequently, have worse outcomes (vs. critically ill, non-

septic patients) 1-year after discharge.

Murine models have been developed to study the intricacies of sepsis and its impact on 

the immune system in ways not possible with human samples (16). One such model 

involves administering purified LPS to invoke systemic inflammation by stimulating Toll-

like receptor (TLR) 4. This model favors innate immune system activation, but the 

inflammatory response to LPS is short-lived, restrictive to stimulation of a single TLR, 

and does not work in all murine models such as in hosts with defective TLR4 signaling 

(17, 18). Moreover, mice are significantly less sensitive to LPS than humans, leading some 

investigators to question the relevance of this model to human sepsis (19). In contrast to the 

sterile inflammation induced by LPS, other sepsis models inject viable microbial pathogens 

systemically or intraperitoneally (i.p.) into murine hosts, providing a broader repertoire of 

pathogen-associated molecular patterns (PAMPs) for immunological stimulation. However, 

the caveat to this model is that unlike human hosts, i.p. injections do not typically mirror 

natural primary infection sites, such as the pulmonary or urinary systems (5, 16) and human 

intra-abdominal sepsis is frequently polymicrobial in nature (20, 21). A third preclinical 
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sepsis model was developed with both immunological and physiological outputs of sepsis 

in mind: cecal ligation and puncture (CLP) (22). The result of CLP is a polymicrobial 

sepsis that produces many of the same immunological (i.e., cytokine storm, lymphopenia, 

and immunoparalysis) and physiological (i.e., increased blood concentrations of creatine 

phosphokinase and blood urea nitrogen) indicators of human sepsis (23, 24). The severity 

of the septic event in the CLP model can be modulated depending on the length of cecum 

ligated, gauge of needle used to puncture the cecum, number of punctures made in the 

cecum, and amount of fecal material extruded and released in the peritoneum (23). CLP is 

currently the most used murine model to study acute sepsis and chronic immunoparalysis 

(22).

This review will highlight current knowledge defining the numerical changes and functional 

reprogramming experienced by several immune cells during sepsis that contribute to the 

immunoparalysis state – with a focus on dendritic cells (DCs), T cells, B cells, and NK 

cells. It is important to keep in mind that there are no clinical data currently in hand 

that characterizes the sepsis-induced immunoparalysis state at the mechanistic level, nor is 

it presently possible to identify which sepsis patients will develop this condition or how 

long it will persist. Thus, our discussion will cover data coming from preclinical mouse 

and clinical studies that defines some of the immunological parameters that collectively 

result in the immunoparalysis state seen in sepsis survivors. We will clearly indicate the 

source of the data to minimize any confusion. We also realize there are some concerns 

when trying to equate the impact of sepsis on the murine immune system to human 

immune dysfunction seen during sepsis. Consequently, we have included a conversation 

of preclinical data describing the role of prior immune experience on the sepsis-induced 

acute hyperinflammation and subsequent immune dysfunction. This topic will be covered 

within the context of two murine models: one using hosts exposed to natural commensal 

and pathogenic microbes and the other using hosts sequentially infected with several well-

established experimental pathogens. We will transition to the concept of comorbidities 

associated with sepsis, illustrating how they contribute to the severity of subsequent septic 

events with the examples of autoimmunity and cancer. Finally, we will return to the topic 

of septic immunoparalysis, flipping the context by defining its impacts on subsequent 

autoimmunity and cancer development. Overall, the goal of this review is to provide 

information and context of septic immunoparalysis coming from the evaluation of murine 

models and patient samples, with considerations of how the host immunological background 

impacts the septic event.

Cellular alterations during sepsis

Dendritic Cells

Dendritic cells (DCs) acquire, process, and present Ag to responding CD4 and CD8 

T cells. Consequently, any disruption in normal DC number and function can have a 

significant impact on T cell priming. Pediatric septic patients display reduced frequencies 

of DC subsets as a result of increased apoptosis and trending declines in HLA-DR and 

costimulatory marker expression (24). The same is seen in adult human patients, with early 
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numerical declines in circulating myeloid DCs and plasmacytoid DCs which are maintained 

in patients with subsequent ICU-acquired secondary infections (25).

Previous work from our group and others has revealed numerical and functional deficits of 

multiple DC subsets in the spleen and peripheral lymph nodes of mice after CLP-mediated 

sepsis (26-28) (Figure 2). The remaining DC pool was altered in composition and less 

able to produce cytokines important for cellular immunity (e.g., IL-12) in response to 

secondary pathogens (26, 29). Interestingly, this inability of DC to produce IL-12 (and 

concomitant increased production of Th2 cytokines like IL-4, IL-5, and IL-13) result 

from sepsis-induced epigenetic changes in the DC mediated by the differential recruitment 

of histone methyltransferase complexes to the Il12 promoter regions (30). Since DCs 

offer early protection against excessive systemic inflammation in a murine LPS model of 

endotoxemia via glucocorticoid receptor-mediated inhibition of IL-12 production, this could 

suggest a potential mechanism for the IL-12 decline at the immunoparalysis stage (31). DC 

progenitors in the bone marrow of mice are also depleted during sepsis, yielding daughter 

cells that gain more regulatory-like functions (i.e., IL-10 production) (32). Bone marrow-

derived DCs (BMDCs) contribute to the functional deficits in sepsis by not only increasing 

their own production of IL-10, but by decreasing total and NK-specific responses against 

subsequent secondary bacterial infection (32). The composition and function of murine DC 

progenitors is impacted by CD8 T cells in the bone marrow in a TLR2-dependent manner. 

These CD8 T cells influence DC capability of producing IL-12 and suppressing IL-10 

and TNFα production when these DCs mature (33). These data indicate numerical and 

cytokine production alterations of DCs. More work is required to tease apart the contributing 

mechanisms to these declines in function, as well as antigen presentation, in order to inform 

future therapeutics.

CD8 T cells

The CD8 T cell compartment experiences quantitative and qualitative changes during the 

lymphopenia and immunoparalysis phases of sepsis. In mice, naïve CD8 T cells observe a 

transient numerical reduction in the blood and secondary lymphoid organs during sepsis. 

When recovered, these T cells present with activated phenotypes by increased expression 

of CD44 and CD11a despite being naïve, or inexperienced, to their cognate antigen (34). 

The acquisition of the activated phenotype could be due to the generation of “virtual 

memory” T cells (Tvms), a population of naïve cells that express proteins typically found 

on Ag-experienced T cells despite the absence of cognate Ag recognition after expanding 

via homeostatic proliferation (35, 36). Subsequent cytokine production and Ag-specific 

responses from these naïve mouse CD8 T cells is low when stimulated to become effector 

cells (34). Additionally, while Tvms in younger mice can prove beneficial to immunity and 

protection (37, 38), CD8 Tvms become senescent and proliferate poorly in older hosts (39, 

40), which could contribute to poor post-sepsis responses in the aged septic population. 

Future studies may trend in this direction by assessing not only the presence of these Tvms, 

but their relevance and impact especially in aged mouse and human populations. Naïve CD8 

T cell expansion in the septic murine host can be further impeded by poorly responding 

DCs (29). Memory CD8 T cells in the blood and secondary lymphoid organs of mice also 

experience transient numerical reductions during sepsis. It should not be surprising to realize 
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that the severity of sepsis dictates the magnitude of circulatory T cell lymphopenia, with 

higher cell loss during more severe sepsis. Interestingly, murine tissue resident memory CD8 

T cell loss and endothelial permeability, in contrast, are only impacted in cases of severe 

sepsis (23, 41). We recently published a review detailing the myriad of acute and long-term 

alterations that affect mouse and human memory CD8 T cells (41), and will refer readers to 

that publication for more detailed information.

CD4 T Cells

A hallmark of CD4 T cells is their ability to differentiate into subsets with unique effector 

functions able to skew immune responses after exposure to polarizing cytokines in the 

context of cognate Ag presentation. Similar to CD8 T cells, mouse and human CD4 T 

cells experience profound lymphopenia from sepsis onset followed by qualitative changes 

once cell numbers have been predominantly recovered (42). Early human studies examining 

CD4 T cell cytokine production from septic patients suggested a subset shift from Th1 

to Th2 (43-46). However, a more recent human study using freshly isolated cells from 

the spleen and lung found very little cytokine production (IFNγ, TNFα, or IL-10) after 

anti-CD3/CD28 mAb stimulation (47), suggesting post-septic CD4 T cells experience a 

global state of anergy (46). Additionally, post-septic CD4 T cells have enhanced expression 

of inhibitor receptors, including PD-1, 2B4, BTLA-4, and TRAIL (48-54), likely driven 

by prolonged exposure to pro- and anti-inflammatory cytokines. Another defined change in 

human CD4 T cell subsets following sepsis is an overrepresentation of regulatory T cells 

(Tregs) in the circulation (55, 56). This increase in Treg cell frequency has been shown to 

result from the preferential loss of other CD4 T cell subsets (e.g., Th1, Th2, Th17) (43). 

IL-33, a type 2 mediator released due to tissue damage, also contributes to the presence of 

these Tregs in mice both directly and indirectly (55). Since increased proliferation of Tregs 

has not been observed during sepsis, it has been suggested that human Tregs may be more 

resistant to sepsis-induced apoptosis than other CD4 T cell subsets (43). Post-septic murine 

CD4 T cells have dampened ability to provide help to other immune cells, such as in the 

case of T follicular helper CD4 T cell help to B cells (57), limiting the host’s capacity 

to effectively respond to new infections. In the immunoparalysis phase, recovered septic 

patients experience higher rates of CMV and HSV reaction, infections that rely on effective 

CD4 T cell immunity for limiting frequency and severity in humans (58). However, the 

mechanisms in which immunoparalysis alters latent infection control have yet to be clearly 

defined, thus offering further avenues of research that can help patient management after 

sepsis.

B Cells

B cells are the primary immune cell type within the humoral arm of the adaptive immune 

system and are responsible for producing antibodies. Like T cells, B cells experience 

a drastic decline in numbers during the transient lymphopenia stage of sepsis. A study 

by Shankar et al. showed sepsis-induced lymphopenia in humans was associated with 

significantly lower absolute B cell counts and a selective depletion of memory B cells (59). 

This depletion of memory B cells contributes to the suppressed immune state experienced 

by septic patients (59). The B cells that are present during the immunoparalysis phase 

of sepsis, including both B cells that avoid acute apoptosis as well as newly replenished 
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B cells, appear more exhausted with reduced antibody production (42, 57, 60, 61). At 

the same time, the functional capacity of human B cells to produce IL-10 is maintained 

with ex vivo production increased in septic patients compared to healthy controls (60, 

62). This can alter the ability of other immune cells to mount an effective response to 

subsequent infection. Despite increased plasma cell numbers, the production of Ag-specific 

antibodies in mice is impaired following sepsis (57, 61, 63). Additionally, sepsis results 

in an increased representation of mature B cells and a reduced percentage of immature B 

cells in both mice and humans (61, 63, 64). Future lines of investigation in B cell and 

humoral immunity alterations during the immunoparalysis phase of sepsis may include 

pathogen-specific epitopes in mice and humans, and the impacts of sepsis on prior and 

subsequent vaccinations.

NK Cells

Natural killer cells are a TCR-independent population of lymphocytes which are 

understudied in the context of sepsis. NK cells provide antigen-independent help against 

pathogens by either secreting cytokines or lysing target cells via antibody-dependent cell-

mediated cytotoxicity (ADCC). Like the cell populations discussed heretofore, NK cells are 

reduced in numbers and cytokine function early after a septic event. As with the previously 

described populations, NK cells undergo drastic numerical and functional declines in 

the blood of septic patients, especially in non-surviving patients where reduction of cell 

numbers and production of granzyme B and perforin are exacerbated (9, 42).

In mouse models, reduced DAP12 expression and poor LY49H/D signaling contributes 

to these altered responses by NK cells. This in turn reduces the ability of NK cells to 

clear viruses, such as MCMV (65). Murine NK cells become less responsive to TLR 

agonist stimulation after a septic event (66). One potential contributing mechanism lies 

in the suppressive BMDCs discussed previously. BMDCs from septic mice cultured with 

naïve NK cells reduced the ability of NK cells to secrete IFNγ when stimulated with 

Pseudomonas aeruginosa as an in vitro model of secondary infection (32). These preclinical 

data are corroborated by human studies where a reduced frequency of septic patient NK 

cells expressed CD107 and IFNγ during ex vivo culture experiments of natural and ADCC-

mediate cytotoxicity (67). Murine NK cells also upregulate expression of the coinhibitory 

receptor TIGIT during sepsis (68). Since global TIGIT knockouts have improved sepsis 

outcomes, this could suggest a contribution of NK cells to the apoptotic response during 

sepsis. When PD-1 was analyzed in septic patients, those patients with >5% of PD-1+ NK 

cells in the blood were at greater risk for poor outcomes. PD-1 expression on human NK 

cells correlated with 28-day mortality (69). Regardless of their inhibited pro-inflammatory 

function at this stage, NK cells can still contribute to protective outcomes in septic hosts.

Septic patients have increased IL-10 expression compared to healthy controls 24 hours after 

admission (70). Depleting NK cells in mice leads to increased inflammation and mortality 

during CLP, owing in part to NK-specific production of anti-inflammatory IL-10 which 

impacts these outcomes in this model. (70). However, IL-10 can also be produced by 

CD169+ and M2 macrophages, and selective elimination of IL-10 production from CD169+ 

macrophages resulted in increased inflammation and death early after LPS injection (55, 
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71). Although both studies ascribed a critical role for IL-10 produced either by NK cells or 

tissue-resident macrophages in CLP or LPS-induced sepsis, respectively (70, 71), additional 

studies are needed to define the precise role of IL-10 in the development of long-lasting 

sepsis-induced immunoparalysis state. This also can be an example that highlight the 

necessity of developing (and improving) experimental models for sepsis-themed research, 

since it allows for well-controlled mechanistic studies that could inform and focus more 

challenging studies in humans. Together, these publications highlight stark alterations in 

multiple immune cell populations due to sepsis, providing rationale for further study of their 

role in sepsis, especially with such contradictory protective and exhausted contributions.

Impact of baseline immune status on sepsis immune suppression

While sepsis can dysregulate the immune system as explained above, the nearly all 

preclinical investigation of sepsis-induced immunoparalysis has been done using specific 

pathogen-free (SPF)-housed naïve mice. There is no denying the fact that the use of SPF 

mice in these experiments has led to a vast expansion in knowledge regarding the intricate 

changes that occur in the immune system following a septic event. Important differences, 

however, exist between the SPF mice used in most preclinical sepsis research and humans 

(72, 73), which has led some investigators to question the overall relevance of extensive 

mouse-based sepsis research. SPF housing has increased experimental reproducibility, but 

the immune systems of SPF mice are dominated by cells with a naïve phenotype because of 

the intentionally limited exposure to natural microbes (74). In contrast, humans experience 

daily encounters from a plethora of commensal and pathogenic microbes, which together 

with the various vaccinations received over time train and shape the adult human immune 

system to consist mostly of memory phenotype cells.

Within the last 10 years, investigators have recognized the discordance between the immune 

systems of laboratory mice and adult humans (75). Consequently, several mouse models 

have been developed that generate microbially-experienced hosts with matured immune 

systems to model the more prepared, Ag-experienced immune systems seen in humans. One 

of these “dirty” mouse models involves cohousing SPF laboratory mice with pet store mice 

(74). Pet store mice carry an array of microbes (many being viruses) typically excluded 

by SPF housing (76), and exposure of SPF mice to these microbes dramatically shifts the 

immune system to become skewed toward memory T cells and B cells (77). Similar to 

this model, some investigators have used feral mice and/or mice kept in outdoor enclosures 

to permit exposure to environmental agents that promote immune system maturation (78). 

Another microbially-experienced mouse model relies on the sequential infection of inbred 

murine hosts with standard mouse-adapted lab pathogens, such as influenza A and Listeria 
monocytogenes, which we will refer to as specific pathogen experienced (SPexp) hosts 

(79, 80). Though different investigators vary the pathogens used, sequence of the different 

infections, and timing between infections in their SPexp models, all versions generate large 

Ag-experiences pools of T cells and higher baseline levels of circulatory cytokines (80).

Prior pathogen exposure, either by the cohoused model (81) or sequential infection model 

(80), generates worse outcomes for septic mice. Baseline TLR expression is increased on 

myeloid cells obtained from cohoused mice compared to traditionally housed SPF mice, 
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which helps to explain why cohoused mice are more sensitive to TLR4 stimulation leading 

to greater deaths using the CLP and LPS endotoxemia models of sepsis (81). Interestingly, 

while NK cells do provide some protection against CLP-induced sepsis mortality via IL-15 

dependent IL-10 production, the protective role of NK cells seen in SPF mice is altered 

in SPexp mice. Depletion of NK cells improved survival of septic SPexp mice compared 

to control Ab-treated SPexp mice (80), suggesting an inflammatory role for NK cells in 

experienced hosts. Inhibitory coreceptors are also impacted in immunologically experienced 

murine hosts, as TIGIT actually contributes to a protective phenotype in SPexp septic 

hosts (82), juxtaposing its role defined in earlier studies (68). With such differences in cell 

populations previously investigated in sepsis, but this time in a model more immunologically 

alike to a multi-pathogen experienced human, more investigations of previously established 

immunoparalysis notions need to be re-tested with these models in mind.

Sepsis can be exacerbated by comorbidities

Sepsis is commonly characterized in the aging population, which upon admission to the 

clinic or ICU frequently present with comorbidities alongside their sepsis. Examples of 

comorbid diseases in septic patients include hypertension, diabetes, cancer, and chronic 

organ diseases (83). Some comorbidities, such as obesity, yield more protective outcomes 

early on during sepsis though could prove detrimental long term to organ dysfunction based 

on both preclinical and clinical data (84-86). The impact of diabetes on septic patient 

outcomes is still under debate with most data pointing to no differences in survival or PD-1 

expression on T cells at 28 days post enrollment (87-89). Murine models have been able to 

highlight some impact of diabetes on sepsis outcomes, such as altered neutrophil mobility/

function, host survival, and sepsis-mediated CNS inflammation and reduced mitochondrial 

respiration (90, 91). However, combinations of some of these chronic diseases with an 

acute infection can increase the likelihood of the initial infection progressing to sepsis. 

A publication by Sinapidis and colleagues highlights not only the interactions of these 

parameters that leads to sepsis, but emphasizes that two or more comorbidities increases 

sepsis occurrence and 28-day mortality (92). Collectively, these data illustrate the need for 

further study into how these chronic diseases immunologically impact the septic host. Below 

we describe two such comorbidities – autoimmunity and cancer – which decrease survival in 

septic hosts.

Autoimmunity and sepsis: a focus on multiple sclerosis

Infections and sepsis are common diagnoses and causes for hospital mortality in 

autoimmune patients (93). In some instances, this leads to subsequent nosocomial infections 

(94). Multiple sclerosis is a debilitating neurodegenerative autoimmune disease that causes 

sensory, visual, and mobility issues (95). MS patients are more likely to become septic 

than non-MS patients and remain in the hospital longer after ICU admission (96-98). 

To model a similar coupled disease course, our group has utilized an experimental 

autoimmune encephalomyelitis (EAE) model in combination with CLP-induced sepsis. 

Mice experiencing EAE have increased circulatory inflammatory profiles and decreased 

survival rates after sepsis induction compared to non-EAE controls. This occurs regardless 

of when the septic event occurs after EAE induction or sepsis model used (96). 
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Mechanistically, EAE mice with lower IL-10 in the sera prior to sepsis fared worse in 

terms of survival, and those that did not survive also had higher levels of IL-6 12 hours 

post-CLP compared to non-EAE mice and EAE survivors (96), suggesting a more severe 

cytokine storm. Questions remain as to which cells in EAE mice produce the inflammatory 

phenotypes that drive the increase in sepsis severity, as well as potential sepsis-mediated 

declines or alterations to EAE/MS-specific autoantibody production (99, 100) given 

the sepsis-mediated declines in antibodies described earlier. Importantly, applying the 

preclinical sepsis model to a relapsing/remitting iteration of EAE/MS would more accurately 

represent the MS disease course seen in human (95, 101). Another angle to consider is 

the link between the gut, sepsis, and autoimmunity. The microbial composition of the gut 

can impact outcomes in both multiple sclerosis (102, 103) and sepsis (104). Accordingly, 

bacterial species found detrimental to EAE (105) have been shown to be potentially helpful 

in CLP (106). How alterations of the gut microbiota to include more MS-protective bacterial 

species impacts the outcome of the septic event, or even the likelihood of an infection going 

systemic, remains to be defined.

Cancer and sepsis

Another comorbidity to consider with when discussing sepsis incidence and outcomes is 

cancer. Sepsis occurs in 4% of cancer patients, leading to a 35% chance of mortality up to 

1 year after cancer diagnosis (107). Cancer patients with sepsis are more likely to undergo 

rehospitalization within a month after discharge and more likely to face in-hospital mortality 

compared to non-cancer-related sepsis (108). Murine data has shown tumor-bearing hosts 

fare worse in septic survival compared to tumor-free hosts despite having smaller tumor 

size and volume (109-112). In a model of murine pancreatic cancer, prior cancer induction 

resulted decreased post-sepsis survival, especially 6+ days after the septic event which 

presumably falls under the immunoparalysis phase. Interestingly, this combination (i.e., 

pancreatic cancer and sepsis) yielded increased splenic T cell counts and lower CD4 T cell 

apoptosis. Regardless, CD8 T cell activation was reduced and trending declines were present 

in splenic B cells and DCs (113). While tumor-specific CD8 T cells remain numerically 

unchanged in the tumor microenvironment of septic hosts compared to sham-treated hosts, a 

reduction in number of tumor-specific CD8 T cells was noted in the periphery of the septic 

mice (110, 112). Complimentary to this, there were transcriptional and protein increases 

of IL-10 in B16 tumors after sepsis, suggesting sepsis has the potential for expanding 

suppressive responses (109). The therapeutic efficacy of checkpoint inhibitors can also be 

altered by sepsis. PD-1 is expressed at an intermediate level in CD8 tumor-infiltrating 

lymphocytes in a mouse B16 melanoma/CLP model compared to high PD-1 expression 

in the sham counterparts. These differences between individual cancer or septic hosts 

compared to the comorbid model of cancer prior to sepsis suggests a need to keep in mind 

the differences in efficacy of therapeutics. Indeed, work from the Coopersmith and Ford 

groups demonstrated that although preclinical PD-1 blockade may be beneficial to sepsis 

alone, its impact as a therapeutic is inversed in the comorbid lung cancer cell LLC/sepsis 

model. Instead, 2B4 proved to be the better therapeutic target in this instance by increasing 

survival and reducing coinhibitory receptor expression (114). TIGIT, another coinhibitory 

receptor, is mildly increased in splenic Tregs and NK cells from LLC/sepsis mice compared 

to tumor-only mice (68). TIGIT contributes to reduced splenic T cell cytokine production, 
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CD4 T cell expression of CTLA-4, and poorer outcomes for septic mice with preexisting 

malignancy (68). Interestingly, there is also preclinical data showing sepsis induction in a 

tumor-bearing host can promote an effective anti-tumor response, leading to reduced tumor 

size for those animals that survive the septic event. In this setting, the sepsis-induced anti-

tumor response included increased generation of tumor-specific antigen experienced cells 

and IFNγ production by CD8 T cells and NK cells (110). IFNγ- and granzyme-producing 

NK cells also increase in frequency upon ex vivo stimulation with tumor cells with this 

model, suggesting a potential for increased anti-tumor immunity by NK cells after sepsis 

(109). TLR4 signaling during sepsis is also suggested to contribute this decrease in tumor 

burden, as ablation of TLR4 signaling in a mouse model of sepsis+cancer leads to trending 

increases in tumor volume (109).

Impact of immunoparalysis on subsequent immune disorders

When the earlier-mentioned cellular dysregulations are applied to subsequent 

immunological challenges, they lead to differing outcomes for those hosts that survive 

the septic insult. Sepsis reduces the severity of subsequent autoimmune induction in the 

murine EAE model of MS. Specifically, our groups noted that sepsis drove a numerical 

and inflammatory deficit of myelin peptide-specific CD4 T cells. This quantitative and 

qualitative change in myelin peptide-specific CD4 T cells reduced disease scoring in EAE 

mice, providing a more protective phenotype. However, this protective consequence of 

sepsis was temporary, as the ability of the myelin-specific T cells to proliferate was not 

impacted (115). Conversely, sepsis can prove detrimental in a host who develops cancer after 

their septic event (111, 112). B16 tumor cells from previously septic mice express lower 

amounts of MHC I compared to tumor cells from sham-treated mice, likely leading to the 

reduced CD8 T cell frequency within the tumor and IFNγ production from the CD8 T cells. 

This reduced cytokine function is not limited to the tumor microenvironment as there is a 

decrease in IFNγ and TNFα-producing tumor-specific CD8 T cells in tumor-draining lymph 

nodes and spleen (112). Additionally, the chronic immunoparalysis phase causes these cells 

to proliferate less and experience higher apoptosis rates, negatively impacting the tumor 

environment by reducing the efficacy of checkpoint blockade (111). The immunoparalysis 

phase critically subjects hosts to altered immune states, predominately in the negative sense. 

Further studies are required to assess the impact of immunoparalysis on other standard 

and opportunistic infections and immune disorders. The data discussed here suggest that 

while septic survivors are primed with expanded anti-tumor responses, sepsis still worsens 

subsequent tumors and prior malignancies worsen septic outcomes.

Conclusions

While deaths early in sepsis have declined in recent decades, those patients that survive the 

initial septic event are prone to succumb to secondary infections. Immunoparalysis, the long-

term reduction in lymphocyte function, contributes to this susceptibility. Since the data we 

can derive from clinical patients can be limited, many investigators rely on murine models 

to further decipher the long-term impacts of sepsis on the host. DCs and lymphocytes 

are less able to generate protective responses against innate and antigen-specific pathogen 

molecules. The immunological state of the host at the time of sepsis initiation can have 
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significant impact on the susceptibility to sepsis and the dynamics of the respective diseases/

immune dysfunctions. Further preclinical efforts to study the impacts of the host immune 

status prior to sepsis-inducing infection, including the likelihood of an infection going septic 

and therapeutically modulating septic patient’s immune systems to regain functionality, can 

further improve patient outcomes long term.
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Figure 1. 
The immunological hallmarks of the septic event. The host immune response against 

systemic pathogens initiates with excessive inflammation known as the cytokine storm. 

Concurrent declines in cellularity (lymphopenia) develop. Eventually the cytokine storm 

subsides, and immune cell numbers recover with subsequent poor responses from remaining 

cellular pools. Image created with BioRender.com.

Silva et al. Page 19

J Immunol. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://BioRender.com


Figure 2. 
The immune dysfunctions of dendritic cells and lymphocytes during immunoparalysis. 

This illustrates the current understanding from combined murine and human data on the 

inhibitory markers, cytokines, and antibodies produced during the chronic immunoparalysis. 

Downward-facing arrows indicate declines, dotted lines indicate murine based mechanism. 

Image created with BioRender.com.
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