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Detection of influenza virus and Streptococcus pneumoniae in air 
sampled from co-infected ferrets and analysis of their influence 
on pathogen stability
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ABSTRACT Secondary infection with Streptococcus pneumoniae has contributed 
significantly to morbidity and mortality during multiple influenza virus pandemics and 
remains a common threat today. During a concurrent infection, both pathogens can 
influence the transmission of each other, but the mechanisms behind this are unclear. In 
this study, condensation air sampling and cyclone bioaerosol sampling were performed 
using ferrets first infected with the 2009 H1N1 pandemic influenza virus (H1N1pdm09) 
and secondarily infected with S. pneumoniae strain D39 (Spn). We detected viable 
pathogens and microbial nucleic acid in expelled aerosols from co-infected ferrets, 
suggesting that these microbes could be present in the same respiratory expulsions. 
To assess whether microbial communities impact pathogen stability within an expelled 
droplet, we performed experiments measuring viral and bacterial persistence in 1 µL 
droplets. We observed that H1N1pdm09 stability was unchanged in the presence of 
Spn. Further, Spn stability was moderately increased in the presence of H1N1pdm09, 
although the degree of stabilization differed between airway surface liquid collected 
from individual patient cultures. These findings are the first to collect both pathogens 
from the air and in doing so, they provide insight into the interplay between these 
pathogens and their hosts.

IMPORTANCE The impact of microbial communities on transmission fitness and 
environmental persistence is under-studied. Environmental stability of microbes is crucial 
to identifying transmission risks and mitigation strategies, such as removal of contamina
ted aerosols and decontamination of surfaces. Co-infection with S. pneumoniae is very 
common during influenza virus infection, but little work has been done to understand 
whether S. pneumoniae alters stability of influenza virus, or vice versa, in a relevant 
system. Here, we demonstrate that influenza virus and S. pneumoniae are expelled by 
co-infected hosts. Our stability assays did not reveal any impact of S. pneumoniae on 
influenza virus stability, but did show a trend towards increased stability of S. pneumo
niae in the presence of influenza viruses. Future work characterizing environmental 
persistence of viruses and bacteria should include microbially complex solutions to 
better mimic physiologically relevant conditions.

KEYWORDS influenza, Streptococcus pneumoniae, aerosols, stability, survival, 
persistence

E nvironmental stability of respiratory pathogens expelled from an infected host is a 
key factor impacting transmission (1). Previous work has shown that several factors 

(e.g., humidity, temperature, and solute concentration) influence microbial stability in 
droplets (2–5). Our understanding of how microbes within the same droplets affect 
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persistence is insufficient, as studies often only examine one microbe at a time. The 
limited work investigating how bacteria alter viral stability have primarily focused 
on enteric pathogen stability in feces and found that binding of poliovirus to bacteria 
increased virus stability (6–9). However, these studies did not examine how viruses alter 
bacterial stability. Futhermore, it remains unclear whether multiple microbes exist within 
the same aerosols, and if so, whether they influence each other to impact environmental 
persistence.

Bacterial co-infection is a common occurrence for viral respiratory pathogens: 
bacterial co-infection rates during influenza virus infection in humans range 4.2–32.7% 
and cause significant illness in critically sick patients (10–12). Studies of influenza virus 
and S. pneumoniae (Spn) secondary infection in animals have shown that influenza virus 
facilitates transmission of S. pneumoniae (13–15), while S. pneumoniae may decrease viral 
transmission (14, 15). Another group found that S. pneumoniae can increase influenza 
transmission after antibiotic administration (16). A study on the interaction of nasophar
yngeal bacteria with influenza virus observed that influenza virus binds S. pneumoniae 
(17), suggesting that these pathogens may travel in the same aerosols. These obser
vations indicate a complex interplay between these pathogens that requires further 
investigation to understand how their interactions affect environmental persistence and 
transmission.

Co-infected ferrets shed H1N1pdm09 and Spn into expelled aerosols

Co-infections can lead to high titers of virus and bacteria in infected hosts (14, 15, 
18), suggesting that multiple microbes could be present within expelled respiratory 
droplets. To characterize environmental shedding of H1N1pdm09 and Spn, ferrets were 
first infected with H1N1pdm09 and then infected with Spn 2 d later. Nasal washes were 
collected, and air sampling was performed for 3 days after co-infection.

Nasal wash titers from co-infected ferrets showed that all three animals shed 
H1N1pdm09 on days 3 and 4 post-H1N1pdm09 infection, but only two animals shed 
virus on day 5, while all animals shed Spn throughout the time course (Fig. 1A). We 
next assessed whether infectious microbes were released from co-infected ferrets by 
air sampling with a condensation sampler (Fig. S1). Aerosolized infectious H1N1pdm09 
was detected from all ferrets on day 3, but from fewer animals on days 4 and 5 (Fig. 
1B). Despite measurable levels of Spn in nasal washes, only one animal had viable 
Spn collected from the condensation sampler (Fig. 1B). This may be under-representing 
expelled bacteria in the air, as previous work has shown that not all viable bacteria form 
colonies after aerosolization (19). Cyclone bioaerosol sampling, used to collect microbial 
genomic material, detected H1N1pdm09 in air samples from all co-infected ferrets for 
both the >4 µm and 1–4 µm fractions on all days (Fig. 1C and D). The small <1 µm 
fraction had measurable H1N1pdm09 from one or two of three co-infected ferrets on 
any day (Fig. 1E). Spn was only detectable in the >4 µm fraction in two animals (Fig. 1C), 
which is unsurprising given that S. pneumoniae ranges from 5 to 10× greater in diameter 
than influenza and is therefore less likely to be found in smaller aerosols. This result may 
also under-represent the amount of aerosolized Spn, since sample processing was not 
optimized for encapsulated bacterial DNA. Our results are the first to detect infectious 
H1N1pdm09 and viable Spn in expelled aerosols from co-infected animals.

Environmental stability of H1N1pdm09 is not impacted by the presence of 
Spn

Given the observation that H1N1pdm09 and Spn are shed from co-infected ferrets, we 
questioned whether these microbes might influence each other’s environmental stability 
in respiratory droplets. Spn has been shown to potentially alter influenza A transmission 
(14, 15), suggesting that Spn might decrease H1N1pdm09 environmental stability. 
H1N1pdm09, on the other hand, has been shown to increase transmission of Spn (13–
15), which might indicate enhanced Spn stability with H1N1pdm09. To test this, we 
measured microbial persistence in droplets containing H1N1pdm09, Spn, or a 1:1 ratio of 
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both pathogens in the presence of airway surface liquid (ASL) collected from four 
different human bronchial epithelial (HBE) cell donors (Fig. 2). ASL is an important 
component of the respiratory tract and has been shown to increase stability of influenza 
viruses in the environment (3). After aging 1 µL droplets of each solution in a humidified 
chamber for 2 h, infectious H1N1pdm09 or Spn was measured and compared to bulk 
solution controls (Fig. 2A and B). Experiments were performed at 43% relative humidity 
(Fig. 2E), as viruses and Gram-positive bacteria are more susceptible to decay at inter
mediate relative humidity (20). After 2 h, there was no significant difference (P = 0.721) in 
H1N1pdm09 stability with or without Spn (average decay of 1.19 log10 TCID50/mL versus 
1.34 log10 TCID50/mL, respectively) (Fig. 2C). In contrast, there was a trend of increased 
stability for Spn in the presence of H1N1pdm09. Improved Spn stability was clearly 
observed in ASL from one patient culture (284), as Spn alone decayed an average of 3.71 
log10 CFU/mL and H1N1pdm09/Spn decayed an average of 2.81 log10 CFU/mL (P = 
0.078, Fig. 2D, Table S1). More modest stabilization for Spn was observed in one other 
culture (223) and no difference was observed in ASL from two patients (259 and 305) 
(Table S1). Together, these results suggest that H1N1pdm09 infectivity is not impacted by 
Spn under the environmental conditions tested. There may be a modest impact of Spn 
stability in the presence of H1N1pdm09, although this may be more sensitive to 
variations in the ASL (or mucus composition) per individual. Further research should 

FIG 1 Co-infected ferrets shed H1N1pdm09 and Spn. Ferrets were infected with 106 TCID50 of H1N1pdm09 and subsequently infected 2 d later with 107 CFU S. 

pneumoniae D39. (A) Nasal wash loads of H1N1pdm09 and Spn are shown for the days following initial H1N1pdm09 infection. (B) Condensation sampling with 

a Liquid Spot Sampler was used to collect infectious virus and bacteria shed by co-infected animals. Viral and bacterial loads were measured by TCID50 and CFU 

assays, respectively. (C–E) Cyclone-based air samplers were used to fractionate and collect microbial genomic material shed from co-infected ferrets in (C) >4 µm 

droplets, (D) 1-4 µm droplets, and (E) <1 µm droplets. Quantitative PCR was used to measure genome copies for each microbe. For all graphs, orange symbols 

represent H1N1pdm09 (N = 3) and green symbols represent Spn (N = 3), with each animal indicated by a unique shape and the mean indicated by short, solid 

lines. Dotted lines denote the limit of detection (LOD) for H1N1pdm09 (orange) and Spn (green). Samples without infectious virus were placed at the LOD, and 

viable bacteria samples below the LOD were placed at 1/2 LOD. Samples without detectable genome copies were placed at 1/2 LOD (see supplemental materials 

and methods).
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explore the impact of mucus and lung disease states on the relationship between 
influenza viruses and S. pneumoniae.

Co-infection with pathogens can impact the transmissibility to subsequent hosts. 
Concurrent infections of influenza virus and S. pneumoniae result in increased morbidity 
and a greater risk of bacterial transmission (13, 14). The work here shows that co-infected 
animals expel both influenza virus and S. pneumoniae into air, which can be collected by 
air sampling. In this study we employed two distinct air sampling methods: a cyclone 

FIG 2 Stability of S. pneumoniae and influenza viruses in droplets. (A–D) Viral and bacterial loads of H1N1pdm09 and Spn were assessed after exposure of 10 × 1 

µL droplets to 43% relative humidity (RH) at room temperature for 2 h. Microbes were suspended in ASL from four different HBE cell donors as indicated in A and 

B. Control loads were determined using 10 µL of bulk solutions in closed tubes at room temperature. (A) The stability of H1N1pdm09 in droplets containing 

H1N1pdm09 or H1N1pdm09/Spn measured by TCID50 assay, and (C) log10 decay for each individual ASL culture were determined. (B) The stability of Spn in 

droplets containing Spn or H1N1pdm09/Spn measured by CFU assay, and (D) log10 decay for each individual ASL culture were determined. Differences were 

assessed using Welch’s unpaired t-test. (E) The RH and temperature were recorded every 15 min during stability experiments. Temperature (light green) and RH 

(light blue) for each ASL replicate are shown. The average temperature (dark green) and RH (dark blue) for all experiments are also included. Bacterial samples 

with no detection were placed at 1/2 the LOD.
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air sampler (the NIOSH BC251) and a condensation air sampler (Aerosol Devices Liquid 
Spot). The limitations of these samplers include a short sampling period from 15 min to 
1 h, which captures only a snapshot of what is in the air; a lack of detection does not 
mean that these pathogens are not expelled into the air. In addition to the sampling 
time, the amount of virus detected in the air will be limited by the flow rate of the 
specific sampling strategy, the amount of virus expelled by an infected ferret, and the 
distance of the infected source to the sampling device. These factors contribute to the 
observed heterogeneity in microbial detection observed in our study and necessitate the 
need for thoughtful use of specific air sampling devices or incorporation of multiple air 
sampling devices at varying flow rate and times.

No impact was observed for influenza virus stability in the presence of S. pneumoniae, 
but a trend towards increased S. pneumoniae stability in the presence of influenza virus 
may help explain augmented S. pneumoniae transmission in addition to the increased 
bacterial shedding observed during co-infection (13, 14). Investigation of microbial 
stability using polymicrobial populations is not widely performed and could help 
elucidate the complexity of pathogen transmission seen in the human population. In 
addition, identifying specific host factors underlying microbial stability in the environ
ment could increase our understanding of individual transmission risks and strategies 
mitigating the spread of pathogens. At this point, the relationship between pathogen 
detection in air samples, transmission frequency, and virulence remains to be investi
gated. In the long term, it may be possible to perform air-sampling of patients with 
identified co-infection to characterize microbes present in respiratory expulsions. Such 
studies may provide insight into complex transmission events and improve infection 
prevention measures.

MATERIALS AND METHODS

Methods can be found in the supplemental material.
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