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ABSTRACT Phytobacter diazotrophicus is an Enterobacterales species that was originally 
identified as a plant growth-promoting, Gram-negative bacterium. Recently, this species 
has been recognized as relevant to opportunistic human and nosocomial infections in 
clinical settings. Its frequent misidentification as other Enterobacterales species from 
clinical examination occasionally causes a delay in the identification of nosocomial 
outbreaks. Here, we report the emergence of New Delhi metallo-β-lactamase (NDM)-
producing P. diazotrophicus isolated from hospitalized pediatric patients and hospital 
environments in Tokyo, Japan. In our case, these isolates were found during an investi­
gation of carbapenem-resistant Enterobacterales in relation to nosocomial infections. 
Whole-genome sequencing is useful for overcoming the difficulty of species identifica­
tion. Furthermore, we found that blaNDM-1 was carried by an IncA/C2 plasmid (approxi­
mately 170 kbp), which was transferrable from the clinical isolates to the recipient strain 
Escherichia coli J53. Our study demonstrated that P. diazotrophicus behaves as a carrier of 
blaNDM-harboring plasmids, potentially disseminating resistance to carbapenems among 
Enterobacterales.

IMPORTANCE Early detection of nosocomial outbreaks is important to minimize the 
spread of bacteria. When an outbreak is caused by multidrug-resistant bacteria such as 
carbapenem-resistant Enterobacterales, a delay in findings makes it difficult to control 
it because such bacteria often spread not only among human patients but also in 
hospital environments. Phytobacter diazotrophicus, an Enterobacterales species that has 
recently been found to be relevant to clinical settings, is often misidentified as other 
bacteria in clinical laboratories. Here, we found NDM-producing P. diazotrophicus in 
hospitalized pediatric patients and their environment in Tokyo, Japan. Given that the 
isolates carried blaNDM-1-harboring transferrable plasmids, the influence of such bacteria 
could be greater with the mediation of horizontal transfer of carbapenem resistance. Our 
findings suggest that P. diazotrophicus should be recognized as an NDM-carrier, for which 
more attention should be paid in clinical settings.

KEYWORDS Enterobacteriaceae, antibiotic resistance, plasmid-mediated resistance, 
molecular epidemiology, genome analysis, genotypic identification

C arbapenem resistance in Enterobacterales is frequently acquired through horizon­
tal transfer of carbapenemase genes mediated by plasmids, and this transfer has 

occurred among different Enterobacterales species (1). The spread of a plasmid carrying 
carbapenemase genes among several Enterobacterales species often causes large-scale 
(2, 3) or small-scale (4) outbreaks. One group of the globally disseminated carbapene­
mase genes is the blaNDM family, which was first identified in New Delhi, India, in 
2008 (5). NDM-producing bacteria generally exhibit high levels of resistance to most 
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β-lactams, including carbapenems, and the blaNDM family is mostly carried by plasmids 
(6).

Phytobacter diazotrophicus was originally isolated from wild rice and first noticed as 
a plant-associated bacteria (7). P. diazotrophicus promotes plant growth via nitrogen 
fixation, but this species often causes opportunistic human infections, occasionally 
causing nosocomial outbreaks (8). P. diazotrophicus has frequently been misidentified 
as other Enterobacterales species, such as Pantoea spp., because of the difficulty in 
identification using general methods (9). As a result, a certain proportion of P. diazotro­
phicus isolates may not be precisely identified as this species, even though they are 
present and significant in clinical settings (10). In fact, the genus Phytobacter has been 
recognized as a new member with clinical significance (11, 12).

Here, we report the emergence of P. diazotrophicus, which produces an NDM-type 
metallo-β-lactamase. In September 2020, a NDM-producing Klebsiella pneumoniae was 
isolated from a hospitalized patient at Nihon University Itabashi Hospital in Tokyo, 
Japan, and NDM-producing Enterobacterales were screened in other hospitalized 
patients and environments where NDM-producing K. pneumoniae was isolated during 
an outbreak investigation. Consequently, several NDM-producing Enterobacterales were 
found; however, identifying the bacterial species for four of these, isolated from three 
hospitalized pediatric patients in a pediatric ward and one environmental specimen 
around them (Table 1), was difficult. All three patients had suffered from severe 
congenital disorders at the time of admission. Thus, they had received many medical 
practices including antibiotic treatments, which may put them in a situation where they 

TABLE 1 Isolation profiles and MICs of clinical isolates

Isolate TA9730 TA9734 TA9759 TA9832

Patient/environment Patient 1 Patient 2 Environment Patient 3
Isolation date 2020.09.02 2020.09.04 2020.09.08 2020.09.09
Gender Female Female N/Ac Female
Age (years) 5 5 N/A 4
Origin Feces Feces Waste channel Biliary drain
MIC (µg/mL)a

  Ampicillin-sulbactam >16 R >16 R >16 R >16 R
  Piperacillin-tazobactam >64 R >64 R >64 R >64 R
  Cefazolin >16 R >16 R >16 R >16 R
  Cefotiamb >4 − >4 − >4 − >4 −
  Cefotaxime >32 R >32 R >32 R >32 R
  Ceftazidime >16 R >16 R >16 R >16 R
  Cefepime >16 R >16 R >16 R >16 R
  Cefmetazole >32 R >32 R >32 R >32 R
  Moxalactam >32 R >32 R >32 R >32 R
  Imipenem >8 R 8 R >8 R 8 R
  Meropenem >8 R >8 R >8 R >8 R
  Doripene >8 R >8 R >8 R >8 R
  Aztreonam ≤1 S ≤1 S ≤1 S ≤1 S
  Gentamicin >8 R >8 R >8 R >8 R
  Tobramycin >8 R >8 R >8 R >8 R
  Amikacin >32 R >32 R >32 R >32 R
  Ciprofloxacin ≤0.06 S 0.5 I ≤0.06 S 0.5 I
  Levofloxacin ≤0.12 S 2 R ≤0.12 S 1 I
  Minocycline ≤1 S 2 S ≤1 S 2 S
  Sulfamethoxazole/trimethoprim >80 R >80 R >80 R >80 R
Carbapenemase production NDM (+) NDM (+) NDM (+) NDM (+)
aAntibiotic susceptibility as susceptible (S), intermediate (I), or resistant (R) was determined in accordance with the MIC Breakpoints for Enterobacterales in the Clinical and 
Laboratory Standards Institute criteria (13).
bThere are no criteria for cefotiam (13).
cN/A, not applicable.
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tended to carry antimicrobial-resistant organisms. Although fever had developed on 
all three patients during hospitalization, this was indistinguishable from the results of 
chronic diseases, and no signs and symptoms of infectious diseases had been detec­
ted. Finally, the patients were handled as carriers of these bacteria after detecting 
NDM-producing bacteria from their nonsterile sites (feces or biliary drain) (Table 1), 
and contact precautions were implemented. Minimum inhibitory concentrations (MICs) 
were determined using a RAISUS instrument (Nissui Pharmaceutical Co., Tokyo, Japan). 
NDM production was examined using NG-Test CARBA 5 (NG Biotech, Guipry, France). This 
study was approved by the Ethics Committee of the Nihon University Itabashi Hospital 
(RK-210608-1). Informed consent was obtained via an opt-out form, which clarified the 
current study on the website of the Nihon University Itabashi Hospital (https://www.ita­
bashi.med.nihon-u.ac.jp/cr/open_information.html).

The initial identification using the MALDI Biotyper system (Bruker, Billerica, MA, USA) 
indicated that these four isolates were possibly Cronobacter sakazakii or Pluralibacter 
gergoviae with low identification scores (<2.0). The ID 32 E Api Kit (bioMérieux, Marcy-
l’Etoile, France) indicated that one of these was Pantoea spp. Due to the necessity of 
another approach for identification, 16S rRNA sequencing using a MicroSEQ 500 16S 
rDNA Sequencing Kit (Thermo Fisher Scientific, Massachusetts, CA, USA) was performed, 
and a BLAST search for these sequences on the NCBI website using the megablast 
algorithm made another candidate, P. diazotrophicus (Table S1).

Finally, we employed whole-genome sequencing (WGS) as a definitive analysis. 
A next-generation sequencing (NGS) library was prepared from genomic DNA using 
the Nextera XT DNA Library Preparation Kit (Illumina, San Diego, CA, USA) to 
obtain 2 × 300 bp paired-end short reads on the MiSeq platform (Illumina). Quality 
trimming was performed using Trim Galore v.0.6.7 (https://www.bioinformatics.babra­
ham.ac.uk/projects/trim_galore) and assembled using Spades v.3.12.0 (14). The obtained 
contigs and reference sequences were applied to Prokka v.1.14.6 (15) for gene prediction. 
Core genes defined as having more than 95% identity were extracted and connected 
for core genome alignment using Roary v.3.13.0 (16). A distance matrix based on the 
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FIG 1 Phylogenetic trees based on whole-genome data. Clinical isolates were compared to reference strains based on ANI (left) and core genes (right). These 

trees were constructed using the neighbor-joining method. Clinical isolates and P. diazotrophicus references are shown by the elliptical area highlighted in cyan. 

Metakosakonia sp. MRY16-398 and Citrobacter sp. BDA59-3 are regarded as P. diazotrophicus MRY16-398 and P. diazotrophicus BDA59-3, respectively, and the 

reclassification of Metakosakonia massiliensis to Phytobacter massiliensis is included, according to recent studies (10, 21). Scale bars = distance.

Observation mSphere

July/August  Volume 8  Issue 4 10.1128/msphere.00147-23 3

https://www.itabashi.med.nihon-u.ac.jp/cr/open_information.html
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore
https://doi.org/10.1128/msphere.00147-23


average nucleotide identity (ANI) (17) was estimated using the Kostas Lab website (18). 
Phylogenetic trees for both methods were constructed using the MEGA7 software (19).

All four isolates were much closer to P. diazotrophicus than other Enterobacterales 
species in terms of ANI and core-gene similarity (Fig. 1). The ANI values among these 
isolates and P. diazotrophicus references were less than 5%, which is considered identical 
(17). Metakosakonia sp. MRY16-398 (20), which was later identified as P. diazotrophicus 
(10, 21), was closest to our four isolates. Besides the close epidemiological relationship 
such as their isolations within a week (Table 1), the clonality observed in the pulsed­field 
gel analysis demonstrated that P. diazotrophicus have disseminated through nosocomial 
infections in the current cases (Fig. S1). After coordinated, enhanced infection control 
measures by the hospital and the responsible public health authorities, no additional 
NDM-producing Enterobacterales have been identified in the hospital.

After the current study concluded, we conducted a more thorough investigation 
of the isolates in April 2023. First, we tested Type Strain Genome Server, another 
genome-based species identification tool (22). The contig data used for ANI and 
core-gene analyses with all four isolates were matched with Kluyvera intestini GT-16 and 
P. diazotrophicus DSM 17806, with more than 80% digital DNA-DNA hybridization scores, 
which is sufficient for species identification (22). Given that K. intestini GT-16 was recently 
reclassified as P. diazotrophicus (10, 21), these findings support the original identification 
of our isolates as P. diazotrophicus. Second, we reanalyzed our isolates after the database 
for the MALDI Biotyper system (the MBT Compass reference library, MBT-BDAL-10833, 
Bruker) was updated in our lab in April 2022. As a result, Phytobacter ursingii was hit 
with all four isolates with high scores: 2.22, 2.06, 2.11, and 1.99, for TA9730, TA9734, 
TA9759, and TA9832, respectively. The species identification is less accurate with the 
MALDI system than with WGS, but it is useful for the recognition of the P. diazotrophicus 
outbreak because all four isolates are determined to be identical species.

To investigate the carriage of plasmids, long-read sequencing was performed using a 
MinION sequencer (Oxford Nanopore Technologies, Oxford, UK) with a library prepared 

TABLE 2 Genetic profile of P. diazotrophicus isolates

Isolate Chromosome/plasmidsb Accession no. Length (bp) Plasmid replicon type AMR-related genes

TA9730 Chromosome AP028041 5,610,297 N/Aa Not found
pTMTA97301 AP028042 175,916 IncFIB(K) Not found
pTMTA97302 AP028043 172,011 IncA/C2 ARR-3, aac(6')-IIa, aadA2, armA, blaNDM-1, blaTEM-1B, 

catB4, dfrA1, mph(E), msr(E), sul1, sul2
pTMTA97303 AP028044 98,997 Not identified Not found
pTMTA97304 AP028045 3,530 Not identified Not found
pTMTA97305 AP028046 2,496 Not identified Not found

TA9734 Chromosome AP025334 5,709,362 N/A Not found
pTMTA97341 AP025335 174,856 IncFIB(K) Not found
pTMTA97342 AP025336 174,343 IncA/C2 ARR-3, aac(6')-IIa, aadA2, armA, blaNDM-1, blaTEM-1B, 

catB4, dfrA1, fosA3, mph(E), msr(E), sul1, sul2
pTMTA97343 AP025337 3,530 Not identified Not found
pTMTA97344 AP025338 2,496 Not identified Not found

TA9759 Chromosome AP028047 5,709,306 N/A Not found
pTMTA97591 AP028048 174,343 IncA/C2 ARR-3, aac(6')-IIa, aadA2, armA, blaNDM-1, blaTEM-1B, 

catB4, dfrA1, fosA3, mph(E), msr(E), sul1, sul2
pTMTA97592 AP028049 173,698 IncFIB(K) Not found

TA9832 Chromosome AP028050 5,675,557 N/A Not found
pTMTA98321 AP028051 174,856 IncFIB(K) Not found
pTMTA98322 AP028052 174,343 IncA/C2 ARR-3, aac(6')-IIa, aadA2, armA, blaNDM-1, blaTEM-1B, 

catB4, dfrA1, fosA3, mph(E), msr(E), sul1, sul2
pTMTA98323 AP028053 3,530 Not identified Not found
pTMTA98324 AP028054 2,496 Not identified Not found

aN/A, not applicable.
bIncA/C2 plasmids harboring blaNDM-1 are shown in bold characters.
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using the Native Barcoding Kit (Oxford Nanopore Technologies). After quality trim­
ming using NanoFilt v.0.1.0 (23) and adaptor trimming using Porechop v.0.2.4 (https://
github.com/rrwick/Porechop), these long reads were assembled with trimmed paired-
end short reads using Unicycler v.0.4.8 (24). Genes were predicted and annotated using 
the DFAST pipeline (https://dfast.ddbj.nig.ac.jp). Gene markers for plasmid replicon type 
and antimicrobial resistance (AMR)-related genes were identified using PlasmidFinder 
(25) and ResFinder (26), respectively.

Four P. diazotrophicus isolates carried IncFIB(K) and IncA/C2 plasmids (Table 2), and 
multiple antimicrobial resistance genes, including blaNDM-1, were harbored by IncA/C2 
plasmids. TA9734, TA9759, and TA9832 carried 174,343 bp IncA/C2 plasmids named 
pTMTA97342, pTMTA97591, and pTMTA98322, respectively. These three 174,343 bp 
plasmids were identical. The IncA/C2 plasmid from TA9730 (pTMTA97302) was identical 
to the other three plasmids, except for the lack of a fosfomycin-resistant gene (fosA) 
(Table 2; Fig. 2), where a slight modification of the plasmid occurred on pTMTA97302 
during a series of nosocomial infections. pTMTA97342 shared nucleotide sequences 
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of blaNDM-harboring IncA/C2 plasmids pECL-14–60-NDM-1-IncAC, pNDM-185, and 
pNDM-TAEC1 with 90%, 89%, and 89% identity, respectively. In addition, it was closely 
related to blaNDM-non-harboring IncA/C2 plasmids pA2293-Ct2, p3-20710, and pIMP4-
ECL42 (with 92%, 90%, and 90% identities, respectively), suggesting that the common 
backbone of these plasmids contributes to the dissemination among Enterobacterales, 
even though the β-lactamase genes carried are diverse.

The conjugative transfer of pTMTA97302 and pTMTA97342 from clinical isolates to 
Escherichia coli J53 was tested using the mating method (28). The transfer frequency, 
calculated according to a previous report (29), was approximately 2.8 × 10−3 and 4.1 × 
10−3 for pTMTA97302 and pTMTA97342, respectively.

In summary, our initial identification using general methods had failed to identify 
P. diazotrophicus as shown by the previous reports which mentioned frequent misidenti­
fication of this species (9, 10), and the difficulty in identification was overcome using 
whole-genome analysis. Even though P. diazotrophicus is an opportunistic pathogen 
(10), the correct identification is important to prevent delays in detecting nosocomial 
outbreaks. In fact, multi-state sepsis outbreaks caused by contaminated total paren­
teral nutrition had been reported in Brazil (9). Notably, such a delay can be more 
serious because this species often carries antimicrobial resistance genes including 
blaKPC and blaIMP-6 (10). Our study consolidates the importance of focusing on P. 
diazotrophicus because our isolates carried a blaNDM-1-harboring plasmid, which could 
spread carbapenem resistance via the horizontal transfer of plasmids in clinical settings. 
Considering the potential as a carrier of antimicrobial resistance genes, P. diazotrophicus 
should be more recognized as a clinically relevant pathogen.
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