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Abstract
Cellular senescence is a state of irreversible cellular growth arrest that occurs in response to various stresses. In
addition to exiting the cell cycle, senescent cells undergo many phenotypic alterations, including metabolic re-
programming, chromatin rearrangement, and senescence-associated secretory phenotype (SASP) development.
Furthermore, senescent cells can affect most physiological and pathological processes, such as physiological
development; tissue homeostasis; tumour regression; and age-associated disease progression, including diabetes,
atherosclerosis, Alzheimer’s disease, and hypertension. Although corresponding anti-senescence therapies are
actively being explored for the treatment of age-associated diseases, the specific regulatory mechanisms of se-
nescence remain unclear. N6-methyladenosine (m6A), a chemical modification commonly distributed in eukaryotic
RNA, plays an important role in biological processes such as translation, shearing, and RNA transcription. Nu-
merous studies have shown that m6A plays an important regulatory role in cellular senescence and aging-related
disease. In this review, we systematically summarize the role of m6A modifications in cellular senescence with
regard to oxidative stress, DNA damage, telomere alterations, and SASP development. Additionally, diabetes,
atherosclerosis, and Alzheimer’s disease regulation via m6A-mediated cellular senescence is discussed. We further
discuss the challenges and prospects of m6A in cellular senescence and age-associated diseases with the aim of
providing rational strategies for the treatment of these age-associated diseases.
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Introduction
With the continuous development of medical technology, the
average life span has been significantly extended [1], and the
world’s aging population is increasing [2]. Epidemiological studies
indicate that approximately 11% of the world’s population is over
60 years of age, and this proportion is estimated to exceed 20% by
the middle of the 21st century. This increase in the aging population
has been associated with a concomitant increase in the incidence of
age-associated diseases such as diabetes, atherosclerosis (AS),
Alzheimer’s disease (AD), and hypertension [3]. A typical feature of
aging in biological individuals is the continuous accumulation of
senescent cells in the body [4,5]. Cellular senescence is a state of
irreversible cellular growth arrest that is accompanied by mitosis
termination, cell cycle arrest, and proliferation marker reduction
[4,6]. There are many causes of cellular senescence, including

oxidative stress, DNA damage, telomere shortening, altered
telomerase activity and structure, and oncogenic stress response
onset [5,7]. At an organismic level, cellular senescence has
advantages and disadvantages. Nonetheless, cellular senescence
facilitates embryonic development, tissue repair and regeneration
and promotes cellular reprogramming [3]. However, cellular
senescence can aggravate oxidative stress, proinflammatory factor
expression, mitochondrial damage, and DNA damage; ultimately,
all of these processes can further affect the normal function of
organs and tissues, causing the development of age-related
diseases. Although many prevention and treatment options for
cellular senescence and age-associated diseases have been ex-
plored, the specific regulatory mechanisms of these treatments
remain unclear.
N6-methyladenosine (m6A) is a common chemical modification
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distributed throughout eukaryotic RNAs. N6-methyladenosine and
its associated enzymes (FTO, ALKBH5, METTL3, METTLI14,
WTAP, and YTHDF2) play important roles in biological processes,
such as translation, shearing, and RNA transcription [8]. With
advances in epigenomics and sequencing technologies, the exact
role of m6A in cellular senescence continues to be revealed. m6A can
regulate cellular senescence by modulating oxidative stress,
telomere length, DNA damage, and senescence-associated secretory
phenotypes (SASPs) [9]. However, m6A-mediated senescence of β-
cells and endothelial cells promotes the development of diabetes.
Furthermore, the m6A-regulated senescence of macrophages and
vascular smooth muscle cells (VSMCs) plays an important role in
the formation of AS; m6A can influence the development of AD by
regulating the senescence of astrocytes [10,11]. Additionally,
senescence of m6A-regulated β-cells [12] promotes the development
of diabetes by reducing β-cell proliferative capacity and decreasing
insulin secretion [13]. Senescence of m6A-regulated VSMCs can
promote an inflammatory environment by increasing interleukin 6
(IL-6), IL-8, and other inflammatory factors, thereby promoting
atherosclerotic plaque formation [14,15]. Therefore, m6A may be a
potential target for the treatment of cellular senescence and age-
associated diseases.
In this review, we focus on the regulation of cellular senescence

by m6A with regard to telomeres, oxidative stress, DNA damage,
and SASP. Additionally, the role of m6A in age-associated diseases
(diabetes, AS, AD, and hypertension) is emphasized from the
perspective of cellular senescence. Finally, we review the potential
challenges and prospects of m6A application in senescence
regulation that may provide new clues for the treatment of
senescence-related diseases.

Basic Knowledge of m6A Methylation
Hundreds of chemical modifications have been identified on RNA,
including m6A, 5-methylcytosine, N1-methyladenosine, and 5-

hydroxymethylcytosine [16]; among these modifications, m6A is
the most common and abundant internal transcriptional modifica-
tion, accounting for approximately 60% of these modifications [16–
18]. N6-methyladenosine modification occurs predominantly on
adenine in the RRAC sequence and can regulate almost every aspect
of mRNA, circRNA, tRNA, and rRNA [19,20], specifically regulating
expression, processing, translation, and decay across these RNA
types [20–22]. The corresponding m6A functionality is typically
associated with writers, erasers, readers, and related enzymes [23].
The primary role of methyltransferase (writer) is to catalyze m6A
methylation modification of RNA in vivo and in vitro with its major
components, WTAP, RBM15/15B, KIAA1429, METTL3, and
METTL14 (Figure 1) [19]. The most studied methyltransferase
component is METTL3, which mainly plays a catalytic role by
forming complexes with METTL14 [19,20,24]. Alternatively,
demethylases (erasers) mediate demethylation modifications on
RNA primarily using the enzymes FTO and ALKBH5 in this process
[8]. The function of the reader (m6A recognition protein) is to
regulate cellular biological processes by reading m6A signals on
RNA [16]. The components of the reader include IGF2BP1/2/3,
YTHDF1/2/3, HNRNPA2B1, and HNRNPC [19,25].
Studies have found that m6A contributes to a variety of biological

processes and plays different roles across these different biological
processes. For example, the role of m6A in development has been
demonstrated in various organisms, such as humans [26], mice
[27], goats [28], pigs [29], and bees [30]. Specifically, the
importance of m6A in the development of different organs, such
as the heart [31], gonads [32], testes [33], brain [34], and
cerebellum [35], is gradually being revealed. Moreover, m6A plays
an important role in the metabolism of organisms, predominantly in
lipid metabolism. In this metabolic process, m6A can regulate the
mRNA of genes related to lipid metabolism to regulate lipid
production, storage, preadipocyte differentiation, and cholesterol
efflux [36]. Additionally, m6A plays an important role in the

Figure 1. The process of m6A RNA methylation and functions of m6A effector proteins in RNA metabolism The m6A effector proteins include
writers, erasers, and readers. The role of writers, including WTAP, RBM15/15B, METTL3, and METTL14, is to catalyze the m6A methylation
modification of RNA. The role of erasers such as FTO and ALKBH5 is to mediate the demethylation modification of RNA. The role of readers,
namely, IGF2BP1/2/3, YTHDC1/2/3, YTHDF1/2/3, HNRNPA2B1, and HNRNPC, is to read the m6A signal on RNA to regulate RNA splicing, processing,
decay, stability and translation, and other biological processes.
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immune response; specifically, m6A can regulate immune cells,
such as macrophages, dendritic cells, lymphocytes and natural
killer cells, and participate in the regulation of immunosuppressive
molecules, such as programmed death ligand 1 (PD-L1), or immune
signalling pathways, such as HIPPO/YAP and WNT/β catenin [37].
Therefore, targeting m6A modifications may be crucial for growth,
development, and disease progression.

Regulatory Role of m6A in Cellular Senescence
Dysregulation at the transcriptional level and alterations in the
translational machinery are key factors contributing to cellular
senescence [38,39], which is strictly controlled by a program that
produces the corresponding senescence phenotype. Alterations in
some chemical modifications of mRNAs during cellular division can
regulate the expression programs of these genes at the transcrip-
tional level by affecting mRNA stability, storage, and translation
[40]. N6-methyladenosine methylation is an important epigenetic
modification in posttranscriptional regulation, ultimately affecting
mRNA stability, storage, translation, and decay [40]. Recently,
numerous studies have demonstrated that m6A is involved in the

regulation of cellular senescence in human umbilical vein endothe-
lial cells, human mesenchymal stem cells (MSCs), β-cells, and other
cells [12,41,42] (Table 1). Therefore, we focus on the function of
m6A in cellular senescence from the perspective of oxidative stress,
telomeres, DNA damage, SASP, and other related molecular
processes at a posttranscriptional level (Figure 2).

m6A in oxidative stress
Oxidative stress is an imbalance between oxidation and antioxidant
action in the body, whereby there is a shift towards increased
oxidation [56]. Oxidative stress causes damage to biological systems
due to the excessive production of reactive oxygen species (ROS)
and reactive nitrogen species (RNS); ultimately, this results in the
oxidation of biomolecules such as lipids, proteins, and DNA [57,58].
Oxidative stress can promote cellular senescence by accelerating
telomeric wear, promoting DNA damage, and increasing SASP
[59,60]. However, the presence of antioxidant systems in the
organism can deter the emergence of oxidative stress. Antioxidant
systems are divided into the following two main categories:
enzymatic and nonenzymatic antioxidant systems. Therefore,

Table 1. The role of m6A in processes associated with cellular senescence

Cellular senescence pathways m6A-related
molecules

Expression m6A level Main functions Cell type Ref.

Oxidative stress YTHDF Elevated Unchanged Promote the formation of
stress particles

Human osteosarcoma cells [43]

FTO Elevated Reduced Increase expression of
superoxide dismutase,
catalase, and quinone
oxidoreductase

Bovine granulosa cells [44]

METTL3/14
FTO

Elevated
Reduced

Elevated Promote glutathione
expression

Human keratin-forming cells [45]

DNA damage METTL3 Elevated Elevated Repair DNA damage caused
by UV exposure

Human osteosarcoma cells,
melanoma cells, hele cells

[46]

ALKBH5 Reduced Elevated Protect cells from DNA
damage

Human embryonic kidney
293 cells

[47]

METTL3 Elevated Elevated Recruit RAD51 and BRCA1
to the DNA break to help
with DNA repair

Human osteosarcoma cells [48]

Telomeres METTL3 Elevated Elevated Inhibit telomere recruitment
and regulates telomere
length

Human hepatocellular
carcinoma cells, human
non-small cell lung cancer
cells, human prostate cancer
cells

[49]

ALKBH5 Elevated Reduced Remove m6A from telomerase
mRNA to facilitate
telomerase breakdown

Human embryonic kidney
293 cells

[50]

METTL3 Elevated Elevated Enhance PARP1 stability and
maintains telomere integrity

Gastric cancer stem cells [51]

SASP METTL3 Elevated Elevated Reduce levels of pro-
inflammatory cytokines,
such as TNF

Macrophages [52,53]

IGF2BP2 Elevated Unchanged Promote IL-17 expression Mouse embryonic fibroblasts [54]

METTL3 Elevated Elevated Promote the activation of
the TRAF6-NF-κB pathway
to promote secretion of
pro-inflammatory cytokines,
such as IL-1β, IL-6, TNF-α
and IL-18

Microglia [55]
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regulating the degree of oxidative stress by modulating the balance
between oxidative and antioxidant systems is an important way to
regulate cellular senescence.
Based on evidence, m6A is altered during oxidative stress. For

example, in models of oxidative stress induced using cobalt and
nitrite, there were significant differences in m6A levels compared to
the normal group; this suggested that these changes may be
associated with demethylases (FTO) and methyltransferases (pri-
marily WTAP and METTL14) [61,62]. Additionally, abnormal m6A
levels were found in oxidative stress-related aspects of disease
lesion processes, such as liver fibrosis and cancer. Moreover,
changes in m6A levels may aggravate oxidative stress [63–67]. For
example, differential m6A methylation during liver fibrosis is
predominantly enriched during oxidative stress [63]. Sun et al.

[64] further demonstrated that m6A mediated by the presence of
YTHDF3 can inhibit oxidative stress by increasing peroxidase
expression and reducing ROS accumulation, thereby promoting
hepatic stellate cell activation and reducing liver fibrosis. Therefore,
targeting m6A to regulate oxidative stress levels may have potential
implications for the prevention and treatment of related diseases.
It has been established that m6A plays an important role in both

the antioxidant and oxidative systems. In the antioxidant system,
m6A can regulate oxidative stress levels via the regulation of related
antioxidant genes or enzymatic/nonenzymatic antioxidant systems
[44,45]. For example, FTO can enhance the antioxidant system by
targeting and regulating m6A to promote the expression of
antioxidant enzymes such as superoxide dismutase, catalase, and
quinone oxidoreductase 1 [44]. In the oxidative system, m6A

Figure 2. Regulatory role of m6A (N6-methyladenosine) in cellular senescence-related processes Telomere shortening, increased SASP secretion,
DNA damage, and oxidative stress are important factors contributing to cellular senescence.Overall, m6A plays an important regulatory role in
these senescence-related processes. During telomere shortening, alterations in m6A levels regulate the cell cycle; ultimately, this regulates cellular
senescence by affecting telomere length and integrity, thereby causing DNA damage and promoting p53/p21 expression. During SASP secretion,
m6A affects the degree of inflammation primarily by regulating the expressions of pro- and anti-inflammatory cytokines; these cytokines, in turn,
affect the progression of cellular senescence by regulating p53/p21 and p16 expression to influence the cell cycle. During DNA damage, m6A
regulates p53/p21 expression by influencing the recruitment of DNA polymerase at the site of damage and regulating DNA break repair, thereby
regulating cellular senescence. During oxidative stress, m6A predominantly acts on oxidative and antioxidant systems to regulate the balance of
oxidation and antioxidation in vivo; overall, this further influences the degree of DNA damage and inflammation levels and ultimately regulates the
process of cellular senescence via cell cycle regulation.
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regulates oxidative stress levels mainly through modulation of
oxidative stress granules. For example, in a study conducted by Fu
et al. [43], it was demonstrated that m6A, in the presence of YTHDF,
promotes the formation of stress granules, which ultimately leads to
increased oxidative stress.
Since the level of oxidative stress determines, to some extent, the

degree of cellular senescence [68,69], targeted modulation of
oxidative stress levels is one of the potential ways to treat cellular
senescence and related diseases; however, several challenges
remain. For example, how to accurately locate the site of oxidative
stress, determine the level of oxidative stress, and determine the
extent of its effect on cellular senescence are current difficulties that
remain to be elucidated. Furthermore, since almost all biologically
relevant molecules can react with most active free radicals at similar
rates, the use of oxidants to scavenge oxygen-containing free
radicals, such as ROS, in vivo has a limited role in the antioxidant
system [70]. However, it is surprising that many studies have
revealed mechanisms by which m6A regulates the oxidative and
antioxidant systems in multiple ways; overall, this understanding
enriches the potential strategies for regulating oxidative stress. With
the advancement of targeted drug delivery techniques and the
discovery of m6A modulators and related inhibitors, it is expected
that targeting m6A to strengthen the antioxidant system and weaken
the oxidative system in the same cell could enable efficient
regulation of oxidative stress levels. Chen et al. [45] demonstrated
that m6A can inhibit cell viability by enhancing oxidative stress;
however, further studies are required to fully demonstrate that m6A
can regulate other key indicators of cellular senescence (e.g., cell
cycle) by modulating oxidative stress levels.

m6A in DNA damage
DNA damage refers to structural changes in DNA due to specific
factors. DNA damage can include mutations, deletions, insertions,
inversions or translocations, and double-strand breaks. There are
several factors that can cause DNA damage, such as physical and
chemical factors; the primary physical factors are UV and ionizing
radiation, whereas the primary chemical factors are alkylating
agents or synthetic chemicals. In addition, DNA can be damaged
spontaneously, for example, by errors in the replication process or
by spontaneous chemical changes in the DNA. The rich genetic
information of an organism is contained in a specific sequence of
DNA bases and DNA structure. DNA is inherently self-repairing
when it is affected by external factors; however, when damage
cannot be repaired, the corresponding genetic information is
permanently altered. DNA damage can also lead to cellular
senescence by causing mitochondrial dysfunction, autophagy
impairment, metabolic disorder, and other processes by impairing
transcription, DNA replication, or epigenetic modifications [71,72].
Therefore, studying the way in which DNA damage is regulated is
an important approach to determine how to delay cellular
senescence.
Currently, DNA damage repair processes primarily include DNA

break repair (single-strand break repair, double-strand break repair,
DNA damage, and telomeric repair), base DNA damage repair
(reversal of DNA damage and base excision repair), and multiple
and bulky base damage repair (including nucleotide excision,
mismatch, and interstrand crosslink repair) [73]. In recent years, it
has been continuously demonstrated that m6A can contribute to a
variety of damage repair processes for multiple classes of DNA. For

example, when catalysed by the methyltransferase METTL3, m6A
can help repair DNA damage caused by UV irradiation by recruiting
DNA polymerase to the site of damage [46]. The results from mouse
studies indicated that m6A directly regulates the translation of DNA
repair-related proteins after recognition by YTHDF1 in a manner
that promotes cap-dependent translation [74]. Zhang et al. [48]
demonstrated that METTL3 at DNA double-strand breaks was
activated by phosphorylation and upregulated m6A levels at the site
of damage, resulting in an increase in RNA–DNA heterodimers at
the site; these heterodimers recruit RAD51 and BRCA1 to the break
and aid DNA break repair. Therefore, regulation of DNA damage
repair by m6A is expected to be an important pathway for future use
in regulating cellular senescence. However, there are still many
challenges in developing this DNA damage repair treatment. For
example, DNA damage repair occurs predominantly in the nucleus,
whereas targeted drug delivery techniques are still at the cellular
level, which makes it difficult to effectively target and regulate
specific microstructures within the cell. Additionally, many path-
ways lead to cellular senescence. Of these pathways, DNA damage
is only one factor leading to cell senescence; therefore, regulation of
DNA damage alone may not be an effective strategy in regulating
cellular senescence. Most importantly, direct evidence that m6A
regulates cellular senescence through DNA damage pathways has
not been directly demonstrated in vitro or in vivo. Therefore, further
investigation is required to confirm this scientific conjecture.

m6A in telomeres
Telomeres are special ‘caps’ located at the ends of chromosomes
that consist of telomeric DNA and shelterin protein complexes. The
main function of telomeres is to maintain chromosome integrity and
prevent chromosome ends from joining [75]. Telomeric function
depends primarily on telomere length and integrity [76]. Telomere
length shortens with increasing cell division and decreasing
telomerase activity. The integrity of telomeres is also damaged over
time. The increase in external stimuli can lead to structural damage
and a decrease in the synthesis rate of telomere components, which
leads to damage to telomeric integrity. This telomeric shortening
and loss of telomere integrity allow DNA double-strand break
production, triggering a DNA damage response (DDR) that leads to
cell cycle arrest and replicative cellular senescence [7,76]. With the
advancement of epigenomic studies, the regulatory role of m6A in
telomeres has been gradually revealed [49]. Exploring the specific
regulatory mechanisms between m6A, telomeres, and cellular
senescence is of great importance for the treatment of cellular
senescence and related diseases. In this section, the effects of m6A
on cellular senescence through the regulation of telomere length
and integrity are specifically addressed.
Telomere length is a key determinant of cellular senescence. The

main factors affecting telomere length include telomerase, the
number of cell divisions, oxidative stress, and DNA damage.
Telomerase, the only intracellular enzyme that can lengthen
telomeres, plays a crucial role in the maintenance of telomere
length [77]. Current studies have shown that m6A can regulate
telomere length by regulating telomerase activity, recruitment, and
components; this regulation by m6A is dependent on the expression
of enzymes such as METTL3, WTAP, YTHDF2, and ALKBH5
[49,78,50]. In human hepatocellular carcinoma cells, METTL3 can
inhibit telomerase activity by suppressing the expression of the
telomerase-related gene CBF5 [78]. Lee et al. [49] showed that
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METTL3 can increase the mRNA degradation of the DNA-binding
protein HMBOX1 by upregulating its m6A levels, leading to reduced
recruitment of telomeric double-stranded DNA and ultimately
preventing telomerase recruitment. Furthermore, this study also
demonstrated that reduced telomerase recruitment shortens telo-
meres, increases p53 expression, blocks the cell cycle, and promotes
cellular senescence. Additionally, in combination with regulating
oxidative stress and DNA damage, m6A was found to play a
regulatory role in other major factors affecting telomere length.
With the maturation of telomere length determination methods,
such as quantitative polymerase chain reaction (qPCR), terminal
restriction fragment (TRF) analysis, single telomere length analysis
(STELA), and telomere shortest length assay (TeSLA), it is
beneficial to pinpoint telomeres that are at abnormal lengths [79].
In the future, it is expected that the regulation of telomeres by m6A
will be used to delay cellular senescence in the clinic; however,
various challenges remain. For example, there are many factors that
influence telomerase recruitment and activity; therefore, aberrant
expression of any one of these factors could influence these
processes. Nonetheless, it is unclear whether components other
than HMBOX1 and cbf5 are regulated by m6A. Therefore, more
evidence is needed to demonstrate that m6A regulates cellular
senescence through the regulation of telomere length.
Telomere integrity refers to the structural and functional integrity

of telomeric proteins and DNA, which serve to protect chromo-
somes from loss of genetic material [80]. When telomere integrity is
compromised, it accelerates aging by targeting chromosome
degradation and telomere shortening [81,82]. With the develop-
ment of epigenomic techniques and in-depth studies on telomere
structure and function, m6A was found to maintain telomere
integrity by regulating telomeric DNA cofactors and telomerase
under the regulation of METTL3 and YTHDF1. For example, m6A
targets the mRNA of the cofactor PARP1 (one of the important DNA
breakage molecule receptors of the DDR pathway) under the
modification of YTHDF1, thereby mediating DNA damage repair by
enhancing the stability of PARP1 [51] and ultimately maintaining
telomere stability [83]. Although m6A has not been found to
regulate telomere integrity through the regulation of telomeric
proteins, several studies have indicated that m6A can regulate
telomeric proteins. For example, telomeric proteins are predomi-
nantly composed of the shelterin protein complex, consisting of the
six subunit proteins TRF1, TRF2, RAP1, TIN2, TPP1, and POT1.
Mao et al. [84] utilized whole transcriptome analysis and
determined that differential expression of m6A may be associated
with the RAP1 signalling pathway. Therefore, in the future, it is
expected that a combined transcriptomic and telomere length assay
technique could be used to accurately identify telomeres in
senescent cells that are in abnormal condition; maintenance of
telomere integrity using the METTL3-METTL14 complex inhibitor
S-adenosylhomocysteine [85,86] and the FTO inhibitor IOX3 [87]
could then be used to target and regulate m6A levels, thereby
delaying cellular senescence. However, further research is required
to resolve current difficulties in this potential treatment. All six
subunit proteins of the shelterin protein complex can be key factors
affecting telomere integrity, but only one subunit protein, RAP1, has
been found to be regulated by m6A; this current understanding can
be attributed to the lack of research to confirm the regulatory role of
m6A in the other five subunit proteins, TRF1, TRF2, TIN2, TPP1,
and POT1. However, there are various epigenetic modifications

involved in cellular senescence; in addition to m6A, they include
histone modifications and DNAmethylation. Therefore, the efficacy
of modulating m6A alone to delay cellular senescence is limited;
additionally, the use of a specific class of drugs tends to make the
organism resistant to that specific drug class. However, the
sophistication of transcriptomics and proteomics technologies has
made it simple to explore the regulatory role of m6A in proteins such
as TRF1 and TRF2. In addition, combined epigenetic therapies have
been clinically shown to significantly improve efficacy [88,89] and
have demonstrated complementary and synergistic effects on
different targets [90,91].

m6A in the SASP
The SASP is one of the main features of senescent cells; specifically,
the SASP typically refers to cytokines that are secreted by cells
during senescence that alter the microenvironment [92]. The
biological function of SASP can be contradictory, and SASP is
beneficial to humans in promoting wound healing and tissue repair;
however, it can alternatively promote chronic inflammation, alter
the tissue microenvironment, promote senescent cell accumulation,
and cause senescence-associated diseases [93,94]. The cytokines
secreted across different ageing processes vary somewhat, and the
type of cytokine secreted usually depends on the SASP trigger
pathway [95]. DDR, stress kinases, inflammasomes, inflammation,
and cell survival-associated transcription factors are common SASP
trigger pathways [92]. With increasing age, cellular SASP secretion
increases; additionally, increased SASP accelerates senescence of
nearby cells through paracrine action [96]. Therefore, it is important
to investigate the regulatory mechanisms of SASP to delay cellular
senescence. The inflammatory factors that are the main features of
SASP are the various cytokines with anti- or proinflammatory
effects that participate in and mediate the inflammatory response
[97]. The balance of anti- and proinflammatory factors determines
the trend of the inflammatory response. Anti-inflammatory factors
predominantly include IL-4/10/35 and transforming growth factor β
(TGF-β); proinflammatory factors mainly include IL-1β/2/6/15/16/
17; tumour necrosis factor (TNF); and interferon γ (IFN-γ) [98–100].
In this section, the production and secretion mechanisms of
inflammatory factors in the SASP are discussed, and the epistemic
regulatory mechanisms of the SASP are revealed, providing new
ideas for the prevention and treatment of aging.
The epigenetic regulation of inflammation has received much

attention in recent years, especially with regard to m6Amodification
[101,102]. For example, in the lipopolysaccharide (LPS)-induced
inflammatory response, METTL3 regulates m6A on TNF receptor-
associated factor 6 (TRAF6) mRNA; this leads to reduced expression
of TRAF6 and inhibition of the NF-κB and MAPK signalling
pathways, which ultimately leads to increased inflammation
[103]. Recently, m6A was demonstrated to regulate cellular
senescence through the regulation of pro- and anti-inflammatory
factors. With regard to proinflammatory factors, when under the
modification of METTL3 and IGF2BP2, m6A can regulate the
secretion of cytokines through the NF-κB and MAPK inflammatory
signaling pathways. Specifically, when under METTL3 modifica-
tion, m6A can regulate the levels of proinflammatory cytokines,
such as TNF, by modulating NF-κB and MAPK, thereby regulating
LPS-induced macrophage inflammation [52,53]. Increased proin-
flammatory factors can, in turn, trigger cellular senescence by
accelerating telomere shortening, increasing DNA damage, and
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promoting SASP secretion via the activation of senescence-related
pathways such as p16 and p53/p21 [104]. In regard to anti-
inflammatory factors, m6A can modulate cytokines through the
regulation of the p38 and MAPK inflammatory signalling pathways
under METTL3 modification. Elevated METTL3 in human kerati-
nocytes specifically regulates inflammatory responses by upregulat-
ing m6A levels to induce increased secretion of the anti-
inflammatory cytokine IL-10 [105]. Given that anti-inflammatory
cytokines can interact with proinflammatory cytokines to influence
the SASP-induced inflammatory response and cellular senescence
[106,107], there is some evidence of a potential role for m6A in
cellular senescence by targeting the production of pro- and anti-
inflammatory factors. At present, m6A is only superficially studied
in other SASPs (e.g., growth factors, chemokines, and matrix
remodelling enzymes); therefore, further confirmation of its role in
these SASP factors is needed. As m6A can regulate multiple aspects
of RNA metabolism, it is expected that m6A could be effective in
delaying cellular senescence by simultaneously regulating multiple
SASPs, such as proinflammatory factors, anti-inflammatory factors,
growth factors, and chemokines.

m6A Methylation in Age-related Disease
Cells serve as the basic units of structure and physiology that
constitute an organism. An increase in their level of senescence
leads to a deterioration in the function of the corresponding organs
and tissues and is implicated in AS [108,109], AD [110,111],
diabetes [112,113], Parkinson’s disease (PD) [114], chronic
obstructive lung disease [115], insulin resistance [116], cancer
[117,118], and osteoporosis [119]. The involvement of mRNA
methylation in multiple aspects of cellular senescence provides the
basis for a more comprehensive and in-depth exploration of the
epigenetic mechanisms underlying various age-associated diseases.
Therefore, this section describes the changes in m6A in senescence-
associated diseases and addresses the potential mechanisms by
which m6A regulates these diseases via the regulation of cellular
senescence (Table 2).

m6A methylation in diabetes
Diabetes mellitus is a metabolic disease that can be caused by the

pancreas not being able to produce enough insulin or the body not
being able to use this insulin effectively and is, therefore,
characterized by higher-than-normal blood glucose ranges. Ageing
is considered to be a major risk factor for the development of type 2
diabetes [126,127]. A study of US adults indicated a diabetes
prevalence of 2.9% for those aged 20‒44 years, 12.4% for those
aged 45‒64 years, and 19.8% for those aged 65 years and older
[128]. Cellular senescence is a fundamental mechanism of aging,
which has been confirmed to be crucial for the development of
diabetes. Specifically, cellular senescence in diabetes-related cells,
such as β-cells [129] and endothelial cells [120], accelerates the
development of diabetes with increased oxidative stress, DNA
damage, and SASP [130]. In recent years, studies have continued to
identify abnormal expression of m6A in patients with type 2 diabetes
mellitus [131], a mouse model of high-fat diet-induced hepatogenic
diabetes [132], and a mouse model of diabetic nephropathy [133];
these changes in m6A expression levels have been determined to
further affect hepatogenic diabetes in mouse models [132].
Combined with the important role of m6A in cellular senescence
and senescence-related processes (oxidative stress, SASP, and DNA
damage) [130,134,135], the mechanism by which m6A regulates
diabetes through this regulation of cellular senescence is addressed
in this section, thereby providing information that can be useful in
the development of prevention and treatment strategies for
diabetes.
m6A regulates diabetes through modulation of β-cell
senescence
The primary biological function of β-cells is to synthesize insulin
and sense the need for insulin secretion. Since insulin secreted by β-
cells is the only hypoglycemic hormone in the body, β-cells plays a
crucial role in the regulation of blood glucose in the body [136].
Studies have demonstrated that in β-cells, oxidative stress, DNA
damage, and increased secretion of SASP in senescence lead to a
reduced proliferative capacity, disturbed transcription and protein
homeostasis, and increased β-cell dysfunction; ultimately, this leads
to reduced insulin secretion and increased insulin resistance,
thereby promoting the development of diabetes [13,129,137–139].
In almost all types of diabetes, senescent β-cell numbers are
increased, and β-cell function is impaired [140]. Currently, the main

Table 2. The role of m6A in the regulation of age-associated diseases

Diseases Senescent cells m6A-related
molecules

Expression m6A level Effects of m6A on disease through cellular
senescence

Ref.

Diabetes β-cells METTL3/14 Reduced Reduced Regulation of the insulin/IGF1-AKT-PDX1
signalling axis blocks the β-cell cycle and
inhibits insulin secretion

[12]

Vascular endothelial cells METTL3 Reduced Reduced Inhibits endothelial cell proliferation,
reduces cell viability and migration, leads
to vascular endothelial cell senescence,
and causes insulin resistance

[120]
[121]

AS VSMCs YTHDC Reduced Reduced Inhibits smooth muscle proliferation and
G1-S phase, leading to vascular smooth
muscle cell senescence and promotion of
AS development

[122]
[123]

Endothelial cells METTL3 Reduced Reduced Promotes the formation of atherosclerotic
plaques

[124]

AD Astrocytes METTL14 Reduced Reduced Prolongs the cell cycle of radial glial cells,
causes astrocyte senescence, and
promotes the AD development

[125]
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strategies for improving β-cell function include culturing pancreatic
stem cells for in vitro regeneration and using the patient’s own stem
cells to induce differentiation of these stem cells into β-cells and
induce β-cell proliferation in vivo. However, each of these
approaches has its own limitations. For example, the use of stem
cells for in vitro regeneration therapy may be associated with
artificially uncontrollable proliferation and differentiation of stem
cells, alongside the application of other stem cells, which may be
highly tumorigenic. Removal of senescent β-cells has been shown to
be beneficial in improving β-cell function and preventing the
development of diabetes [13]. Therefore, modulation of β-cell
senescence is a key strategy to treat diabetes.
With an increasing focus on epigenomic studies, m6A has been

found to regulate β-cells in both physiological and pathological
states. The levels of m6A, METTL3, METTL14, ALKBH5, and
YTHDF1 have been observed to be lower in the β-cells of patients
with diabetes than in healthy participants; in contrast, there is no
observable change in α-cells between these two groups [12].
Recently, m6A has been suggested to regulate β-cell senescence by
regulating the cell cycle and proliferation of these cells. For
example, Jesus et al. [12] demonstrated that by targeting METTL3
and METTL14, the insulin/IGF1-AKT-PDX1 signalling axis is
regulated, resulting in the downregulation of m6A levels and
impairment of cell cycle arrest and glucose-stimulated insulin
secretion in β-cells. Furthermore, m6A modification by the reader
IGF2BP2 can regulate β-cell proliferation by regulating PDX1 [141].
Although there are no current studies that directly demonstrate that
m6A can regulate diabetes through the regulation of β-cell
senescence, the differential expression of m6A upon regulating
key indicators of cellular senescence and diabetic β-cells demon-
strates the potential value of m6A in this process.
m6A regulates diabetes by modulating endothelial cell
senescence
Endothelial cells are a layer of cells in the intima of blood vessels
that reduce vascular permeability, are antithrombotic, regulate
VSMCs and are involved in the regulation of signalling, immunity,
and inflammation [142]. When endothelial cells are dysfunctional,
they may cause insulin resistance via increased levels of inflamma-
tion and oxidative stress and reduced endothelial-mediated
vasodilation; ultimately, this can lead to the development of
diabetes [143]. Furthermore, it has been found that endothelial
dysfunction usually precedes the onset of diabetes [120]. Endothe-
lial senescence, caused by increased levels of oxidative stress with
aging and telomere shortening, is one of the key factors contributing
to endothelial cell dysfunction and diabetes. Therefore, exploring
the regulatory mechanisms of endothelial cell senescence is
beneficial for the prevention and treatment of diabetes.
m6A has been observed to be involved in the regulation of

endothelial cell senescence. For example, Li et al. [144] found that
m6A can delay endothelial cell senescence by regulating the
expression of p21 and p16, whereas FTO can promote endothelial
cell senescence. In endothelial cells, METTL3-, METTL14-,
YTHDF2-, and IGF2BP2-mediated m6A modifications are involved
in the regulation of cellular senescence–associated pathways, such
as proliferation, migration, inflammation, and viability; addition-
ally, corresponding studies have indicated that m6A can regulate
endothelial cell senescence [41,133,121]. For example, m6A levels
within retinal microvascular endothelial cells (RMEC) were
observed to be higher in a mouse model of diabetes than in normal

controls, suggesting that the targeting of m6A on integrin (ITGB1)
mRNA by YTHDF2 resulted in inhibition of RMEC proliferation and
migration [145]. This study suggests that m6A may influence the
development of diabetes and its complications by regulating RMEC
senescence. Fan et al. [38] showed that dasatinib and quercetin
alleviate HUVEC senescence in a YTHDF2-dependent manner
through the TRAF6-MAPK-NF-κB axis of the inflammatory signal-
ling pathway. Furthermore, Yao et al. [121] demonstrated that
reduced expression of the m6Amethyltransferase METTL3 inhibited
endothelial cell viability, proliferation, and migration in vitro.
Although these studies demonstrated to some extent that m6A can
regulate key indicators of cellular senescence, they failed to
demonstrate significant changes in the endothelial cell senescence
cycle and expression of p53, p21, p16 and other key senescence
indicators following this m6A regulation of inflammation, prolifera-
tion, and migration in these same cells. Therefore, future studies are
needed to further demonstrate that m6A regulates the proliferation
and migration of RMEC and other key senescence indicators and
thus clearly reveal whether m6A can regulate endothelial cell
senescence and diabetes.

m6A methylation in AS
AS is a chronic inflammatory disease that refers to atherosclerotic
lesions within the vessel wall due to plaque accumulation [146]. AS
formation is initiated by smooth muscle cell and macrophage
dysfunction or senescence; specifically, this is caused by elevated
levels of inflammation and oxidative stress and dysregulated lipid
metabolism [147,148]. Cellular senescence can drive AS in human
premature aging syndromes, characterized by a marked accumula-
tion of early senescent cells that lead to an increased incidence of
this disease [149,150]. Notably, modulating or targeting the
removal of senescent cells has been identified as a potential therapy
for AS [151], and progress has been made in the development of
drugs with anti-ageing properties, such as polyphenols, metformin,
and rapamycin [152,153]. Alternative antiaging drugs, such as
quercetin, laccasein, and curcumin, have also been proposed for the
treatment of AS [154]. The limitations of drug side effects and
targeted delivery techniques have led to these current approaches
being ineffective in clearing senescent cells and treating AS. With
advances in epigenomic technologies, an increasing number of
studies have identified a regulatory role for m6A in cellular
senescence and AS. For example, m6A and proteins such as WTAP,
METTL3, METTL5, and YTHDF2 are significantly differentially
expressed in healthy individuals when compared to corresponding
expression levels in patients with AS [155]. Targeted regulation of
m6A and its related proteins (e.g., METTL3 and METTL14) is
effective in improving AS and its associated cardiovascular
diseases. For example, increased m6A modification of FOXO1
mRNA promotes the formation of AS plaques [156]. Alternatively,
METTL3 knockdown has been observed to block AS progression by
inhibiting the JAK2/STAT3 pathway via IGF2BP1 [108]. Therefore,
this section summarizes the specific mechanisms by which m6A
regulates AS through modulation of cellular senescence.
VSMCs are one of the components of the vascular mesothelium

and play an important role in a variety of physiological processes.
VSMCs are a major cell type involved in the atherosclerotic process;
these cells are important throughout the entire development of AS
and undergo phenotypic transformations in AS plaques [122].
VSMC senescence in human AS is widely accepted. Matthews et al.
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[157] identified a significantly increased number of senescent
VSMCs in advanced human AS lesions compared to that in healthy
vessels and showed replicative VSMC senescence in human AS.
Furthermore, Grootaert et al. [15] established that there was a
significantly increased number of senescent VSMCs in AS plaques in
a mouse model of AS compared to normal mice. VSMC senescence
can promote AS through lipid-mediated oxidative DNA damage and
telomere dysfunction [15]. Therefore, delaying VSMC senescence
may be an important way to treat AS. For example, in a study
conducted by Grootaert et al, the deacetylase SIRT6 was shown to
protect smooth muscle cells from senescence and reduce AS [15].
However, current SIRT6 have limited effects in regulating VSMC
senescence and AS. Therefore, it is important to explore the
mechanisms that effectively delay VSMC senescence for the
treatment of AS.
As the physiopathological function of m6A has been studied

extensively, the function of m6A in regulating VSMC senescence and
AS has been confirmed. The regulation of AS by m6A is dependent
on METTL3, METTL14, and IGF2BP1. For example, under METTL3
modification, m6A can stabilize atherosclerotic plaques by regulat-
ing the miR-375-3p/PDK1 axis [158]. VSMC senescence by m6A is
predominantly regulated by the modification of METTL3,
METTL14, WTAP, and FTO, which regulate the VSMC longevity
gene SIRT6, proliferation, migration, and inflammation
[11,14,15,159]. Promotion of WTAP inhibits the viability, prolifera-
tion, and migratory potential of VSMCs; in contrast, inhibition of
WTAP restores the total panaxoside (TPNS)-induced inhibition of
cell viability, proliferation, and migratory potential of VSMCs [160].
METTL3 knockdown has been observed to inhibit the proliferation
and migration of human coronary artery smooth muscle cells
(HCASMCs) through downregulation of m6A level and has been
found to play a role in AS [14]. Nonetheless, this study did not
directly demonstrate that m6A can regulate senescence in HCASMCs
due to the reduced proliferation and migration capacity that is
characteristic of senescent cells; however, it could also go some way
to suggest that m6A regulates senescence in HCASMCs. Alterna-
tively, Du et al. [161] determined that METTL14 regulates SIRT6 in
hepatoma cells by regulating m6A levels on USP48 (ubiquitin-
specific peptidase 48) mRNA; in another study, it was shown that
SIRT6 protects smooth muscle cells from senescence and reduces
AS. Therefore, it is hypothesized that a METTL14-m6A-SIRT6-VSMC
cellular senescence mechanism may exist in VSMCs. Nonetheless,
further demonstration of the differential expression of m6A in
senescent VSMCs with AS plaques is needed to more wholly
determine whether m6A can regulate AS through modulation of
VSMC senescence and to demonstrate that VSMC senescence
markers and AS markers are altered accordingly in correspondence
with m6A levels.

m6A methylation in AD
AD is a neurodegenerative disease associated with human aging and
is an important contributor to dementia [162,163]. Factors currently
considered to contribute to AD include cellular senescence,
mitochondrial dysfunction, DNA damage, cholinergic dysfunction,
inflammation, tau protein phosphorylation, β-amyloid (Aβ) aggre-
gation, and neurotoxicity [164–167]. Because of the complex
pathogenesis of AD, corresponding treatment is currently limited
to only two classes of cholinesterase inhibitors, such as donepezil,
and N-methyl-D-aspartate receptor antagonists, such as memantine

[168,169]. Therefore, it is of great importance to clarify the exact
mechanism of AD pathogenesis and to develop novel drugs for its
treatment. As AD research progresses, the senescence of cells, such
as astrocytes, microglia, and neural stem cells, has been implicated
in the development of AD; further studies have demonstrated that
cellular senescence promotes AD development by promoting Aβ
and tau protein lesions [170]. Moreover, removal of senescent cells
has been shown to cause a resulting reduction in Aβ and tau protein
lesions in the brain; overall, this resulted in improved memory in
mouse models of AD [171–173]. Recently, it was found that m6A
plays an important role in cellular senescence and AD [174].
Therefore, this section integrates the regulatory relationship
between m6A, cellular senescence, and AD to provide an important
reference for AD treatment.
Astrocytes are abundant neuroglia in the central nervous system

[175], with key roles in maintaining neuronal viability and
transmitter metabolism and participating in signalling [176,177].
When astrocytes age, they contribute to the development of AD
through increased SASP, Aβ accumulation, tau protein phosphor-
ylation, synaptic dysfunction, neuronal loss, and deposition of
neurogenic fibrillary tangles [178,179]. The number of senescent
astrocytes in brain tissue increases with age, and the number of
senescent astrocytes in brain tissue is significantly higher in patients
with AD than in patients without AD of the same age [179]. Bussian
et al. [171] determined that clearing senescent astrocytes in a mouse
model of tau-dependent neurodegenerative disease facilitated
improvements in cognitive function in patients with neurodegen-
erative diseases, such as AD. Therefore, targeted modulation of
astrocyte senescence is a potential strategy for AD treatment.
The regulatory role of m6A in astrocytes and AD has been

gradually revealed. For example, Cockova et al. [180] found that the
level of FTOwas significantly elevated in astrocytes in an ADmodel;
therefore, it was hypothesized that FTO targets m6A to regulate the
development of AD. m6A has been determined to have the potential
to regulate astrocyte senescence by regulating the astrocyte cell
cycle and the corresponding SASP. For example, radial glial cells are
a specific type of astrocyte [181]; a corresponding knockdown of
METTL14 decreased m6A level and prolonged the cell cycle in this
cell type [125]. Another study noted that during inflammation
induced by LPS stimulation of human astrocytes, elevated levels of
METTL3 and m6A can suppress the inflammatory response by
inhibiting the expression of the inflammatory vesicle NLRP3.
Additionally, it was demonstrated that inhibition of the inflamma-
tory response may be associated with reduced levels of proin-
flammatory factors, such as IL-6 and TNF-α, and increased levels of
the anti-inflammatory factor IL-10 [182]. Since elevated m6A levels
lead to altered expression levels of SASP factors, such as IL-6 and
TNF-α, it is hypothesized that m6A may be involved in the
regulation of human astrocyte senescence. In conclusion, it is
postulated that m6A may regulate the development of AD by
modulating the senescence regulation of glial cells. However, it is
still unclear whether m6A plays a regulatory role in oxidative stress,
DNA damage, mitochondrial dysfunction, and other key factors that
contribute to astrocyte senescence and AD. At present, two key
difficulties need to be addressed to allow full demonstration of the
potential m6A-dependent mechanisms in astrocyte senescence and
AD. First, in astrocytes, the modulation of more typical indicators of
senescence by m6A still needs to be demonstrated, such as p53/p21,
p16, and LaminB1, or the number of positive SA-β-gal in astrocytes.
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Second, it is necessary to demonstrate whether alterations in m6A
levels in AD models significantly affect the number of senescent
glial cells and the development of AD. Notably, advances in
proteomics, transcriptomics, and molecular biology techniques
have made it easier to address these difficulties.

Perspectives and Challenges
With the emergence of an increasing aging population, the
prevention and treatment of age-associated diseases have become
a crucial focus in current research. Many studies have made
significant progress in elucidating the role of m6A and cellular
senescence in age-associated diseases [15,183]. With advances in
epigenomic techniques, the regulatory role of m6A in cellular
senescence is gradually being revealed, and the potential mechan-
isms of m6A-dependent cellular senescence-age-associated diseases
are gaining increasing attention [9]. The use of transcriptomic
techniques, hydrogen peroxide, oncogene-induced cellular senes-
cence models, and shock stress-induced AS models are expected to
be tools for the future treatment of senescence-related diseases
[184]. Given that cellular senescence is caused by a combination of
alterations, such as increased oxidative stress, increased DNA
damage, telomere shortening, and increased SASP, the effect of
regulating cellular senescence from a single aspect is limited.
Therefore, the biggest challenge in this field is how to effectively
delay cellular senescence through simultaneous modulation of
multiple factors. As m6A plays a regulatory role in several key
factors of cellular senescence, targeting m6A to regulate cellular
senescence is a promising strategy in the treatment of age-
associated diseases.
More importantly, m6A regulators and their related inhibitors,

such as cyclophosphamide [185], the METTL3-METTL14 complex
inhibitor S-adenosylhomocysteine [186,187], and the FTO inhibitor
FB23-2 [188], continue to be discovered; these findings continue to
reveal new directions for future cellular senescence studies. With
advances in targeted drug delivery technologies, such as liposomes,
receptor-targeted drug delivery, milliparticulate formulations, and
special carriers [189], it is expected that the future regulation of m6A
levels in specific organs, tissues, and cells will be developed to
reduce cellular senescence across these specific sites. Several m6A-
regulated proteins (e.g., SIRT1) have been identified to influence
the development of senescence-related diseases by regulating
cellular senescence [190,191]; to some extent, this discovery reveals
the potential mechanism of m6A-dependent cellular senescence-
related diseases. Additionally, this review provides the first
summary of m6A-regulated senescent cells in senescence-associated
diseases; overall, this is important for future research in under-
standing potential targets to regulate cellular senescence in the
treatment of senescence-associated diseases. However, there are
still many questions that need to be addressed to utilize m6A as a
targeted treatment for senescence-related diseases. First, the
development of senescence-related diseases is typically associated
with the senescence of multiple cells; therefore, targeted adminis-
tration of m6A requires the use of multiple different targeted
delivery modalities to effectively regulate these different cell types,
which is a considerable challenge for current research. Second, the
use of m6A modulators to target specific cells lacks specificity;
therefore, this approach may activate nonsense sequences in genes,
causing unpredictable consequences. Third, senescent cells may be
caused by dysregulation of m6A levels within one or more

organelles; because m6A plays multiple roles within a given
organelle, targeting and regulating m6A levels in a specific organelle
and reducing side effects present complications that need to be
addressed. Interestingly, with the continuous development of
epigenetic and experimental techniques, there is an increase in
studies that use targeted RNA modifications to regulate inflamma-
tion and related diseases [192,193]. It is beneficial to use targeted
m6A RNA modifications to regulate the secretion of inflammatory
factors to reduce cellular senescence; furthermore, targeting m6A
RNA modification can help to improve immune function decline
and metabolic abnormalities due to alterations in m6A regulators. In
addition, with the advancement of combination drug therapies, it is
necessary to achieve the simultaneous targeting of multiple
senescent cells associated with senescence-related diseases and
multiple organelles within these cells to effectively regulate these
diseases.
Notably, in addition to the regulatory mechanisms of m6A-β-cell/

vascular endothelial cell senescence-diabetes, m6A-vascular
smooth muscle/endothelial cell senescence-atherosclerosis, and
m6A-astroglial cell senescence-Alzheimer’s disease discussed in this
review, the regulatory roles of m6A and cell senescence have been
observed in osteoarthritis (OA) [183], intervertebral disc degenera-
tion (IVDD) [194–196], osteoporosis [197], and other musculoske-
letal system degenerative diseases [195,196]. For example, several
studies have shown dysregulated expression levels of METTL3,
FTO, and YTHDF2 in patients with OA and animal models of OA
[198–200]. Another study showed a significant increase in
senescent fibroblast-like synoviocytes (FLSs) in patients with OA
and mouse models of OA and further clarified that METTL3-
mediated m6A regulates autophagy by affecting the stability of
ATG7 mRNA, thereby regulating FLS senescence and OA progres-
sion by affecting SASP secretion [183]. The prevalence of IVDD
typically increases with age, and a number of studies have now
confirmed that nucleus pulposus cell (NPC) senescence is an
important cause of IVDD [201–203]. Li et al. [194] found that m6A
levels were dysregulated in senescent NPCs. Animal experiments
revealed that targeting m6A on lncRNA NORAD regulates E2F3, a
key regulator of the cell cycle via PUM1/PUM2, thereby affecting
NPC senescence and ultimately regulating IVDD [194]. Another
study that focused on NPC senescence revealed a novel mechanism
by which m6A, regulated by ALKBH5, targets NPC senescence via
the DNMT3B/E4F1 pathway to regulate IVDD [195]. Bone forma-
tion-related cell (e.g., osteoblasts, bone lining and MSCs) senes-
cence is an important factor that contributes to osteoporosis [204],
and it has been demonstrated that senescent cell removal can
reduce the development of osteoporosis [205]. In recent years, the
regulatory role of m6A in osteoporosis has also been consistently
demonstrated [119,206,207]. In a study by Wu et al. [197], animal
experiments were conducted and confirmed that Mettl3 deficiency
in bone marrowMSCs leads to osteoporosis, demonstrating to some
extent the feasibility of targeting m6A to regulate bone formation-
related cells for the treatment of osteoporosis. However, in this
study, the role of m6A in the regulation of osteoporosis was not
demonstrated to be related to the senescence of bone marrowMSCs.
Notably, in another study, METTL14 upregulation was noted to
promote bone marrow MSC proliferation [208]. m6A may play a
regulatory role in bone marrow MSC senescence, and a large
amount of research evidence is still required to confirm the
therapeutic strategy for m6A-bone marrow MSC osteoporosis. In
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conclusion, the above studies revealed the potential value of
targeting m6A to regulate senescence-related musculoskeletal
system degenerative diseases from a cellular senescence perspec-
tive.
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