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Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disease that can cause female infertility and bring economic 
burden to families and to society. The clinical and/or biochemical manifestations include hyperandrogenism, persistent ano-
vulation, and polycystic ovarian changes, often accompanied by insulin resistance and obesity. Although its pathogenesis is 
unclear, PCOS involves the abnormal regulation of the hypothalamic-pituitary-ovarian axis and the abnormal activation of 
GnRH neurons. Neuropeptide Y (NPY) is widely distributed in the arcuate nucleus of the hypothalamus and functions as 
the physiological integrator of two neuroendocrine systems, one governing feeding and the other controlling reproduction. 
In recent years, an increasing number of studies have focused on the improvement of the reproductive and metabolic status 
of PCOS through the therapeutic application of NPY and its receptors. In this review, we summarize the central and periph-
eral regulation of NPY and its receptors in the development of PCOS and discuss the potential for NPY receptor–related 
therapies for PCOS.
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Introduction

Polycystic ovary syndrome (PCOS)—also known as the 
Stein-Leventhal syndrome which was first reported by Stein 
and Leventhal in 1935 [1, 2]—is the most common endo-
crine disease among women of childbearing age. According 
to the current diagnostic criteria, the global prevalence of 
PCOS is 4–21% [3, 4]. Patients with PCOS have various 

clinical sequelae that are serious in nature, including severe 
mental health problems (e.g., reduced quality of life, poor 
self-esteem, depression, and anxiety), reproductive com-
plications (infertility and pregnancy issues), and metabolic 
implications (insulin resistance (IR), metabolic syndrome, 
and diabetes). Due to the heterogeneity and clinical char-
acteristics of PCOS, its course may vary throughout a per-
son’s lifetime [5]. At present, the most common treatment 
options for PCOS include lifestyle changes (especially diet 
and strengthening exercises) and drugs, which help regulate 
the menstrual cycle, reduce androgen levels, improve IR, and 
promote ovulation. Treatment for PCOS may also require 
surgery. These therapeutic options primarily focus on the 
treatment of symptoms; however, in some cases, they do not 
produce satisfactory results [6].

Although PCOS has been known for a long time, its 
pathophysiological mechanism remains unclear. Imbalance 
of the hypothalamic-pituitary-ovarian (HPO) axis is consid-
ered an important pathophysiological mechanism of PCOS 
[7]. Gonadotropin-releasing hormone (GnRH) neurons pro-
ject to the median eminence and release pulses of GnRH 
peptide directly into the pituitary portal vasculature that 
drive the pulsatile release of the gonadotropin-luteinizing 
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hormone (LH) and follicle-stimulating hormone (FSH) from 
the pituitary gland [1, 8]. Abnormal GNRH pulse release 
can lead to an abnormal LH/FSH ratio. Hormone tests in 
women with PCOS show elevated LH levels. This has also 
been observed in letrozole-induced PCOS mouse models 
[9]. Studies have shown that NPY acts directly on GnRH 
neurons [10, 11] and affects metabolism and reproduction.

Neuropeptide Y (NPY) is a 36–amino acid neuropeptide 
that is highly conserved among species and is one of the 
most abundant neuropeptides in the central nervous system 
of mammals [12–15]. Five mammalian NPY receptors (Y1, 
Y2, Y4, Y5, and Y6) have been cloned in mammals. The Y1, 
Y2, Y4, and Y5 receptors are all G-protein coupled. The Y6 
receptor is truncated in most mammals (including humans) 
but is functional in mice [16]. Neuronal NPY participates 
in the regulation of feeding behavior [17], reproductive 
behavior [18], energy homeostasis [19], and memory storage 
[20]. Hypothalamic NPY is an important central regulator of 
sexual behavior and reproductive functions [21]. In addition, 
NPY is the strongest appetite-promoting factor in the hypo-
thalamus and controls eating behavior [22]. NPY stimulates 
appetite, causes overeating, increases body fat, lowers body 
temperature, and inhibits sympathetic nerve activity [22].

Pathophysiology of PCOS

Globally, PCOS is the most common endocrine disease and 
one which causes female infertility [23]. Despite decades of 
research, the etiology and pathophysiological mechanisms of 
PCOS are as yet poorly understood [24–26]. Abnormal ovar-
ian steroid production [27, 28], IR and hyperinsulinemia [29], 
and abnormalities in neuroendocrine control [30] are consid-
ered to be the main causes of PCOS. In most patients with 
PCOS, the pulse frequency of LH release increases and that 
of FSH release decreases, suggesting that GnRH pulse fre-
quency is faster [31]. Conversely, high LH levels contribute to 
an increase in androgen secretion from the ovarian follicular 
membrane cells, whereas a decrease in FSH levels can disrupt 
follicular maturation and ovulation. PCOS results in increased 
secretion of GnRH/LH and a weaker response to exogenous 
estrogen and P4 [32], indicating that the negative feedback 
effect of steroid hormones on GnRH neurons is impaired [33]. 
Some neurotransmitter and neuropeptide receptors expressed 
in GnRH neurons directly regulate the release of GnRH, LH, 
and FSH [34]. Moreover, IR and compensatory hyperinsuline-
mia play a major role in the pathophysiology of PCOS. Exces-
sive levels of insulin act synergistically with LH to stimulate 
the production of excessive levels of androgens. This inhibits 
the production of sex hormone-binding globulin (SHBG) by 
the liver [35] and increases the concentration of free testos-
terone. The pathophysiology of PCOS is depicted in Fig. 1.

Effect of NPY on the reproductive system

Infertility is a common manifestation of PCOS, and 
approximately 90–95% of anovulatory infertility is caused 
by PCOS [5]. The reproductive system is controlled by 
the hypothalamic–pituitary–gonadal (HPG) axis [36], and 
depends on the proper functioning of the GnRH neuron 
network [23]. GnRH neurons secrete GnRH peptide into 
the pituitary portal system in timed pulses to promote the 
pulsating release of LH and FSH [37, 38]. Evidence sug-
gests that NPY neurons have a negative effect on the HPO 
axis in female castrated animals [39, 40]. Results from 
prenatal androgen-induced sheep and mouse PCOS models 
suggest that an altered GABAergic input to GnRH neurons 
may play a role in the elevated GnRH/LH secretion [33, 
41, 42]. Therefore, dysfunction of the GnRH neuronal net-
work can lead to infertility [23]. NPY plays an important 
role in regulating the pulsatile release of GnRH [43], and 
regulates female reproductive function through the central 
nervous system [44]. The following section provides key 
evidence supporting the generally accepted effects of NPY 
on reproduction (Fig. 2).

NPY stimulates LH release by regulating GnRH

NPY can act as a physiological stimulus to promote GnRH 
release before ovulation [13] affects the binding of GnRH 
and its receptors in the anterior pituitary of rats, and 
increases the response of anterior pituitary cells to GnRH 
release [43]. Notably, the fact that NPY enhances GnRH 
activity suggests that it interacts with GnRH to regulate 
LH secretion [45]. Evans et al. reported that NPY can reg-
ulate both the basal and GnRH-stimulated release of LH 
[45]. Moreover, NPY can also enhance GnRH-stimulated 
FSH secretion [46]. In ovary-intact ewes, the injection 
of NPY stimulates the release of GnRH in the follicular 
phase, but not in the luteal phase [47]. Additionally, Fran-
cis et al. found that the NPY-stimulated release of GnRH 
from the hypothalamus and of LH from the anterior pitui-
tary requires normal ovarian function [48].

Interestingly, NPY can exert both stimulatory and 
inhibitory effects on GnRH neurons, and several stud-
ies have reported this to be steroid-dependent [49–51]. 
For example, NPY stimulates the release of GnRH in the 
presence of estradiol, but inhibits the release of GnRH in 
rats without sex hormones [52]. Coutinho et.al showed 
that arcuate nucleus neurons (ARN) NPY neurons inhibit 
GnRH/LH pulse frequency and decreased LH secretion 
in PCOS-like mice models [53].These inhibitory effects 
of NPY on reproductive function may lead to a decline in 
fertility in conditions of negative energy balance, such as 
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food restriction or strenuous exercise, that are related to 
an increase in hypothalamic NPY expression. However, 
in a prospective study, women with PCOS had lower NPY 
levels than weight-matched healthy women [54]. Another 
study demonstrated that circulating NPY levels in obese 
and non-obese PCOS adolescents are significantly higher 
than those in healthy adolescents [55]. The reasons for 
the difference in results are unknown and may require 
more research.

NPY receptors and GnRH

The NPY released from the hypothalamus regulates the 
activity of the GnRH neuronal system through the NPY 
receptor and the secretion of LH through the pituitary 
gland [56–60]. NPY stimulates LH-releasing hormone 

(LHRH) secretion by directly acting on LHRH neurons, 
which process is mediated by Y1-like receptors in vivo 
[29]. Moreover, NPY neurons participate in the LH surge 
by increasing the production of NPY and subsequently pro-
moting the release of LHRH and/or enhancing its effects 
[29]. Sainsbury et al. found that when NPY expression 
in the hypothalamus increases under normal physiologi-
cal conditions, the Y4 receptor causes a decline in repro-
ductive capacity. Knocking out the Y4 receptor restored 
the reproductive capacity of ob/ob mice [21]. One study 
showed that NPY inhibits the excitability of GnRH neurons 
through the Y1 receptor and stimulates their excitability 
through the Y4 receptor [61]. The affinity of NPY for the 
Y4 receptor is 1000 × lower than that for Y1 receptor [62], 
indicating that endogenous NPY affects GnRH neurons via 
inhibitory events mediated by the Y1 receptor [61].

Fig. 1   The pathophysiology of PCOS. Several theories have been 
proposed to explain the etiology of PCOS. Abnormal GnRH pulsa-
tion leads to an increase in the pulse frequency and amplitude of LH 
release and a relatively low release of FSH. This causes excessive 
androgen production, metabolic disorders, and other related perfor-

mances. IR with hyperinsulinemia further increases ovarian andro-
gen production directly and indirectly by inhibiting the production of 
SHBG by the liver. PCOS, polycystic ovary syndrome; GnRH, gon-
adotropin releasing hormone; LH, luteinizing hormone; FSH, follicle 
stimulating hormone
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In addition, a study in lactating rats demonstrated that 
NPY exerts a direct inhibitory effect on GnRH neurons via 
postsynaptic Y5R [11]. Direct effects of NPY on prolif-
eration and apoptosis of porcine ovarian cells have been 
reported [63]. Urata and colleagues found that the NPY5R 
in granulosa cells isolated from early antral follicles was 
significantly higher than that in late antral follicles [12]. 
Moreover, Pinilla et al. observed that Y2 receptors play a 
complex dual role in controlling gonadotropin secretion at 
various levels of the hypothalamic-pituitary unit in rats. 
PYY [13–36] (a selective Y2 receptor agonist) inhibits 
GnRH release. In contrast, the GnRH-stimulated response 
of gonadotropins is enhanced in the presence of PYY13-36 
[59]. Table 1 provides a snapshot of the functions in which 
the NPY receptor is critical and the studies which support 
these findings. The above results may point to new strate-
gies for using NPY receptors to improve neuroendocrine 
and ovarian function in PCOS patients.

NPY inhibits kisspeptin

Kisspeptin is known to be a potent regulator of GnRH 
neuronal activity [1]. Several studies have confirmed that 

kisspeptin levels are increased in women with PCOS [64, 65] 
as well as in rodent models of PCOS [9]. However, kisspeptin 
levels were decreased in rats with dihydrotestosterone-induced 
PCOS, which conflicting results may be caused by different 
modeling methods [66]. Kisspeptin is a hypothalamic neu-
ropeptide that drives fertility via the stimulation of GnRH 
neurons [67, 68] and induces the secretion of LH and FSH by 
directly activating GnRH neurons [67, 69, 70]. In addition, 
kisspeptin activates hypothalamic GnRH secretion through 
G-protein-coupled receptor GRP54 [71]. Abbara and cowork-
ers demonstrated that kisspeptin receptor agonist (MVT-602) 
increases the firing duration of GnRH neurons and regulates 
LH levels, thus improving fertility outcomes in PCOS [72].

Sabine et al. reported that NPY had a direct inhibitory 
effect on a subpopulation of arcuate kisspeptin neurons in 
mice and suppressed neurokinin B-evoked firing. Fu and col-
leagues showed that kisspeptin inhibits NPY neurons through 
an indirect mechanism involving enhancement gamma-amin-
obutyric acid (GABA)-mediated inhibitory synaptic tone 
[73]. This indicates that NPY is negatively correlated with 
kisspeptin. However, the effect of NPY on kisspeptin neurons 
is still unclear [74], and, given the insufficient evidence in 
this regard, the subject requires further exploration.

Fig. 2   Relationship between NPY and fertility in polycystic ovary syndrome. NPY, neuropeptide Y; GnRH, gonadotropin-releasing hormone; 
LH, luteinizing hormone; LHRH, luteinizing hormone–releasing hormone; FSH, follicle stimulating hormone
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Considering all the above, it is evident that NPY plays 
a significant role in the anovulatory infertility caused by 
PCOS, data which, on the other hand, potentially point to 
new strategies for PCOS infertility treatment. As present-day 
research is, however, primarily focused on animal models 
providing only limited clinical data, more studies are cer-
tainly needed.

NPY affects metabolic disorders

The hypothalamus plays an essential role in the regulation 
of reproduction and energy balance [75]. Arcuate nucleus 
neurons coexpress NPY and agouti-related peptide (AgRP), 
which are key regulators of central energy homeostasis [76].

NPY and obesity

Obesity is a growing global epidemic that creates both health 
and economic challenges [77, 78]. Weight gain and central 
obesity are the common features of PCOS, and usually occur 
before the start of the anovulatory cycle. Visceral obesity in 

PCOS patients is associated with elevated IR, which leads to 
an increase in reproductive disorders [79]. Obesity increases 
the risk for adverse metabolic and reproductive outcomes in 
patients with PCOS. Obesity also increases inflammatory 
adipokines, thereby promoting hyperinsulinemia, and ampli-
fies functional ovarian hyperandrogenism by upregulating 
ovarian androgen production: this causes further weight 
gain, thereby forming a vicious feedback loop. Obesity 
increases IR and compensatory hyperinsulinemia, glucose 
intolerance, dyslipidemia, and the risk for pregnancy com-
plications [80, 81]. The NPY system is hypothesized to play 
a key role in regulating energy balance and the pathophysiol-
ogy of obesity [19].

Several studies have demonstrated that NPY regulates 
feeding behavior, body composition, and energy homeosta-
sis and improves food efficiency, while it also induces food 
cravings and hormonal and metabolic changes and promotes 
fat gain [44]. In the arcuate nucleus, two types of neurons 
have opposite effects on food intake, namely, (1) neurons 
that coexpress NPY and AgRP and stimulate food intake 
(orexigenic), or those that can express insulin receptors [82, 
83]; and (2) neurons that coexpress pro-opiomelanocortin 

Table 1   The major physiological roles of NPY receptors in humans, their agonists, and their antagonists

NPY receptors Expression Function Agonist Antagonist References

Y1R Periphery, hypothalamus,
hippocampus, neocortex,
thalamus

Food intake, energy 
homeostasis,

body weight, angiogen-
esis,

anti-anxiety, ethanol 
consumption,

pain signaling, bone 
homeostasis,

regulation blood pressure, 
sedation

[Leu31,Pro34]NPY,
[Phe7,Pro34]pNPY,
[D-Arg25]NPY,
[D-His26]-NPY

1229U91,J-104870,
J-115814,BMS-193885,
SAR-135966,BVD-10,
compound 3,BIBP3226,
compound 4,SR120819A,
BIBO3304

[14, 86, 124, 125]

Y2R Brain, hippocampus,
thalamus, hypothalamus

Food intake, energy 
homeostasis,

colonic transit, pain 
signaling,

cardiovascular regulation, 
anxiety,

neuronal excitability, 
angiogenesis,

ethanol consumption, 
bone formation

PYY(3–36),TM-30335,
NPY13-36,obinepitide

BII20246,JNJ-31020028,
JNJ-5207787(compound 

7),
T4-[NPY(33–36)]4

[14, 59, 86, 124, 125]

Y4R Gastrointestinal tract, hip-
pocampus, pancreas,

hypothalamus, prostate,
human epidermis

Food intake, energy 
homeostasis,

regulates bone volume, 
body weight,

affects fertility, muscle 
contraction

BVD-74D,1229U91,
Sub[-T yr-Arg-Leu-Arg-T 

yr-NH2]2,
TM-30339,obinepitide

[14, 21, 86, 124, 125]

Y5R Hypothalamus Food intake, energy 
homeostasis,

anticonvulsant, anxiety, 
mood control

[D-Trp32]NPY,
[D-Trp34]NPY,
[cPP1-7, N P Y19-23, A 

l a31, Aib32, G l n34]
hPP

CGP71683A,S-25585,
GW438014A,MK-0557,
FMS-586,L-152,804
velneperit (S-2367),

[14, 86, 124, 125]
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(POMC) and cocaine and amphetamine-regulated tran-
script (CART), which restrain food intake (anorexigenic) 
[19, 44]. Consistent with its role as an orexigenic peptide, 
NPY is increased during fasting or calorie restriction, and is 
inhibited by feeding and the presence of leptin and insulin 
[84]. Sadeghian et al. found elevated NPY levels in obese 
women during a fasting mimicking diet [85]. In many cases 
of obesity, the elevated NPY-ergic tone may be due to cen-
tral resistance to peripheral signals of energy excess such 
as leptin, which increases with long-term exposure to posi-
tive energy balance [86]. Similarly, Hansen et al. found that 
NPY synthesis is reduced in animals fed a high-fat diet [87]. 
Moreover, Baranowska et al. investigated the relationship 
between NPY levels and body weight and observed that 
plasma NPY levels increased significantly in both obese 
and non-obese patients with PCOS [29].

In addition, a number of studies have also demonstrated 
the importance of NPY receptors in mediating feeding 
responses. For example, specific ablation of Y2 receptors on 
NPY neurons led to a marked increase in obesity in female 
mice [88]. This was also the case in mice with conditional 
Y1 receptor knockout [89]. Moreover, the NPY Y5 recep-
tor is also known to mediate NPY-induced feeding [90]. 
Fukasaka et al. demonstrated that NPY Y5 receptor antago-
nists significantly reduced weight gain and food intake [91]. 
Accumulating knowledge on the effect of NPY and its recep-
tor on obesity may provide new insights into the treatment 
of obese women with PCOS.

NPY and its effects on insulin resistance 
and hyperinsulinemia

IR and hyperinsulinemia are metabolic features characteris-
tic of patients with PCOS and are considered an important 
component of the pathogenesis of this endocrine disease 
[92]. The prevalence of IR in PCOS patients is estimated 
to be 53–76% [24, 93]. IR is defined as decreased sensi-
tivity of peripheral tissues to insulin. Therefore, higher 
insulin levels are needed to achieve its metabolic function, 
which leads to pancreatic β cells producing and releasing 
more insulin. This explains why IR is often associated with 
compensatory hyperinsulinemia [92, 94, 95]. Many studies 
have shown that the decrease of glucose transporter type 4 
(GLUT-4) expression is one of the mechanisms underly-
ing IR and PCOS [96–98]. Feng et al. found that insulin 
resistance reduced the expression of sex hormone-binding 
protein (SHBG) in human villous trophoblast cells, thereby 
inhibiting the expression of GLUT-4 and phosphatidylinosi-
tol 3-kinase (PI3K) p85α mRNA. This suggests that SHBG 
may be involved in PI3K/protein kinase B (Akt) pathway-
mediated systemic insulin resistance [99]. In addition, IR 
and related hyperinsulinemia promote pituitary LH release, 
and increase testosterone production and SHBG synthesis, 

resulting in high levels of free testosterone (FT) [5, 100, 
101]. On the other hand, IR stimulates GnRH gene transcrip-
tion through the mitogen- activated protein kinase (MAPK) 
pathway in PCOS and increases LH secretion, thereby sig-
nificantly increasing ovarian androgen synthesis [102].

Hyperinsulinemia and hyperandrogenism may promote the 
occurrence of acne. An observational study reported that the 
severity of acne in women with PCOS was associated with 
increased concentrations of FT and dehydroepiandrosterone 
sulfate [103]. High levels of insulin can lead to an increase 
in the concentration of insulin-like growth factor 1 (IGF-1). 
IGF-1 may stimulate the secretion of facial average sebum, 
increase the level of dehydroepiandrosterone sulfate, and 
induce the proliferation of sebocytes. In addition, hyperinsu-
linemia promotes the production of epidermal growth factor 
and transforming growth factor β, thereby increasing the level 
of non-esterified fatty acids in plasma, causing inflammation; 
it may thus lead to the colonization of epidermal bacteria in 
the follicles and the development of acne vulgaris [104]. More-
over, Kim et al. reported that insulin directly affects GnRH 
neurons, especially by stimulating GnRH gene expression to 
regulate reproductive function [105]. In summary, given that 
IR and hyperinsulinemia play a key role in PCOS and associ-
ated metabolic complications, targeting these disorders may 
prove to be beneficial in the treatment of this syndrome.

Sato et al. demonstrated that insulin played a role in reduc-
ing NPY gene expression in the hypothalamus. Insulin func-
tions via neurotransmission, and the GABAergic system may 
also be involved in its effects on NPY neurons [106]. Singhal 
et al. reported that central resistin induced hepatic IR in mice 
through NPY [107]. Moreover, Hoek et al. reported that in 
rodents and humans fed a high-fat diet, increased levels of 
NPY in the hypothalamus may enhance glucose production 
and lead to sympathetic hyperactivity and hepatic IR [108]. 
Previous studies have shown that the activation of AgRP 
neurons induces IR partly through the acute suppression of 
sympathetic activation (SNA) in brown adipose tissue (BAT) 
[109]. However, the ability of AgRP neurons to induce IR 
depends on NPY expression. Consistent with this, intra-
venous cephalic injection of NPY rapidly and profoundly 
reduces BAT SNA [110, 111] and improves systemic insulin 
sensitivity [112]. In addition, prenatal exposure to androgens 
also reduces the colocalization of AgRP and insulin recep-
tors. This may affect hepatic insulin sensitivity, as insulin 
in these neurons plays a prominent role in the regulation of 
hepatic glucose production [92]. Cernea et al. found that the 
decreased colocalization of IRβ in AgRP neurons may be 
a contributing factor to hyperinsulinemia and IR in adult 
ewes exposed to prenatal testosterone [113]. Interestingly, 
in patients with anorexia, leptin and insulin enter the brain, 
inhibit the activity of NPY/AgRP neurons, simultaneously 
stimulate the activity of POMC/CART neurons, and inhibit 
food intake [19]. The effects of leptin are discussed below.
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NPY and leptin

Leptin, a 167–amino acid polypeptide that is primarily syn-
thesized and expressed in adipocytes [79, 114], is known 
to play an important role in energy homeostasis and repro-
duction. Leptin can induce anorexia and regulates energy 
requirements, fat reserves, and food intake. Insufficient energy 
intake (for instance, during fasting) leads to a decrease in 
leptin levels: this in turn stimulates intense hunger, causing 
an increase in food intake, which may subsequently lead to 
obesity [13]. Low leptin concentrations are an important sig-
nal of an energy deficit in the HPG axis, while high leptin 
concentrations in obese patients are usually associated with 
leptin resistance [115]. In patients with PCOS, plasma leptin 
levels are positively correlated with BMI [29]. NPY mRNA 
levels are increased in ob/ob mice but decrease after treatment 
with leptin. The knockout of NPY can attenuate obesity and 
other related symptoms in ob/ob mice, suggesting that NPY 
plays a role in the response to leptin deficiency [116]. In the 
brain, leptin regulates energy expenditure and other physi-
ological functions through the leptin receptor (LepRb) [117, 
118]. Zhang et al. showed that under high-fat diet conditions, 
NPY neurons’ lack of LepRb signaling leads to a significant 
increase in food intake accompanied by a decrease in energy 
expenditure, resulting in accelerated cellulite accumulation 
[119]. Leptin acts indirectly on kisspeptin neurons through 
POMC/CART and AgRP/NPY neurons to affect energy 
metabolism and GnRH release [75].

Leptin may also promote high androgen production by 
promoting steroid production and inhibiting NPY, leading 
to high levels of GnRH and LH [120]. The administration of 
leptin increases the levels of LH, FSH, and testosterone in 
fasting and ob/ob mice [114]. Barash et al. found that leptin 
specifically stimulates gonadal function in male and female 
ob/ob mice. Leptin treatment increased the weight of the 
ovaries and testes, and promoted follicular development in 
the ovary, which was consistent with the activation of ovar-
ian function. Low levels of leptin stimulate the secretion of 
gonadotropins, whereas high levels of leptin have an inhibi-
tory effect on the gonads. High levels of leptin have been 
shown to inhibit E2 synthesis and interfere with the forma-
tion of follicles, the production of steroid hormones, and the 
maturation of oocytes [121]. This suggests a potential for 
leptin therapy in patients with PCOS. However, the mecha-
nism of leptin is still unclear and further research is needed.

Conclusion and prospective directions

PCOS is a complex endocrine disease affecting reproduc-
tion, and metabolism [122]. It is a chronic lifelong disease 
that is a major health concern and poses an economic 
burden on patients and society [5]. Due to the complex 

etiology of the disease, the mechanism of its phenotypic 
development has not been fully elucidated. The classical 
theory suggests that the abnormal activation of hypotha-
lamic GnRH neurons and ovarian androgen synthesis are 
involved in the core pathogenesis of PCOS [7]. In patients 
with PCOS, NPY not only regulates fertility by regulating 
GnRH/LH release and affecting the HPO axis, but also 
plays an important role in maintaining energy balance 
and regulating body weight and circulating glucose and 
lipid levels. In recent years, increasing numbers of studies 
have focused on the NPY receptors; however, the safety 
of this neuropeptide remains unclear, which precludes 
large-scale treatment of PCOS through its usage [123]. 
Therefore, further research should focus on exploring 
the safety of NPY application, determining what is the 
biological the mechanism of PCOS and identifying NPY 
receptors with high affinity and specificity as potential 
therapeutic agents.
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