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Identifying the serious clinical outcomes of adverse
reactions to drugs by a multi-task deep learning
framework
Haochen Zhao1,2,3, Peng Ni 1,2, Qichang Zhao1,2, Xiao Liang1,2, Di Ai4, Shannon Erhardt5, Jun Wang5,

Yaohang Li6 & Jianxin Wang 1,2,3✉

Adverse Drug Reactions (ADRs) have a direct impact on human health. As continuous

pharmacovigilance and drug monitoring prove to be costly and time-consuming, computa-

tional methods have emerged as promising alternatives. However, most existing computa-

tional methods primarily focus on predicting whether or not the drug is associated with an

adverse reaction and do not consider the core issue of drug benefit-risk assessment—whe-

ther the treatment outcome is serious when adverse drug reactions occur. To this end, we

categorize serious clinical outcomes caused by adverse reactions to drugs into seven distinct

classes and present a deep learning framework, so-called GCAP, for predicting the ser-

iousness of clinical outcomes of adverse reactions to drugs. GCAP has two tasks: one is to

predict whether adverse reactions to drugs cause serious clinical outcomes, and the other is

to infer the corresponding classes of serious clinical outcomes. Experimental results

demonstrate that our method is a powerful and robust framework with high extendibility.

GCAP can serve as a useful tool to successfully address the challenge of predicting the

seriousness of clinical outcomes stemming from adverse reactions to drugs.
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When a drug receives market approval, it must not only
prove its effectiveness for patients but also demon-
strate that its expected benefits outweigh its potential

risks1,2—essentially, it must undergo a risk-benefit assessment. A
key concern in the risk-benefit assessment of drugs is to deter-
mine the possible treatment outcomes of patients if the drug
produces adverse reactions3,4. Adverse Drug Reactions (ADRs)
refer to an appreciably harmful or unpleasant reaction resulting
from an intervention related to the use of a medicinal product. In
reality, no drug is free of adverse reaction risks; some can be life-
threatening or even directly fatal5,6. ADRs negatively impact
people worldwide, and the expenses related to hospitalization and
surgery due to adverse reactions can sometimes surpass the cost
of the drug treatment itself7,8. Statistical data reveal that tens of
billions of dollars are spent annually in the United States to
address the myriad public health issues arising from ADRs9.
Therefore, early detection and assessment of the seriousness of
clinical outcomes associated with adverse reactions to new drugs
are crucial for safeguarding patient health and assessing assess the
risk-benefit of drugs10,11.

Unfortunately, many ADRs with serious outcomes are not
observed during clinical trials12. For example, fenfluramine, an
appetite suppressant, was approved in the U.S. in 197313. However,
hundreds of drug users in the U.S. have been found to have devel-
oped potentially fatal cardiovascular diseases. Due to these cases, the
U.S. Food and Drug Administration (FDA) forcibly withdraw fen-
fluramine from the market in 1997. Moreover, some drug adverse
reactions are often coincide with varying clinical outcomes. For
example, diarrhea is a common adverse reactions to some drugs14.
Mild diarrhea usually does not require specific treatment and
resolves gradually over time. However, serious diarrhea can persist
for days, causing dehydration and salt depletion, potentially leading
to death15. Therefore, if the clinical outcomes of adverse reactions to
drugs can be predicted and assessed before it is marketed, the risk to
patients and the failure to drug development can be reduced before
the drugs are released to the market16.

Traditional ADR identification relies on collecting adverse drug
events (ADEs) during preclinical research and clinical trials17.
The whole process is time-consuming and the number of patient
samples is limited18. Consequently, the detection of ADRs
depends heavily on post-marketing surveillance, which involves
systematically detecting and evaluating drug effects after they are
marketed19. Computational methods can provide crucial gui-
dance for trials. In recent years, numerous computational meth-
ods have been developed to assign potential ADRs based on
heterogeneous drug databases20–24. For example, Huynh et al. 25

proposed two deep learning models, named convolutional
recurrent neural networks and convolutional neural networks
with attention (CNNA), for ADR prediction. These models were
trained and evaluated using a Twitter dataset containing informal
language and an ADE dataset constructed from MEDLINE case
reports. Yu et al. 26 proposed a hybrid embedding graph neural
network model, called idse-HE, to identify potential drug side
effects. The model integrates a graph embedding module and a
node embedding module, which can fuse drug chemical structure
information, drug substructure sequence information, and drug
network topology information to extract effective features. The
drug-side effect interaction matrix is reconstructed and potential
side effects of drugs are predicted by considering the final
representation of drugs and side effects as two implicit factors.
However, most existing computational methods on ADR pre-
diction focus on the presence or absence of an drug–ADR
interactions, failing to answer an important question raised by
doctors and pharmaceutical companies: how can the clinical
outcomes of adverse drug reactions be determined? ADRs with
serious treatment outcomes may delay patient treatment, impact

the quality of life, and increase treatment costs. Assessment of the
seriousness of clinical outcomes of ADRs is essential for prior-
itizing patient care, enabling prompt medical intervention,
guiding treatment adjustments, evaluating risk-benefit profiles,
and informing regulatory decisions. By understanding the ser-
iousness of the clinical outcomes of ADRs, healthcare profes-
sionals can take appropriate actions to protect patient health and
ensure the safe and effective use of medications. Simultaneously,
drugs that cause serious treatment outcomes may also face
market withdrawal risks.

Therefore, there is a manifest need for addressing the following
challenges: (1) accurately and efficiently identifying adverse
reactions to drugs that cause serious clinical outcomes, taking
account of information from both drugs and ADRs, which can
reduce drug harm to patients; (2) ensuring generalization cap-
ability across large datasets; and (3) predicting the corresponding
classes of serious clinical outcomes resulting from adverse reac-
tions to drugs, which can reduce the risk of drug withdrawal from
the market, protecting the patients, and minimize losses for
pharmaceutical companies.

In this paper, we initially determine the drug–ADR interactions
that cause serious clinical outcomes and quantify them into seven
seriousness classes, namely: DEath (DE), Life-Threatening (LT),
HOspitalization-Initial or prolonged (HO), DiSability (DS),
Congenital Anomaly (CA), Required intervention to prevent
permanent impairment/damage (RI), and OTher (OT), as docu-
mented in the FDA Adverse Event Reporting System (FAERS)27.
Subsequently, we present GCAP, an end-to-end multi-task deep-
learning framework for simultaneously predicting whether the
drug–ADR interactions cause serious clinical outcomes and
identifying the corresponding classes of serious clinical outcomes.
This is achieved by considering the drug structures, ADR
semantic features, and known drug–ADR interactions that result
in serious clinical outcomes.

More specifically, we first collect the Simplified Molecular
Input Line Entry System (SMILES) sequences of drugs and
semantic descriptors of ADRs from PubChem28 and ADReCS29

databases respectively. Then, for a drug, we construct a drug
molecule graph and encode the SMILES sequence as a dense
numeric matrix. We also create a directed acyclic graph (DAG)
for each ADR, encompassing all the semantic descriptors related
to that ADR. Thirdly, to learn a richer and more accurate
representation, we feed drug molecule graphs into a Graph
Neural Network (GNN) module and SMILES sequence numerical
matrices into a Convolutional Neural Network (CNN) module
respectively. The feature vectors of ADRs are learned from the
DAGs by calculating the related semantic descriptors of the
ADRs. Finally, we stack the drug representations, ADR repre-
sentation, and known interaction representations between drugs
and ADRs, and input them into the Fusion module with a multi-
head attention mechanism. Experimental results show that GCAP
well on benchmark and independent datasets. Ablation experi-
ments and visual analyses further illustrate the utility of our
method for predicting the serious clinical outcomes of adverse
reactions to drugs. In addition, we investigate the extended
applications of the seriousness of clinical outcomes of drug–ADR
interactions in three drug-related tasks, including a drug–drug
interaction prediction, a drug response prediction, and a drug
side-effect frequency prediction. The introduction of serious
clinical outcomes of adverse reactions to drugs improves several
state-of-the-art methods. Collectively, these results indicate that
GCAP is a powerful and robust framework for identifying the
serious clinical outcomes of adverse drug reactions, offering a
valuable tool for researchers, clinicians, and the pharmaceutical
industry, enabling more informed decision-making in drug
development and clinical practice.
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Results
Overview of GCAP. We use FAERS to obtain the clinical out-
comes of adverse reactions to drugs. Following common practice
in clinical trials and the definition of FAERS, we employ seven
classes—OT, RI, CA, DS, HO, LT, and DE—to quantify the
serious clinical outcomes caused by drug–ADR interactions. We
construct a benchmark dataset consisting of 141,752 drug–ADR
interactions, of which 58,429 drug–ADR interactions that cause
serious clinical outcomes have classification labels for serious
clinical outcome’s classes. Figure 1a shows the distribution of
known drug–ADR interactions in the benchmark dataset, indi-
cating the adverse reactions to drugs follow a long-tailed dis-
tribution (about 40% of the ADRs are responsible for 80% of the
interactions). Figure 1b illustrates the distribution of the number
of drug–ADR interactions in each serious clinical outcomes’ class
in the benchmark dataset, indicating that seriousness from clin-
ical trials are biased towards OT, DS, HO, LT and DE.

Figure 2 shows the overall network architecture of GCAP for
predicting the serious clinical outcomes of adverse reactions to
drugs. GCAP can be segmented into three main stages:
representation learning of drugs and ADRs, representation fusion
of drug–ADR interactions, and seriousness prediction of clinical
outcomes for adverse reactions to drugs. Given the SMILES
sequences and semantic descriptors of the input drugs and ADRs,
GCAP exploits a multi-level attention GNN module, a multi-scale
residual CNN module and the semantic DAGs to learn the
representations of drugs and ADRs separately. The GNN module
contains an atom-level and molecular-level attention mechanism
to efficiently capture the hidden critical linkage among any nodes
while respecting the intrinsic molecule topological structure of the
drug. The CNN module contains convolutional filters of multiple
scales to perform representation learning on SMILES sequences
of drugs, and reduce the problem of vanishing or exploding
gradients by adding residual paths. The DAGs describe the
relationships among semantic descriptors of ADRs. We calculate
the semantic descriptors in a DAG to get the feature vectors of
ADRs.

In addition, we assemble two n ´ m matrices RInteraction and
Rseriousness, which respectively containing all known drug–ADR
interactions and the drug–ADR interactions that cause serious

clinical outcomes for n = 1073 unique drugs and m = 893
unique ADRs in the benchmark dataset (Supplementary Data 1
and 2). The remaining entries in RInteraction and Rseriousness are
filled with zeros, indicating no interactions. Based on common
assumptions that similar drugs tend to exhibit similar interaction
and non-interaction patterns with ADRs, and vice versa, we use
four connected layers to extract higher-order representations
from the row and column of matrices RInteraction and Rseriousness for
drugs and ADRs respectively (each row of RInteraction and
Rseriousness is a drug representation and each column of RInteraction
and Rseriousness is an ADR representation). Next, we employ fully
connected layers to unify the dimensions of seven representations
and design a multi-head attention architecture to fuse the
representations. Finally, we expand the fused vectors and set up
two separate Multi-Layer Perception (MLP) modules for each
task to obtain prediction results. The model’s input consists of the
SMILES sequence of a drug, the semantic feature vector of an
ADR, and the known clinical outcomes related to the drug and
ADR.

The task of predicting potential drug–ADR interactions that
cause serious clinical outcomes can be described as a binary
classification problem, in which the label = 1 or 0 indicates the
interaction between the input drug and ADR causes a serious or
non-serious clinical outcome, respectively. GCAP can output a
value ranging from 0 to 1, indicating the probability of a serious
clinical outcome for the interaction between the input drug and
the ADR. The task of determing the serious clinical outcomes’
classes for drug–ADR interactions can be described as a multi-
label classification problem. In this case, we use a 7-dimensional
vector to indicate the classes of serious clinical outcomes caused
by drug–ADR interactions, where each real number in the vector
indicates the probability of a drug–ADR interaction has the
corresponding serious clinical outcome class. The value in
predictive vectors for this task can also be denoted by a real
value between 0 and 1.

Identifying the seriousness of clinical outcomes of adverse
reactions to drugs. To evaluate the performance of GCAP, ten
times repeated 10-Fold Cross-Validation (10 × 10-Fold CV) and
independent tests are conducted based on the benchmark dataset
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Fig. 1 Distribution of known drug–ADR interactions and their corresponding clinical outcomes in our benchmark dataset. a Long-tailed distribution of
ADRs. ADRs in the vertical axis are ordered in decreasing order of popularity, i.e., the number of drugs in which a particular ADR appears. b The upset plot
shows the detailed number of drug–ADR interactions in each class group of serious clinical outcomes. In the upset plot, the y-axis represents the number of
drug–ADR interactions that cause serious clinical outcomes, while the x-axis represents the components of each group. The bar chart shows the
distribution of the drug–ADR interactions in each serious clinical outcomes’ class.
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and two independent test sets, respectively (see Methods). The
Area Under the receiver operating Characteristics curve (AUC)
and the Area Under the Precision-Recall curve (AUPR) are uti-
lized to evaluate the performance of GCAP. We start from ana-
lyzing the predictive performance of our method at predicting
potential drug–ADR interactions that cause serious clinical out-
comes. Figure 3a, b shows the AUCs and AUPRs of GCAP based
on 10´ 10-fold CV in the benchmark dataset, respectively. We
observe that the GCAP obtains highly accurate diagnostic per-
formance in 10 × 10-fold CV; s.t.d. AUC= 0.956+−0.0011, and
s.t.d. AUPR= 0.946+−00017. Furthermore, two independent
post-marketing test sets from Galeano’s study are collected30: (i)
the SIDER test set containing 9387 drug–ADR interactions, and
(ii) the OFFSIDES test set including 36,032 drug–ADR interac-
tions (see Supplementary Data 3 and 4). After removing over-
lapping drugs from the benchmark dataset, 1330 and 4771
drug–ADR interactions are obtained from the two independent
datasets, respectively. Figure 3c, d shows that our method gets
0.945 of AUC and 0.908 of AUPR in the SIDER test set and 0.937
of AUC and 0.931 of AUPR in the OFFSIDES test set, respec-
tively. Moreover, we compare the classification performance of
GCAP with that of other state-of-the-art baseline methods,
including a matrix fcotrization method developed for drug-side
effect frequency prediction30 and a deep-learning-based model
for ADR prediction31. All the prediction methods were evaluated

on a benchmark data set through cross-validation. To help
readers estimate the difficulty of our task, we also report the
performance of several machine-learning baseline methods in
Supplementary Table 1.

We also evaluate the predictive performance of our method in
determining the classes of serious clinical outcomes for
drug–ADR interactions. Figure 3a, b shows the AUCs and
AUPRs for each of the seven classes of serious clinical outcomes
in the benchmark dataset based on the 10×10-fold CV,
respectively. The AUCs of GCAP for the classes of serious
clinical outcomes are 0.917 (DE), 0.859 (LT), 0.896 (HO), 0.932
(DS), 0.953 (CA), 0.948 (RI), and 0.916 (OT) and the AUPRs of
GCAP for the classes of serious clinical outcomes are 0.806 (DE),
0.733 (LT), 0.849 (HO), 0.769 (DS), 0.529 (CA), 0.431 (RI), 0.688
(OT) (s.t.d. average AUC= 0.917 ± 0.0009, and s.t.d. average
AUPR= 0.687 ± 00058). Figure 3c, d shows our method gets
0.891 on average AUC and 0.674 on average AUPR in the SIDER
test set and 0.901 on average AUC and 0.663 on average AUPR in
the OFFSIDES test set, respectively. The AUPR value of each class
of serious clinical outcomes indicates that our method has
achieved lower predictive performance in the CA and RI classes
compared to the others which can be attributed to the small
number of known drug–ADR interactions in these two classes.
The detail of performance of GCAP in predicting the serious
clinical outcomes’ class of adverse reactions to drugs are also

Fig. 2 The network architecture of GCAP. Given a SMILES sequence of a drug and the semantic descriptors of an ADR, a drug molecule graph, a drug
SMILES encoding matrix, and a semantic feature vector of the ADR can be constructed. The multi-level graph attention module and multi-scale residual
CNN module are then used to extract representations from the drug molecule graph and SMILES encoding matrix, respectively. The semantic feature
vector of an ADR is calculated based on all associated descriptors, and a fully connected layer is used to extract the representation from the semantic
feature vector. Simultaneously, multiple fully-connected layers generate drug and ADR representations from the clinical outcomes of known drug–ADR
interactions. All representations are then stacked and fed into a multi-head self-attention module to fuse multiple representations into a joint vector for
downstream predictions. By setting different downstream classifiers for each task, GCAP can accurately predict potential drug–ADR interactions that cause
serious clinical outcomes and identify the corresponding classes of serious clinical outcomes.
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listed in Supplementary Table 2. In addition, the method’s
performance is robust with respect to the setting of the
hyperparameters (Supplementary Tables 3–8).

Furthermore, several techniques have been introduced to
overcome the challenges of missing or noisy data and improve
the predictive performance. Comprehensive ablation studies have
been conducted to demonstrate the importance of individual
components of GCAP (see Supplementary Table 9). The first one is
to apply optimized CNN and GNNmodules to extract the potential
representations of drugs from SMILES sequences. The predictive
performance is improved by 1.5% and 3.6% in terms of average
AUC and average AUPR on the classes of serious clinical outcomes
for drug–ADR interactions, respectively. The second is to apply
semantic descriptors and construct DAG for each ADR. The
prediction performance of the GCAP on both tasks is improved
after adding the MLPsemantic module. Besides, we find that the
implementation of known drug–ADR interactions that cause
serious clinical outcomes also contributes to improving predictive
performance. The GCAP gain of 3.5% and 3.7% improvement in
terms of AUC and AUPR on the binary classification task and 5.2%
and 5.8% in terms of average AUC and AUPR on the second task,
respectively. We further introduce the multi-head self-attention
module to combine the features from multimodal data. The test
result shows that the predictive performance improves 3.6% in
terms of average AUPR on the second task of GCAP. These results
indicate that the current model architecture and feature selection

scheme are optimal for our prediction tasks, and GCAP serves as a
powerful and robust framework for predicting the seriousness of
clinical outcomes of adverse reactions to drugs.

Performance evaluation on the new drugs and ADRs. A key
question for the real applicability of GCAP concerns its ability to
predict the serious clinical outcomes of adverse reactions for new
drugs and uncover serious clinical outcomes of new adverse
reactions for approved drugs. With the deepening of clinical
research and the continuous updating of market feedback infor-
mation, the adverse reactions of approved drugs are gradually
discovered in later clinical practice. Some serious clinical out-
comes caused by adverse reactions to drugs are not noticed until
years after they were on the market32. Here, we simulate the
incremental discovery process by gradually and randomly
removing a certain percentage of associated ADRs for each drug.
More specifically, for each drug, if the number of the known
drug-related interactions in the benchmark dataset is greater than
10, we remove a random 10% of these interactions to construct a
testing set. We take all removed samples as the test set and the
remaining samples in the benchmark dataset as the training set.
We test the predictive performance of the model by gradually
removing the number of ADRs associated with each drug in the
training set. Figure 4a shows the AUCs and AUPRs of GCAP on
the task of identifying whether the adverse reactions to drugs

Fig. 3 Evaluation of our method predictive performance on identifying the seriousness of clinical outcomes of adverse reactions to drugs. a and b show
the distributions of AUCs and AUPRs on the task of identifying whether the adverse reactions to drugs cause serious clinical outcomes and the task of
predicting the corresponding classes of serious clinical outcomes caused by seirous adverse reactions to drugs, respectively. The results are obtained by
tenfold cross-validations based on the benchmark dataset. c depicts the Receiver Operating Characteristic (ROC) and Precision-Recall (PR) curves on the
task of identifying whether the adverse reactions to drugs cause serious clinical outcomes based on two independent datasets, respectively. d shows the
distributions of AUCs and AUPRs in the task of predicting the corresponding classes of serious clinical outcomes caused by serious adverse reactions
to drugs.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05243-w ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:870 | https://doi.org/10.1038/s42003-023-05243-w |www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


cause serious clinical outcomes in the context of different ratios of
known drug–ADR interactions. The AUC only drops by 4.69%
when 50% of the interactions for each drug are removed, indi-
cating that GCAP remains reliable even when there is a reduction
in known drug–ADR interactions. Similarly, Fig. 4b demonstrates
that GCAP maintains its predictive performance for the ser-
iousness classes prediction task when the known classes of serious
clinical outcomes caused by drug–ADR interactions are rare. The
results also show that removing 10% of the interactions from each
drug yields similar results to those obtained by removing 10% of
interactions from the benchmark dataset randomly, as presented
in Fig. 3a. In summary, GCAP demonstrates reliability and
robustness in predicting the seriousness of clinical outcomes of
adverse reactions even when the available data is limited or
partially missing. This makes it a potentially valuable tool for
identifying serious clinical outcomes of new drugs or uncovering
serious clinical outcomes of new adverse reactions for approved
drugs.

Furthermore, we simulate the discovery process of adverse
reactions to new drugs by removing all known ADRs of each test
drug (de novo test). The de novo test is designed to explore the
performance of the model under the scenario of cold start. In the
scenario of the cold start for drugs, we enable the drugs in the test
set to be all unknown to the training set. More specifically, in the de
novo test, each drug in the benchmark dataset is left out in turn as
the test sample and all known interactions between the drug and all
existing ADRs are deleted. By predicting interactions that cause
serious clinical outcomes and the corresponding class scores of
serious clinical outcomes between the test drug and all ADRs in the
benchmark dataset, the AUC and AUPR values are calculated for
each drug, as shown in Fig. 4. For the first task (binary classification
to identify the drug–ADR interactions that cause serious clinical
outcomes), the AUC of all drug predictions ranges from 56.5% to
100% and the AUPR is from 10.4% to 100%. For the second task
(multi-label classification to identify classes of serious clinical
outcomes caused by drug–ADR interactions), the AUC of all drug
predictions ranges from 54.3% to 100% while the AUPR ranges
from 10.4% to 100%. These results suggest that GCAP does not
fully rely on known drug–ADR interactions and can effectively
extract information from SMILES sequences and semantic feature
vectors of ADRs. By generating effective representations for input
drugs and ADRs, GCAP demonstrates its potential in predicting

serious clinical outcomes of adverse reactions to new drugs even in
a cold start scenario.

Identifying the serious clinical outcomes of Confusional State
(CS) for Oxycodone and its analogs. Confusional State (CS) is a
mental state characterized by bewilderment, emotional dis-
turbance, lack of clear thinking, and perceptual disorientation33.
We next investigate whether GCAP is able to correctly identify
the classes of serious clinical outcomes of the interactions
between Oxycodone (a known semisynthetic opioid analgesic)
with its analogs and CS. In our benchmark dataset, there are five
Oxycodone-analogous drugs associated with CS and four of them
have drug-CS interactions that can result in serious treatment
outcomes. To avoid “easy prediction”, we remove all known
information related to drugs that shared similar SMILES
sequences (defined as >90% SMILES sequence similarity) with
Oxycodone (e.g., Hydrocodone and Naltrexone) from the train-
ing set. After removing these records and the information about
the five Oxycodone-analogous drugs, we re-train the GCAP
model. The five Oxycodone-analogous drugs are then combined
with the 893 ADRs to construct an independent test set con-
taining 4465 candidate interactions.

For the purpose of accurately representing drug molecular
graphs, the GNN module assigns varying importance to each edge
through the utilization of attention scores. In our study, we
visualized the attention scores of the supernodes in the MGA
module of GCAP for each atom in the five oxycodone drugs,
along with the vector representations of the molecular graphs
obtained through the MGA module. Figure 5a illustrates the
attention scores of the super nodes in the MGA module of GCAP
for the five Oxycodone-analogous drugs. Notably, for drugs with
structural similarities, the atoms and substructures of interest for
MGA exhibit remarkable similarity. Furthermore, Fig. 5b shows
the representations generated by the MGA module of GCAP for
the five Oxycodone-analogous drugs. Despite the strong similar-
ity in the SMILES structures of these five Oxycodone-analogous
drugs, the representations of samples with different labels
(Hydromorphone, Naltrexone, Oxycodone, and Oxycodone
hydrochloride labeled as 1, and Oxymorphone labeled as 0 in
the benchmark dataset) exhibit differences. While the overall
distributions of representations for analogs with the same label

Fig. 4 Evaluation of our method on the new drugs. a Mean AUC and AUPR at predicting the drug–ADR interactions that cause serious clinical outcomes
and the corresponding classes of serious clinical outcomes for varying percentages of randomly chosen interactions. b The distribution of AUCs and AUPRs
of drugs in de novo test. Since some drugs only have one or more of the seven seriousness classes in the benchmark dataset, it is not possible to obtain all
the seriousness class labels. The boxes inside the violin plots indicate the 50-th percentile (middle line), 25-th and 75-th percentile (box), the smallest
value within 1.5 times interquartile range below the 25-th percentile, and the largest value within 1.5 times interquartile range above the 75-th percentile
(whiskers), and outliers (dots). We set the AUC and AUPR values of the corresponding seriousness classes of these samples to 0 and do not count them.
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appear similar, certain positions (such as the 7th and 52nd
positions) demonstrate distinct patterns. This discrepancy may
arise from the models assigning different attention weights to
atoms in the molecular graph. The MGA module’s output
representation is obtained by aggregating the features of each
atom in the molecular graph based on the corresponding
attention scores.

The test results show that GCAP is able to correctly identify the
relationships between Oxycodone-analog drugs and CS with an
average AUC score of 0.816 and an average AUPR score of 0.398
(see Fig. 5c). (More details can be found in Supplementary
Tables 10, 11, and 12). Such results further demonstrated the
strong predictive power of GCAP. We also examine the predictive
performance of GCAP for the classes of serious clinical outcome
of adverse reactions to Oxycodone-analog drugs as shown in
Fig. 5d. GCAP correctly identified most of the true seriousness
classes of clinical outcome of the drug–ADR interactions with an
average AUC of 0.732. These highly accurate predictions can
provide valuable risk estimation for pharmacologists when
considering the treatment of a patient with Oxycodone or its
analogs (e.g., assessing the safety of Oxycodone).

Extending the application of clinical outcomes of ADRs in
three drug-related tasks. Zhang et al. 34 have shown that ADRs
are predictive of drug–drug interactions. More recently, Zhou
et al. 35 have shown that ADRs are predictive of drug response
prediction. Therefore, one interesting question is whether our
collected known drug–ADR interactions that cause serious clin-
ical outcomes can be used as a feature to improve the predictive
performance of existing models. To expore this, the potential
application of the seriousness of clinical outcomes of ADRs is
investigated in three drug-related tasks: drug–drug interaction
prediction, drug response prediction, and drug side-effect fre-
quency prediction. We observe the change in the predictive

performance of some state-of-the-art methods for these three
tasks after introducing the seriousness of clinical outcomes of
adverse reactions to drugs to judge if it can be used as an effective
representation of a drug. For a given model, the following steps
are taken: (1) Collecting drugs that appear in both the model’s
benchmark dataset and FAERS, and then reconstruct a new
dataset based on these drugs; (2) Reproducing the prediction
results from the model based on the new dataset using the code
provided in the study, and (3) Building the model to obtain new
prediction results by reasonably introducing the seriousness
vectors of adverse reactions to drugs on a certain component of
the model. The seriousness vectors for drugs are constructed
based on the known drug–ADR interactions that cause serious
clinical outcomes. The dimension of the vector is m (=893). If
there is an interaction between the drug and the ADR in the
benchmark dataset that causes serious clinical outcomes, the
corresponding position is 1, otherwise, 0 (see Methods). By
evaluating the performance of the two prediction results, the
impact of the seriousness of clinical outcomes of drug–ADR
interactions on the prediction performance of the model can be
assessed. This will help determine whether the seriousness of
clinical outcomes of ADRs can be used as an effective repre-
sentation of a drug and contribute to enhancing the predictive
performance of existing models in various drug-related tasks.

We test three methods for the drug–drug interaction prediction
task, including MUFFIN36, KGNN37, and TransE38 (see Fig. 6a).
MUFFIN is a deep learning-based feature fusion framework for
drug–drug interaction prediction. It can effectively integrate the
features extracted from the drug’s molecular structure and
knowledge graph. KGNN is an end-to-end framework that
explores drugs’ topological structures in a knowledge graph for
potential drug–drug interaction prediction. TransE is a knowl-
edge graph representation method for learning low-dimensional
embeddings of entities, which is often used as a baseline method

a

b

c

d

Representation

Fig. 5 The performance of GCAP on Oxycodone-analog drugs. a The differences of attention scores of the MGA module for each atom in the molecular
graph between five Oxycodone-analogous drugs interacting with CS. The darker the color is, the higher the attention value at the corresponding position is.
b The differences of representations calculated by the MGA module between five Oxycodone-analogous drugs interacting with CS. c, d These show the
predictive performance of GCAP for predicting the seriousness of adverse reactions to five Oxycodone-analogous drugs. Due to the fact that the clinical
outcomes of some Oxycodone-analogous drugs related ADRs do not have all seven seriousness classes in the benchmark dataset, the AUC and AUPR of
some Oxycodone-analogous drugs in the figure are zeros on the determination task of the class of serious clinical outcomes caused by drug–ADR
interactions.
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for drug–drug interaction prediction. We test three methods for
the drug response prediction task, including TGSA39, BIG
picture40, and DeepTTA41 (see Fig. 6b). TGSA is a non-end-to-
end deep learning method for drug response prediction, using
twin graph neural networks and a similarity augmentation
module. BIG picture is a method of using bipartite graphs for
drug response prediction. DeepTTA is an end-to-end drug
response prediction method that gets the representations of drugs
through a transformer encoder and the representation of cell lines
through four fully connected layers. For the drug side-effect
frequency prediction task, we also test three methods, including
MGPred42, SDPred43, and MLP (see Fig. 6c). MGPred is a deep
learning framework to predict the side-effect frequencies of drugs

by integrating chemical structure similarity, known drug side-
effect frequency scores, side-effect semantic similarity, and pre-
trained word representations. SDPred is a multi-task learning
framework for drug–ADR interactions and frequencies by
integrating the multi-correlation between the embedding of drugs
and side-effects. MLP is a multi-layer perceptron with three
hidden layers. The results in Fig. 6 show that all methods
outperform the original method when the seriousness of clinical
outcomes of adverse reactions to drugs is integrated as a feature.
This strongly indicates that the seriousness of clinical outcomes of
ADRs can be used as an effective representation to help solve
drug-related problems. Further details of these methods are
provided in Supplementary Note 2.

Fig. 6 Seriousness of clinical outcomes of ADRs enables the state-of-the-art models to improve predictive performance under three drug-related
tasks. Before and after the introduction of seriousness of clinical outcomes of adverse reactions to drugs, the prediction performance of the nine models
changes. a, b, and c show the evaluation results of incorporating the seriousness vectors of ADRs into the models for drug–drug interaction prediction,
drug-cell interaction prediction, and drug-side effect frequency prediction, respectively. All the evaluation metrics of the state-of-the-art models are
obtained from their original papers.
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Discussion
The correct prediction of the serious clinical outcomes caused by
adverse reactions to drugs is critical to protecting patients and
avoiding drug withdrawal from the market. In this work, we
propose GCAP, a deep-learning framework for predicting the
seriousness of adverse reactions to drugs, including the potential
drug-–ADR interactions that cause serious clinical outcomes
prediction and the corresponding classes of serious clinical out-
comes determination. We first design optimal modules to extract
the representation from SMILES sequences of drugs and MLP to
extract the representation from DAGs of ADRs. Then, we stack
all representations and feed them into a Fusion module with a
multi-head attention mechanism to obtain the interactive repre-
sentation between drugs and ADRs to enhance the predictive
performance. Cross-validation and independent set test demon-
strate that GCAP achieves satisfactory performance on both tasks.
De novo test shows that GCAP maintains good predictive per-
formance even when relying solely on SMILES sequences of drugs
and semantic feature vectors of ADRs, indicating that the model
is not entirely dependent on known drug–ADR interactions. This
ability to make predictions for a broader range of drugs and
ADRs expands the potential applications of GCAP. We also
present five representative cases to visualize the attention weight
results of the drugs and examine the predicted serious clinical
outcomes of ADRs to Oxycodone and its analogs. Overall, the
results demonstrate that GCAP can provide accurate seriousness
predictions of clinical outcomes for adverse reactions to drugs,
making it a valuable tool in protecting patients and preventing
drug withdrawals from the market.

Earlier methods could predict drug–ADR interactions or their
probabilities, but those probabilities did not indicate the classes of
serious clinical outcomes for ADRs. By collecting treatment
outcomes of serious adverse events from FAERS and defining the
classes of serious clinical outcomes based on statistical methods,
this work has developed a more comprehensive approach.
Moreover, Fig. 6 demonstrates the prediction results of some
state-of-the-art models for drug-related tasks, such as drug–drug
interaction prediction, drug response prediction, and drug side-
effect frequency prediction, after incorporating known
drug–ADR interactions that cause serious clinical outcomes. The
evaluation indicators reveal that the introduction of seriousness
features of adverse reactions based on clinical outcomes helps
improve the prediction performance of these models. This indi-
cates that exploring the clinical outcomes of adverse reactions to
drugs is valuable for researchers in formulating biological
hypotheses related to drugs, side effects, and molecular
mechanisms.

Despite its merits, the current version of GCAP still has some
limitations. For example, GCAP only considers a single type of
data, such as semantic vectors for ADRs and SMILES sequences
for drugs, is learned as input. In practice, drugs and targets have
different representations from different levels. The incorporation
and fusion of heterogeneous information, such as drug targets44,
therapeutic indications45, and perturbation transcriptomics data,
could potentially enhance the performance of our tasks. We
extract drug-target interactions from the latest version of the
Drugbank database, identifying 582 drugs in the benchmark
dataset that have at least one target. Using these drugs, we con-
struct a new benchmark dataset and generate target feature vec-
tors for each drug. The target vectors for drugs are derived from
the known drug-target interactions recorded in Drugbank data-
base. In total, Drugbank database contains 1374 targets associated
with the 582 drugs present in our new benchmark dataset. For
constructing the target feature vectors, if a drug and target have
an interaction recorded in the Drugbank dataset, the corre-
sponding position in the target vector is assigned a value of 1;

otherwise, it is set to 0. The results of the tenfold cross-validation
experiment revealed that incorporating the target vector as a
feature of the drug led to a slight improvement in the predictive
performance of the model (see Supplementary Table 13). More-
over, public databases have inherent limitations and biases. We
observed that the reported classes of serious clinical outcomes for
drug–ADR interactions in the benchmark dataset are skewed
towards DE (see Fig. 1b). In the future, we plan to focus on
gathering additional metadata from clinical trials and integrating
multi-view representations in deep learning-based models to
improve the model’s predictive accuracy.

Methods
The benchmark dataset. We construct a benchmark dataset from
two sources, i.e., known drug–ADR interactions from ADReCS
database version v3.1 (http://bioinf.xmu.edu.cn/ADReCS) and
adverse event reports from United States (U.S.). Food and drug
administration Adverse Event Reporting System (FAERS, https://
open.fda.gov/data/faers/). The ADReCS database stores a large
number of drug–ADR interactions extracted from DailyMed
(http://dailymed.nlm.nih.gov/dailymed/about.cfm), which is a
website managed by the U.S. National Library of Medicine to
provide comprehensive information about marketed drugs.
Moreover, ADReCS references MedDRA46 and UMLS47 for ADR
term standardization, assigning each ADR a unique numerical ID
that indicates its position in the ADR hierarchy tree and its
linkage to other ADR terms. In this case, we extracted the known
interactions between all drugs and the Preferred Terms (PTs) of
ADRs. FAERS collects voluntary adverse drug reaction reports
from healthcare professionals (e.g., doctors, pharmacists, nurses,
etc.), consumers (e.g., patients, family members, attorneys, etc.),
and clinical reviewers. The reports include the patient demo-
graphic and administrative information, drug/biologic informa-
tion, adverse reaction information, and the patient treatment
outcomes for the adverse events.

We collect the primary suspect drug, ADRs, and its
corresponding treatment outcomes in each adverse event report.
It is worth noting that treatment outcomes in FAERS are divided
into seven classes: DEath (DE), Life-Threatening (LT),
HOspitalization-Initial or prolonged (HO), DiSability (DS),
Congenital Anomaly (CA), Required intervention to prevent
permanent impairment/damage (RI), and OTher (OT). Based on
these seven different treatment outcomes, we define seven distinct
seriousness classes (OT= 1, RI= 2, CA= 3, DS= 4, HO= 5,
LT= 6, DE= 7). We gather all adverse event reports in FAERS
from the third quarter of 2014 to the first quarter of 2022 and
determine the seriousness of clinical outcomes of known
drug–ADR interactions using the Proportional Reporting Rate
(PRR) approach:

PRRdi�sj;k
¼

Ndi�sj;k
=Ndi�sj;þ

ðNþ;k � Ndi�sj;k
Þ=ðNþ;þ � Ndi�sj;þÞ

; ð1Þ

where di � sj represents a drug–ADR interaction that appears in
ADReCS and simultaneously the drug di is the primary suspect
drug and appears in a record of FAERS with ADR sj, k represents
a treatment outcome that appears in FAERS. Ndi�sj;þ represents

the number of the simultaneous occurrence of primary suspect
drug di and ADR sj in a record of FAERS, Ndi�sj;k

represents the

number of the simultaneous occurrence of suspect drug di and
ADR sj with the treatment outcome k in a record of FAERS, Nþ;k

represents the number of records that the treatment outcome is k
and Nþ;þ represents the number of all records. The formula for
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calculating the 95% confidence interval for PRR is:

CI PRRdi�sj;k

� �
¼ e

ln PRRdi�sj ;k

� �
± 1:96 ´ StandardErrorðSEÞ

; ð2Þ

where SE=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ni�j;k
� 1

Ni�j;þ
þ 1

Nþ;k�Ni�j;k
þ 1

Nþ;þ�Ni�j;þ

q
. When the

value of CI
�
PRRdi�sj;k

�
is greater than 1 (significant), we consider

the clinical outcomes of drug–ADR interaction di � sj to be
serious, and its seriousness class is k. Moreover, to maintain the
high quality of the constructed dataset, we count the number of
drugs associated with ADRs in ADReCS and select ADRs with
>50 associated drugs. In total, the benchmark dataset contains a
total of 141,752 drug–ADR interactions, covering 1073 drugs and
893 ADRs. Among these, 58,429 drug–ADR interactions can
cause serious clinical outcomes and have corresponding serious-
ness class labels. The seriousness class label for each drug–ADR
interaction that causes serious clinical outcomes is represented by
a 7-dimensional vector. If a drug–ADR interaction has some
seriousness class labels, the corresponding position on this vector
is 1, and otherwise 0. Each drug in our dataset has a known
SMILES sequence. A detailed explanation of the data processing
is presented in Supplementary Note 1.

For convenience, let n (=1073) and m (=893) be the number
of different drugs and ADRs in the benchmark dataset,
respectively. Then we can construct an n ´ m matrix RSeriousness
to represent the interactions that cause serious clinical outcomes
between drugs and ADRs in the benchmark dataset. The values of
RSeriousness are encoded with integers between 0 and 1. If a
drug–ADR interaction matches the record in the benchmark
dataset and causes serious clinical outcomes, then the value of the
element at the corresponding position of matrix RSeriousness is set
to 1. Similarly, we can construct an n ´ m matrix Rinteraction to
represent all the drugs–ADRs interactions in the benchmark
dataset. If the drug–ADR interaction appears in the benchmark
dataset, the value of the element at the corresponding position of
the matrix Rinteraction is set to 1. The remaining entries in
RSeriousness and RInteraction are filled with zeros.

Drug molecule graph. Each drug possesses a unique chemical
structure that is naturally represented by its molecular graph48.
Here, we retrieve drug SMILES sequences from ADReCS and
PubChem databases. Then, we use the DGL package49, a high-
performance and scalable Python package for deep learning on
graphs, to contract molecular graphs for drugs based on the
SMILES sequence. A detailed explanation of how this is com-
puted can be found in the DGL book in the documentation online
(https://www.dgl.ai/). Nodes in a molecular graph are composed
of chemical atoms of a drug, and molecular diagrams postulate
that key interactions between nuclei and electrons in molecules
can be implicitly captured by a diagram that provides a source of
insight into the geometry, function, and properties of
molecules50,51. We follow an approach similar to the one used by
Cami et al. study52 to encode the initial features of bonds and
atoms, and to unify the length of the vectors through linear
transformations and nonlinear activations. Then, we use GNN
and the attention mechanism to learn the representation of each
atom by integrating its neighboring atom features.

SMILES sequence encoding matrix. We use one-hot vectors to
encode SMILES sequences and concatenate these vectors into a
matrix to represent inputs of the CNN module. We collect
SMILES sequences from PubChem and compiled 63 one-hot
vectors for all SMILES sequences. Here, each atom, chemical
bond, and parenthesis in the sequence is represented by a dif-
ferent one-hot vector. Considering that the length of SMILES

sequences for different drugs may vary. We set the maximum
length of SMILES to be 100, and SMILES sequences with length
less than 100 are padded with zeros. For example, a SMILES
sequence containing 20 elements is encoded in a 100 ´ 63
matrix. The first 20 rows of the matrix are composed of corre-
sponding one-hot vectors, while rows 21 to 100 are all padded
with zeros. We choose the maximum length of drugs to cover at
least 80% of the intact drugs in our benchmark dataset and adopt
the truncating strategy from a previous study53. SMILES
sequences longer than the maximum length are truncated and
those shorter than the maximum length are zero-padded.

Semantic feature vectors of ADRs. The semantic features of
ADRs have been widely applied to the drug side-effect prediction
task and its effective performance has been fully demonstrated in
plenty of previous studies54,55. Here, we calculate the semantic
feature vectors of ADRs based on ADR descriptors in the
ADReCS database. Each ADR descriptor in ADReCS is repre-
sented by a unique numerical ID indicating its position in the
semantic hierarchy tree and its relationship to other ADR
descriptors. A numeric ID is a combination of four fixed-length
numeric strings, which represent the four levels of the ADReCS
hierarchy from left to right. The more digital strings contained in
the digital ID, the more specific the information indicated by the
ADR descriptor. By correlating the associated descriptors of
ADRs, we can construct a direct acyclic graph (DAG) for each
ADR. Figure 2 displays the DAG of the ADR “Meningitis Bac-
terial” with the ADR descriptor “17.06.10.002; 11.02.01.013”. The
number of all ADR descriptors related to it is 7. Different
semantic descriptors may be associated with different sets of
semantic descriptors. To capture this information, we count all
possible semantic items of ADRs at each semantic level in the
benchmark dataset and encode them as integers. The dimension
of the semantic feature vector for ADRs matches the number of
semantic items. If the DAG of an ADR contains a semantic term
(id), the corresponding position of the vector is 1, otherwise, it is
set to 0. Finally, we encode the semantic categories for each ADR
in our study into a 792-dimensional multi-hot vector.

Learning latent representations for drug–ADR interactions. It
is well known that high quality feature encoding algorithms can
capture key features of drugs and ADRs, helping improve pre-
diction accuracy. In this work, we utilize a multi-level attention
GNN module, a multi-scale residual CNN module, and a multi-
head self-attention fusion module to extract the latent repre-
sentations from input drugs and ADRs.

Multi-level Graph Attention module. The intrinsic chemical
structures of drugs and the GNN network have been employed to
predict drug–target interactions56, drug–cell line interactions57,
and anatomical therapeutic chemical codes of drugs58. Here, we
use a Multi-level Graph Attention (MGA) module to learn the
representation of the molecular graph. The MGA module intro-
duces the self-attention mechanism59 in the propagation process
of GNN layers, the core idea of which is to obtain the context
vector of the target node by paying attention to the neighbors and
local environment of the target node. MGA in GACP contains
two attention mechanisms: an atomic-level attention machine
and a molecular-level attention mechanism. In the atomic-level
attention mechanism, each atom in a molecular graph progres-
sively aggregates information from its neighborhood, focusing on
the most relevant information in its neighborhood. In each node-
embedded attention layer, a new state vector is generated for each
atom. After several stacked attention layers, the state vector
contains more neighborhood information. To integrate the vector
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of each atom in the molecular graph into the vector of the whole
molecule, we employ the molecular-level attention mechanism,
constructing a super node to represent the information of the
entire molecular graph. The super node is connected to all nodes
in the molecular graph. Operating similarly to the attention
mechanism at the atomic level, the final representation of the
entire drug molecular graph can be obtained. MGA not only
characterizes the local atomic environment by broadcasting node
information from nearby nodes to more distant nodes but also
allows non-local effects at the intramolecular level by applying a
graph attention mechanism.

To give readers a better understanding of the MGA process, we
take a graph molecular G= (V, E) as an example and discuss the
specific implementation details of each step.

In step 1, we update the node information by aggregating the
information of the edges corresponding to the nodes in the graph.
Firstly, we determine the contribution of each edge information
to the nodes. For example, let vi 2 V and ej 2 E, the contribution
of ej to vi can be calculated as follows:

Zi;j ¼ Relu W1 hinitvi

h ��� hinitej

���
i� �

; ð3Þ

where hinitvi
and hinitej

are the initiation representations of vi and ej,

respectively, W1 is a transformer matrix, and Rectified Linear
Unit (ReLU) function60 is the activation function. Then, we use
the Softmax function61 to normalize the contribution of all edges
associated to vi to obtain the attention coefficient.

αi;j ¼ softmax Zi;j

� �
¼ expðZi;jÞ

∑k2Pi
expðZi;kÞ

; ð4Þ

where Pi represents all edges associated with vi. Finally, we obtain
the output representation of node vi by weighting the features of
the edges.

h0vi ¼ Reluð∑ej2Pi
αi;jh

init
ej

Þ ð5Þ
h0vi is fed into a Gated Recurrent Unit cell62 together with the

target atom’s current state vector hinitvi
, producing the updated

state vector h1vi of atom vi.
In step 2, we update the node information by aggregating the

information of all neighbor nodes (self-attention mechanism).
The process of updating node information is similar to the
method in step 1, except that this experiment uses the neighbor
node information instead of the edge information to update node
representation. Finally, we can get the updated state vector h2vi to
represent the atom vi.

In step 3, we combine all atomic representations in the
molecular graph into the representation of the entire molecule.
We construct a super node vsuper for the G, which is connected to
all the nodes in the molecular graph, and its initial representation
is the accumulation of all the nodes in the molecular graph. Then,
we generate the representation of the super node using the same
computational steps as in step 2. This process is carried out on a
multilayer attention layer of molecular embedding and generates
a representation vector for the whole molecular graph. In the final
stage of the MGA module, we apply a fully connection layer over
the representation to capture the most important feature and get
the drug latent representation.

Multi-scale residual CNN module. Inspired by the great success
of CNN networks in natural language processing applications63,
we propose a Multi-scale Residual CNN module to extract the
latent information from SMILES sequences. The architecture is
able to integrate local dependencies to capture latent repre-
sentations of SMILES sequences. When the convolution filter

slides on the SMILES coding matrix, the local dependencies
between different substructures of the drug are captured by the
latent feature vectors. More specifically, the CNN module in
GCAP comprises multiple separate CNN layers and each layer
contains multiple different 1-dimensional filters. In a CNN layer
of GCAP, the fusion process is performed via the convolution
operation and ReLU function. The initial feature input of the
CNN module in GCAP is the SMILES encoding matrix encoded
by the Pytorch embedding layer64. Let xi represent the i-th row in
the matrix. The input matrix of a CNN layer is represented as:

x1:l ¼ x1 � x2 ¼ xl ð6Þ
where ⊕ is the concatenation operator and l is the number of
columns of the matrix. Then, multiple convolution filters of dif-
ferent scales and the ReLU function are applied to windows of the
input matrix to produce new features. For example, a convolution
kernel w with size h in the convolution operation is applied to a
window of h rows of the input matrix to produce a new feature as
follows:

ci ¼ ReLUðwxi:iþh�1 þ bÞ ð7Þ
where b is a bias term. By checking all possible windows in the
x1:l , we can obtain a feature map:

c ¼ ½c1; c2; : : ci; : :: ; cl� ð8Þ
Here, we set the padding to [(h−1)/2] and stride to 1 to ensure

that the input and output dimensions are consistent. We set up
four filters to obtain multiple features. Each filter has l channels
and their scale sizes are 1, 3, 5, and 7, respectively. Then, we
concatenate all feature maps and use them as input to the next
CNN layer. In addition, we add a residual path between two
adjacent CNN layers to alleviate the problem of network
degradation65. In the final stage of the CNN module, we apply
a max-pooling operation over the feature maps to perform feature
selection and get the drug latent representation.

Representation fusion. We design a fusion module, a multi-head
self-attention module, that fuses multiple representations into a
joint vector for downstream predictions. More specifically, taking
drug–ADR interaction di-sj as an example, we use the fully con-
nected layers to extract the semantic feature vector of ADR sj, the
j-th column of RInteraction and RSeriousness and perform feature
extraction and dimension transformation to obtain representa-
tions f ADRsemantic, f

ADR
interaction, and f ADRseriousness for sj respectively. We use

the fully connected layers, multi-level graph attention module and
multi-scale residual CNN module for SMILES sequences, the i-th
row of the known interaction matrix RInteraction and known ser-
iousness matirx RSeriousness to obtain representations f drugGNN, f

drug
CNN,

f druginteraction, and f drugseriousness for di respectively. Then, we stack the
seven representations into a matrix M, and perform the multi-
head self-attention mechanism on these representations to ensure
that each vector is aware of the fellow cross subspace repre-
sentations. This operation enables each representation to induce
latent information from other representations of the drug–ADR
interaction. The single-headed attention mechanism is defined as
a scaled dot-product function:

Headi ¼ Attention Qi;Ki;Vi

� � ¼ SoftmaxðQiK
T
i Þffiffiffiffiffi

Le
p Vi ð9Þ

where Q, K, V are the query, key, and value matrices of headi,
which are obtained by multiplying the corresponding linear
projection matrices (WQ, WK, and WV) with the input data,
respectively. T is a transpose operation and Le is the dimensional
of WQ, WK, and WV. The multi-head attention mechanism
computes multiple such single-head attentions in parallel, and
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then concatenates the results of each single-head attention to
obtain the final result. The calculation process is defined as fol-
lows:

Multi� head ¼ Head1 � Head2 � ¼Headi � ¼HeadR ð10Þ
where ⊕ is the concatenation operator and R is the number of
heads in the multi-head attention mechanism. Finally, we per-
form a pooling operation on the output of the fusion module to
generate the final representation of the di–sj interaction.

Predicting the seriousness of clinical outcomes of adverse
reactions to drugs. Our model has two subtasks, the first one
focuses on identifying serious/non-serious clinical outcomes of
adverse reactions to drugs, and the second one focuses on pre-
dicting the classes of serious clinical outcomes caused by
drug–ADR interactions. Therefore, we set up two separate MLP
modules to obtain GCAP prediction results. Each MLP module
has a fully connected hidden layer and the same number of
neurons. The first MLP module is predicting the seriousness
scores of clinical outcomes between the drugs and ADRs and the
second MLP module is used to predict the seriousness class scores
between the drugs and ADRs.

Multi-objective optimization. The goal of GCAP is to minimize
the difference between the predicted scores and the true ser-
iousness labels of known drug–ADR interactions. Therefore,
GCAP has two separate loss functions including a binary cross-
entropy loss function and a diversity cross-entropy loss function,
for the corresponding two tasks, respectively. For the serious/
non-serious clinical outcomes prediction task, in a training set
with N drug–ADR interactions, the binary cross-entropy loss
function is defined as:

Lossassociation ¼ � 1
N

∑
N

i¼1
ytruei ´ log ypredi

� �
þ ð1� ytruei Þ ´ log 1� ypredi

� �� �

ð11Þ

where N is the number of samples in the training set, ypredi and
ytruei represent the predictive score and true label of the i-th
sample, respectively.

For the task of determining the classes of serious clinical
outcomes caused by drug–ADR interaction, the final diversity
cross-entropy loss function is defined as:

LossSeverity ¼� 1
C ´Ni

∑
C

i¼1
∑
Ni

j¼1
ytruei;j ´ log ypredi;j

� �

þ ð1� ytruei;j Þ ´ log 1� ypredi;j

� � ð12Þ

where C is the total number of classes, Ni is the number of
samples belonging to the i-th class in the training set, yij is the
label of the j-th sample belonging to the i-th class. The format of
the labels is represented by a multi-hot vector and ypredi;j represents
the predicted probability of the j-th sample belonging to the i-th
class. The two loss functions are combined together and
optimized simultaneously in a multi-objective training process
as follows:

Losstotal ¼ Lossassociation þ αLossSeverity ð13Þ
where α stands for a weight parameter that balances the two loss
functions. All parameters of GCAP are updated using the Adam
optimizer66. The training process is efficient, with a single GCAP
model able to be trained within two hours on a Linux server with
20 logical CPU cores and one Nvidia GeForce GTX 2080Ti GPU.

Evaluation protocols and metrics. To minimize the impact of
data variability on the results, we use tenfold cross-validation to
evaluate the predictive performances of our method. This vali-
dation process ensures that the model is tested on different
subsets of the data, making the evaluation more robust and less
prone to overfitting. In the k-th fold, the k-th positive and
negative subsets are set as the testing set for model testing, and
the remaining nine positive and negative subsets are set as the
training set for model training. A higher rank for the positive
samples indicates a better predictive performance of the method.

The predictive performance of the method is evaluated using
the AUC and AUPR metrics. These metrics provide a
comprehensive evaluation of the model’s performance across
different thresholds. The ROC curve is an efficient indicator for
visualizing and measuring the cost of the true positive rate (TPR)
against the false positive rate (FPR) at various thresholds. The
ROC curve is a useful indicator for visualizing and measuring the
trade-off between the TPR and the FPR at various thresholds. A
high AUC value indicates that the classifier is more likely to rank
a randomly chosen positive instance higher than a randomly
chosen negative instance, reflecting better predictive performance.
The PR (Precision-Recall) curve demonstrates the trade-off
between precision and recall for different thresholds. A high
AUPR value indicates both high recall and precision, which
means the model is able to correctly identify a large proportion of
positive instances while maintaining a low rate of false positives.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
Data availability are as follows: All raw known drug–ADR interactions are collected from
ADReCS database version v3.1 (http://bioinf.xmu.edu.cn/ADReCS/). All raw adverse
event reports are collected from the united states Food and drug administration Adverse
Event Reporting System (FAERS, https://open.fda.gov/data/faers/). drug–ADR
interactions in the benchmark dataset (Supplementary Data 1), classes of serious clinical
outcomes caused by drug–ADR interaction in the benchmark dataset (Supplementary
Data 2), the SMILES sequences of drugs in the benchmark dataset (Supplementary
Data 3), the semantic descriptions of ADRs in the benchmark dataset (Supplementary
Data 4), and two independent test datasets (Supplementary Data 5 and 6). Source data
for figures can be found in https://github.com/zhc940702/GCAP. Any other relevant data
are available from the authors upon reasonable request.

Code availability
The code of our deep learning model is provided in https://github.com/zhc940702/GCAP
and Zendo67.
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