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Nicardipine is a putative EED inhibitor and has high selectivity
and potency against chemoresistant prostate cancer in
preclinical models
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BACKGROUND: It is imperative to develop novel therapeutics to overcome chemoresistance, a significant obstacle in the clinical
management of prostate cancer (PCa) and other cancers.
METHODS: A phenotypic screen was performed to identify novel inhibitors of chemoresistant PCa cells. The mechanism of action
of potential candidate(s) was investigated using in silico docking, and molecular and cellular assays in chemoresistant PCa cells. The
in vivo efficacy was evaluated in mouse xenograft models of chemoresistant PCa.
RESULTS: Nicardipine exhibited high selectivity and potency against chemoresistant PCa cells via inducing apoptosis and cell cycle
arrest. Computational, molecular, and cellular studies identified nicardipine as a putative inhibitor of embryonic ectoderm
development (EED) protein, and the results are consistent with a proposed mechanism of action that nicardipine destabilised
enhancer of zeste homologue 2 (EZH2) and inhibited key components of noncanonical EZH2 signalling, including transducer and
activator of transcription 3, S-phase kinase-associated protein 2, ATP binding cassette B1, and survivin. As a monotherapy,
nicardipine effectively inhibited the skeletal growth of chemoresistant C4-2B-TaxR tumours. As a combination regimen, nicardipine
synergistically enhanced the in vivo efficacy of docetaxel against C4-2 xenografts.
CONCLUSION: Our findings provided the first preclinical evidence supporting nicardipine as a novel EED inhibitor that has the
potential to be promptly tested in PCa patients to overcome chemoresistance and improve clinical outcomes.
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BACKGROUND
Prostate cancer (PCa) is the most common type of cancer and the
second leading cause of cancer-related death in American men. In
2023, an estimated 288,300 new cases will be diagnosed, and
34,700 patients will die [1]. Docetaxel was initially approved in
2004 as the first-line chemotherapy for bone metastatic,
castration-resistant PCa, but only had limited survival benefits of
3–4 months [2]. Several large-scale trials, including CHAARTED,
GETUG-AFU, LATITUDE, and STAMPEDE, demonstrated that the
combination of docetaxel with androgen deprivation therapy
(ADT) significantly improved the overall survival in patients with
high-volume, hormone-sensitive metastatic PCa [3, 4]. These
recent studies are changing the treatment landscape of metastatic
PCa and indicated that docetaxel would remain a standard of care
for this lethal disease [5, 6]. While the upfront use of docetaxel

increases, chemoresistance eventually occurs, posing a significant
challenge to the clinical management of metastatic PCa [7]. It is
imperative to uncover the underlying mechanism of chemoresis-
tance and develop novel therapeutics to overcome it.
Drug repositioning or repurposing is an attractive strategy for

discovering effective cancer treatments. It can facilitate the
translation from bench research to bedside use due to its
potential lower overall development costs and shorter timelines
[8, 9]. However, a major technical hurdle in drug repurposing is the
lack of clinically relevant screens that efficiently identify lead
compounds for potential new therapeutic targets in different
diseases. Therefore, it is unsurprising that recent years have seen a
renewed interest in phenotypic screens in drug discovery that
could better address the poorly understood complexity of human
cancers and hold the promise of identifying first-in-class drugs [10].
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Moffat et al. introduced the concept of ‘mechanism-informed
phenotypic drug discovery (MIPDD)’, which conducts phenotypic
assays for specific molecular pathways/targets and determines
causal relationships between target inhibition and phenotypic
effects. Compared with traditional phenotypic screens, MIPDD can
provide a more efficient approach to discovering new drugs with
optimal mechanisms of action for treating advanced and
therapeutically resistant cancers [11].
Polycomb repressive complex 2 (PRC2) is essential in transcrip-

tional repression via mono-, di-, and tri-methylation of histone H3 at
lysine 27 (H3K27). The core subunits of PRC2 include enhancer of
zeste homologue 1 or 2 (EZH1 or EZH2), embryonic ectoderm
development (EED), and suppressor of zeste 12 (SUZ12) [12, 13].
EZH2 is a histone methyltransferase (HMT) and acts as the catalytic
‘writer’ subunit of PRC2 in the transcriptional repression of genes
[12]. Aberrant overexpression and activation of EZH2 have been
associated with clinical progression and poor prognosis of PCa and
other cancer types [14–17]. However, the role of EZH2 signalling in
chemoresistance remains largely unknown.
We established a sequential phenotypic screen using two

independent PCa models with distinct molecular characteristics
and mechanisms of chemoresistance, i.e., the ARCaPE-shEPLIN
(inherent chemoresistance) and C4-2B-TaxR (acquired chemoresis-
tance) cells [18]. We proposed that these models could closely
mimic the complex biology and high heterogeneity of chemore-
sistant PCa. Recently, we demonstrated that the activation of
noncanonical EZH2 signalling represents a novel mechanism of
chemoresistance in PCa cells. Specifically, phosphorylation of EZH2
at serine 21 (p-EZH2[S21]) activates a survival signalling pathway
consisting of signal transducer and activator of transcription 3
(Stat3), S-phase kinase-associated protein 2 (SKP2), ATP binding
cassette B 1 (ABCB1, p-glycoprotein) and survivin, thereby
conferring chemoresistance. Furthermore, we developed a small-
molecule compound, namely LG1980, that effectively interrupts the
physical interaction between EED and EZH2, disassembles PRC2,
and promotes the degradation of its core components, thereby
inhibiting p-EZH2(S21) and suppressing the expression of its
downstream effectors. Significantly, LG1980 demonstrated high
specificity and potent efficacy against the in vitro and in vivo
growth of chemoresistant PCa cells [18]. These results indicated that
the ARCaPE-shEPLIN and C4-2B-TaxR cells could be exploited as a
MIPDD platform for the discovery of novel inhibitors of chemore-
sistant PCa. Using this platform, we have identified several FDA-
approved, non-oncology drugs that selectively and effectively
inhibit the in vitro and in vivo growth of chemoresistant PCa cells. In
this report, we have described an anti-hypertensive drug, nicardi-
pine [19], as a specific and potent inhibitor of chemoresistant PCa in
preclinical models. Intriguingly, our mechanistic studies demon-
strated that nicardipine might function as an EED inhibitor that
disrupts the noncanonical EZH2 signalling and confers its anticancer
activities in chemoresistant PCa cells.

MATERIALS AND METHODS
Cell culture and reagents
Human PCa ARCaPE cells stably expressing human EPLIN short hairpin RNA
(shRNA) (ARCaPE-shEPLIN) or control shRNA (ARCaPE-shCtrl) were estab-
lished and cultured as we described in [18, 20]. C4-2B and its docetaxel-
resistant derivative C4-2B-TaxR (provided by Dr Allen C. Gao at the
University of California Davis, USA) were cultured following the procedures
described in [21], with the modification that C4-2B-TaxR cells were
maintained in the presence of 100 nM docetaxel (LC Laboratories, Woburn,
MA). The final concentration of docetaxel in the culture medium was
reduced to 5 nM before experimental assays [18]. C4-2 and C4-2-Luc cells
were provided by Dr Leland WK Chung (Cedars-Sinai Medical Center, Los
Angeles, CA, USA). C4-2 cells were routinely cultured in T-medium (Life
Technologies, Carlsbad, CA, USA) supplemented with 5% foetal bovine
serum (FBS; Atlanta Biologicals, Atlanta, GA, USA) and penicillin-
streptomycin (Corning Inc, Corning, NY, USA). C4-2-Luc cells were cultured

in the same media as C4-2 with additional G418 (Thermo Fisher Scientific,
Waltham, MA) at 400 μg/mL. Human PC-3 cells were routinely maintained
in RPMI 1640 medium (Corning Inc) supplemented with 10% FBS and
penicillin-streptomycin. Human CWR22Rv1 cells were provided by Dr Jin-
Tang Dong (Emory University, Atlanta, GA, USA) and maintained in RPMI
1640 medium containing 2% L-glutamine, 10% FBS, penicillin-streptomy-
cin, 1.5 g/L sodium bicarbonate, 10 mmol/L HEPES, 4.5 g/L glucose, and
10mmol/L sodium pyruvate. All cell lines were regularly tested for
mycoplasma contamination. Cells were counted using Cell Counting Kit-8
(CCK-8; Dojindo Molecular Technologies, Inc., Rockville, MD, USA) following
the manufacturer’s instructions. The half-minimal inhibitory concentra-
tions (IC50) of the specified agent were calculated with the SigmaPlot
program (Systat Software Inc., San Jose, CA, USA). Cycloheximide (CHX),
dimethyl sulfoxide (DMSO), nicardipine hydrochloride, and propidium
iodide were purchased from Sigma-Aldrich (St. Louis, MO, USA).

Molecular docking and binding energy calculation
The three-dimensional (3D) structures of tested compounds (LG1980, nicardi-
pine, losartan, EED226, MAK683, gallopamil, NNC 55-0396, verapamil, and
metformin) were retrieved from PubChem and built using the Maestro
program (Schrödinger, New York, NY, USA), as we described previously [18].
All the tested compounds were prepared using Ligprep in Maestro 12.4. The
structure of EED protein (PDB ID: 5WUK) was retrieved from RCSB’s Protein
Data Bank [22]. Using the Protein Preparation Wizard in Maestro, the protein
structure was prepared through three steps: preprocessing, optimisation, and
minimisation [23]. Preprocessing includes assigning bond orders, adding
hydrogens, creating disulfide, and generating het states using Epik [24, 25].
The process of optimisation optimises hydrogen bonds by using PROPKA [26].
The step of minimisation is performed by using the OPLS3e force field [27]. A
receptor grid box was generated based on the five residues (Phe97, Tyr148,
Trp364, Tyr365, Arg367) around the binding site. The size of the receptor grid
box was set as default (20 Å). Ligand-protein docking was performed in extra-
precision (XP) mode using the Ligand Docking panel. After molecular docking,
the binding energies were calculated using Prime MM-GBSA (molecular
mechanics generalised Born surface area) in Maestro Program.

Cellular thermal shift assay (CETSA)
CETSA was performed following a modified procedure described in [18].
C4-2B-TaxR cells were incubated for 1 h in the presence of DMSO or
nicardipine (50 µM). A MyCyclerTM thermal cycler system with a gradient
option (Bio-Rad Laboratories, Hercules, CA, USA) was used to incubate live
cells at varying temperatures.

RNA-seq analysis
RNA samples were collected from C4-2B-TaxR cells treated with DMSO or
nicardipine (2.1 μM) for 24 h in triplicates. RNA-seq analyses were performed
by Omega Bioservices (Norcross, GA, USA). Data were analysed by Rosalind®

(Rosalind, Inc., San Diego, CA, USA), Ingenuity Pathway Analysis (IPA, Qiagen,
Germantown, MD, USA), and Gene Set Enrichment Analysis (GSEA, University
of California San Diego and Broad Institute, USA).

In vivo efficacy studies
All animal procedures performed in this study were approved by Augusta
University Institutional Animal Care and Use Committee (IACUC) and
followed the National Institutes of Health guidelines. A total of 2 × 106

C4-2B-TaxR or C4-2-Luc cells suspended in 20 μL PBS were injected into the
bilateral tibia of male athymic nude mice (Hsd: athymic nude-nu; 5 weeks
old; Envigo RMS, Inc, Indianapolis, IN). Tumour establishment in mouse
bones was confirmed by rising serum levels of human prostate-specific
antigen (PSA) using an enzyme-linked immunosorbent assay kit (United
Biotech, Inc, Mountain View, CA, USA), and only mice with successful
tumour inoculation were included in the studies. For the C4-2B-TaxR
xenograft model, tumour-bearing mice were randomly divided into three
groups and treated with vehicle control (DMSO), docetaxel, or nicardipine,
respectively, at the indicated doses and schedule via intraperitoneal (i.p.)
injection. For the C4-2-Luc xenograft model, an additional group of mice
was treated with the combination of docetaxel and nicardipine at the
indicated doses and schedules via i.p. injection. The vehicle control and
docetaxel treatment groups in the C4-2B-TaxR and C4-2-Luc xenografts
were the same as those described in a previous study [18]. Body weights
were monitored twice a week. Intratibial growth of tumours was followed
by weekly PSA measurements. Investigators were not blinded to the group
allocation during the experiments and/or when assessing the outcomes.
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Statistical analysis
For molecular and cellular studies, all samples were prepared in at least
triplicates, and all experiments were repeated at least three times. For
animal experiments, a sample size of ≥ three mice per group was used
based on our previous observations, which could detect the differences in
the pairwise comparison of average PSA levels among different treatments
[18]. The unpaired t-test was performed to examine the significant
difference between the means of any two groups. A two-way analysis of
variance (ANOVA) was performed to measure the significant difference by
comparing the means between groups affected by two independent
factors. p < 0.05 represents statistical significance.

RESULTS
Nicardipine has high selectivity and potency against
chemoresistant PCa
Recently, we established a two-tier phenotypic screening system
to identify selective inhibitors of chemoresistant PCa cells [18].
In this platform, the primary screening was based on our original
discovery of epithelial protein lost in neoplasm (EPLIN) as a
molecular regulator of metastasis and chemoresistance [20, 28].
ARCaPE-shEPLIN cells stably expressing EPLIN shRNA are highly
resistant to docetaxel compared with ARCaPE-shCtrl cells,
thus representing the characteristics of intrinsic chemoresis-
tance [20, 28]. Primary screening was performed to identify
small-molecule compounds that selectively inhibit ARCaPE-
shEPLIN, but not ARCaPE-shCtrl cells. Primary hits were further
validated in a second (orthogonal) assay for their high potency
against C4-2B-TaxR cells, a cellular model representing
acquired chemoresistance [21], but not in docetaxel-sensitive
parental C4-2B cells.

Using the ARCaPE/C4-2B screen platform, nicardipine, an anti-
hypertensive drug, was identified as a potential inhibitor of
chemoresistant PCa cells. When the compound was tested at a
single concentration of 12.3 μM, nicardipine exhibited a high
selectivity index (SI) of 8.9, where the SI was defined as the ratio of
the percentage of inhibition on viability in ARCaPE-shEPLIN cells
and that in ARCaPE-shCtrl cells [18]; only 1.1% of chemoresistant
ARCaPE-shEPLIN cells survived following the treatment. To confirm
the selectivity of nicardipine in chemoresistant PCa cells, we
determined its half-minimal inhibitory concentration (IC50) in the
ARCaPE-shEPLIN/ARCaPE-shCtrl and C4-2B-TaxR/C4-2B pairs. Nicar-
dipine had an IC50 of 29.1 μM in ARCaPE-shCtrl cells and 0.5 μM in
ARCaPE-shEPLIN cells, with a fold of difference of 58.2 (Fig. 1a, left).
Consistently, nicardipine demonstrated higher cytotoxicity in C4-
2B-TaxR cells (IC50= 2.1 μM) than in C4-2B cells (IC50 > 51.2 μM),
with a fold of difference of > 24.4 (Fig. 1a, right). Flow cytometry
analyses showed that compared with vehicle control, nicardipine
treatment at 2.0 and 4.0 μM significantly induced cell cycle arrest
at both G1-S and G2-M checkpoints with an accumulation of a sub-
G1 population representing apoptotic cells (Fig. 1b). Nicardipine
treatment also significantly induced apoptosis dose-dependently,
as demonstrated by increased surface staining of Annexin V, a
marker of apoptosis (Fig. 1c, left). Western blotting analyses
confirmed that nicardipine induced the cleavage of poly (ADP-
ribose) polymerase (PARP) and caspase-3 in C4-2B-TaxR cells but
not in C4-2B cells (Fig. 1c, right and Supplementary Table S1).
The in vitro cytotoxicity of nicardipine was further determined

in several commonly used PCa lines, i.e., ARCaPE, C4-2, CW22Rv1,
and PC-3. These cell lines have distinct genetic backgrounds and
represent different aspects of PCa progression, but are relatively
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Fig. 1 Nicardipine selectively and potently inhibits chemoresistant PCa cells. a In vitro cytotoxicity of nicardipine in the ARCaPE and C4-2B
models (72 h). b Flow cytometry results on cell cycle in C4-2B-TaxR cells treated with nicardipine at the indicated concentrations (48 h).
*** p < 0.001 for all pairwise comparisons between the percentages of cells from the control and nicardipine treatment groups in each cell
cycle. c Left: flow cytometry analysis on Annexin V staining in C4-2B-TaxR cells treated with nicardipine at the indicated concentrations (72 h).
**** p < 0.0001 for all pairwise comparisons between the control and nicardipine treatment groups; right: western blot analysis on the
expression of apoptotic markers in C4-2B and C4-2B-TaxR cells treated with nicardipine (2.1 µM) at the indicated time points. β-actin was used
as the loading control. d In vitro cytotoxicity of nicardipine in C4-2, PC-3, ARCaPE, and CWR22Rv1 cells (72 h).
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sensitive to docetaxel treatment (Table 1). Interestingly, nicardipine
had low potency in these chemosensitive PCa cells, with its IC50
values ranging from 15.0 to >32.0 μM (Fig. 1d). Nicardipine also
exhibited very low cytotoxicity (IC50= 79.5 μM) in BPH1 cells, a
benign human prostatic epithelial cell line (Supplementary Fig. S1).
These results indicated that nicardipine had high selectivity and
potency against chemoresistant PCa cells.

Nicardipine is a putative EED inhibitor
EED is the ‘reader’ component of the PRC2 complex that binds
trimethylated H3K27 (H3K27me3) and activates the HMT function
of EZH2. As a classical WD40 repeat (WDR)-containing protein, EED
also serves as a scaffolding protein to interact with EZH2 and
SUZ12 and maintain the integrity of the PRC2 complex [29–31].
Current EED inhibitors, including EED226, A-395, and BR-001, target
the histone-binding central pocket, or the ‘aromatic cage’, formed
by the seven WDRs in EED and prevent allosteric activation of the
catalytic activity of PRC2 [32]. Our previous studies have identified
LG1980 as a novel EED inhibitor that effectively blocks noncano-
nical EZH2 survival signalling and selectively targets chemoresis-
tant PCa cells [18]. To determine whether nicardipine exerts its
anticancer effect via a similar mechanism of action, the following
experiments were performed: (1) molecular docking analyses
demonstrated that nicardipine bound the ‘aromatic cage’ of EED,
interacting with Phe97 and Tyr365 through Pi-cation interactions,
and with Arg414 by forming a salt bridge. In addition, a hydrogen
bond was formed between nicardipine and Arg414 and Trp364,
respectively (Fig. 2a). The binding energy between nicardipine and
EED was calculated as −65.25 kcal/mol, suggesting that nicardipine
had a higher EED affinity than known EED inhibitors such as
EED226 (−49.01 kcal/mol) and MAK683 (−56.15 kcal/mol). Nicardi-
pine also had a higher predicted EED affinity than the other
examined calcium channel modulators, losartan, and metformin.
As the positive control, LG1980 had the highest binding affinity to
EED with the calculated energy of −73.62 kcal/mol (Table 2).
(2) CETSA was performed to determine the intracellular binding of
nicardipine and EED protein in live C4-2B-TaxR cells [18]. Compared
with vehicle control, nicardipine treatment shifted the melting
temperature (Tm) of EED protein from 49.8 °C to 50.4 °C, indicating
that nicardipine could specifically bind and stabilise EED protein in
live cancer cells (Fig. 2b). Taken together, these computational and
experimental studies indicated that nicardipine could be a novel
EED inhibitor.

Nicardipine inhibits noncanonical EZH2-Stat3-SKP2-ABCB1/
survivin signalling in chemoresistant PCa cells
The integrity and function of the PRC2 complex rely on the
presence of EED and SUZ12 [12, 13]. Consistent with our published
results [18], EED and p-EZH2(S21) were significantly upregulated in
C4-2B-TaxR cells compared with parental C4-2B cells. In contrast,
the basal levels of EZH2 and SUZ12 were similar between the
two cell lines. Treatment with nicardipine at 2.1 μM effectively
downregulated EZH2, p-EZH2(S21), EED and SUZ12 in a time-
dependent manner in C4-2B-TaxR cells but not in parental C4-2B
cells (Fig. 3a and Supplementary Table S1). We further determined
whether nicardipine could affect EZH2 protein stability in chemore-
sistant PCa cells, thereby reducing the expression of EZH2 and
p-EZH2(S21). A CHX chase experiment showed that in the presence

of nicardipine, the half-life (T½) of EZH2 protein was significantly
shortened from ≥ 48 h to 14.8 h (Fig. 3b). This result indicated that
nicardipine might facilitate EZH2 degradation via a proteasome-
mediated mechanism.
We evaluated whether nicardipine affects the canonical

function of EZH2 on histone methylation. Consistent with our
previous findings [18], there was no significant difference in the
basal expression of H3K27me3 between C4-2B and C4-2B-TaxR
cells, indicating that canonical EZH2 signalling may not play a
dominant role in PCa chemoresistance. Treatment with nicardi-
pine at 2.1 μM did not affect the tri-methylation of H3K27 in either
C4-2B or C4-2B-TaxR cells during a 72 h period. In comparison,
nicardipine significantly inhibited the mono-methylation of H3K27
in a time-dependent manner, starting at 24 h, and reduced H3K27
di-methylation after 48 h in C4-2B-TaxR cells but not in C4-2B cells
(Fig. 3c and Supplementary Table S1). These results indicated that
the anticancer activity of nicardipine in chemoresistant PCa cells
might be independent of the canonical HMT function of EZH2.
We further determined the effect of nicardipine on the expression

of core components of a novel noncanonical EZH2 signalling
pathway in chemoresistant PCa cells [18]. Supporting our published
results, p-EZH2(S21), p-Stat3(S727), SKP2, ABCB1 and survivin were
upregulated in C4-2B-TaxR cells compared with parental C4-2B cells.
Nicardipine selectively and effectively suppressed the expression of
p-EZH2(S21), p-Stat3(S727), SKP2, ABCB1, and survivin in chemore-
sistant C4-2B-TaxR cells but not in C4-2B cells (Fig. 3d and
Supplementary Table S1). These results suggested that nicardipine
may effectively target noncanonical EZH2-Stat3-SKP2-ABCB1/
survivin signalling and inhibit the proliferation and viability of
chemoresistant PCa cells.

Nicardipine facilitates cellular uptake of chemotherapeutics in
chemoresistant PCa cells
Overexpression of ABCB1 (p-glycoprotein) has been recognised
as a central molecular mechanism in multidrug resistance [33].
Consistently, our previous studies have shown that ABCB1
depletion effectively increased the intracellular presence of
chemotherapeutics in chemoresistant PCa cells [18]. Since
nicardipine significantly reduced ABCB1 protein levels in che-
moresistant C4-2B-TaxR cells, we examined whether nicardipine
could facilitate the uptake of Oregon Green 488-conjugated
paclitaxel. As shown in Fig. 3e, nicardipine pre-treatment resulted
in a rapid (within 15 min) accumulation of fluorescent paclitaxel
in C4-2B-TaxR cells. In comparison, there was no paclitaxel uptake
until 30 min in control cells (Fig. 3e). These results indicated that

Table 1. In vitro cytotoxicity of docetaxel and nicardipine in several established PCa cell lines (72 h).

Cell line Molecular characteristics IC50 of docetaxel (nM) IC50 of nicardipine (μM)

ARCaPE Androgen-repressive 4.2 > 32.0

C4-2 AR-positive, androgen-independent 0.7 (refer to Fig. 6a) 15.0

CWR22Rv1 AR/AR-V7-positive, androgen-independent 3.9 > 32.0

PC-3 AR-negative, androgen-independent 4.2 16.8

Table 2. Predicted binding energies (kcal/mol) between the tested
compounds/drugs and human EED protein (PDB ID: 5WUK).

Compound Binding energy (kcal/mol)

LG1980 −73.62

Nicardipine −65.25

EED226 −49.01

MAK683 −56.15

Losartan −47.31

Metformin −17.87
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nicardipine-mediated ABCB1 downregulation could contribute to
the increased uptake and retention of chemotherapeutics in
chemoresistant PCa cells.
Taken together, these molecular and cellular results are

consistent with a working model that nicardipine may bind EED
and induce protein degradation of EZH2, thereby reducing p-EZH2
and suppressing Stat3/SKP2/ABCB1/survivin survival signals in
chemoresistant PCa cells (Fig. 3f).

Nicardipine affects multiple genes implicated in the control of
the cell cycle in chemoresistant PCa cells
To obtain an unbiased view of the mechanism of action of
nicardipine in chemoresistant PCa cells, we performed RNA-seq
analyses and compared gene expression in C4-2B-TaxR cells
treated with vehicle control or nicardipine (2.1 μM, 24 h).
When an adjusted p value (p-adj) < 0.05 was used, 336 unique
genes were upregulated, and 259 unique genes were down-
regulated significantly following nicardipine treatment (Fig. 4a).
IPA profiling found that the top canonical pathways affected by
nicardipine included cell cycle control and DNA damage
responses, which were in line with the known functions of
PRC2 in cancer cells [34] (Table 3). Among the significant
signalling nodes affected by nicardipine treatment, CDKN1A
(p21)-, TP53- and RB1-related genes were activated, whereas
E2F-regulated genes were suppressed (Fig. 4b). GSEA studies
confirmed the inhibitory effect of nicardipine on EED- and cell
cycle-related genes (p= 0.026 and 0.015, respectively). Nicardi-
pine appeared to activate EZH2-repressed genes, although with
low statistical significance (p= 0.05) (Fig. 4c). These results
supported a mechanism of action that nicardipine induces cell
cycle arrest and apoptosis in chemoresistant PCa cells via PRC2-
mediated signalling.

Nicardipine inhibits the skeletal growth of chemoresistant
C4-2B-TaxR tumours
A notable feature of nicardipine was that as a single agent, it
demonstrated high selectivity and potency in chemoresistant PCa cells,
with an IC50 of 0.5 μM in ARCaPE-shEPLIN cells and IC50= 2.1 μM in
C4-2B-TaxR cells, respectively (Fig. 1a). We investigated the in vivo
efficacy of nicardipine against the skeletal growth of C4-2B-TaxR cells, a
model closely mimicking the clinicopathology of AR-positive, che-
moresistant and bone metastatic PCa [21]. Serum levels of human PSA
were measured as the primary indicator of xenograft growth in mouse
bones (Fig. 5a). At the endpoint, the average PSA level of each group
was determined as 43.47 ± 15.62 ng/mL (control), 36.63 ± 19.75 ng/mL
(docetaxel, 5mg/kg, once per week) and 28.78 ± 11.60 ng/mL
(nicardipine, 5mg/kg, three times per week). Compared with vehicle
control (p= 0.020) or docetaxel (p= 0.039), i.p. injection of nicardipine
significantly inhibited the growth of C4-2B-TaxR tumours in mouse
tibias. On the other hand, docetaxel treatment did not significantly
affect the in vivo growth of PCa cells (p= 0.741). Nicardipine treatment
was not associated with obvious in vivo toxicity or reduced body
weights of mice (Fig. 5b). These results indicated that as a
monotherapy, nicardipine could effectively suppress the in vivo growth
of chemoresistant PCa xenografts in mouse bones with a good
safety profile.

Nicardipine enhances the in vivo efficacy of docetaxel and
inhibits the skeletal growth of C4-2 xenografts
Compared with an IC50 at the low-micromolar range (2.1 μM) in C4-
2B-TaxR cells, nicardipine had relatively weak cytotoxicity in C4-2
cells (IC50= 15.0 μM) that exhibited typical phenotypes of
docetaxel-responsive PCa (IC50= 0.72 μM; Fig. 6a). Interestingly,
when C4-2 cells were treated with a combination of nicardipine and
docetaxel, the two drugs demonstrated a synergistic inhibitory

DMSO

b

a

47
.6

48
.3

49
.7

50
.4

51
.1

51
.7

47
.6

48
.3

49
.7

50
.4

51
.1

51
.7

R
el

at
iv

e 
in

te
ns

ity

Nicardipine

T (°C)

EED

120

ILE
363

TRP
364

TYR
365

TYR
148

LYS
211

ASN
194

ARG
414

ASP
430

NH+

N+

HN

O

O

O
O

O–

O

ARG
367

PHE
97

Ctrl = 49.8 °C

Nicardipine = 50.4 °C

T (°C)

90

60

30

0

47
.6

48
.3

49
.7

50
.4

51
.1

51
.7

β-actin

Fig. 2 Nicardipine is a putative EED inhibitor. a Left and middle: docking poses of nicardipine and EED; right: two-dimensional ligand-
protein interaction diagram of nicardipine in the binding site of human EED protein (PDB ID: 5WUK). The pink arrow indicates the hydrogen
bond; the blue-red line indicates the salt bridge; the red line represents pi-cation. b Left: CETSA analysis of EED expression in C4-2B-TaxR cells
treated with DMSO or nicardipine (50 µM, 1 h). β-actin was used as the loading control; right: melting temperature curves of EED protein in
C4-2B-TaxR cells treated with DMSO or nicardipine.

X. Li et al.

888

British Journal of Cancer (2023) 129:884 – 894



effect on the in vitro proliferation of C4-2 cells, which was reflected
by the combination indexes lower than 1.0 in isobologram analyses
using the CompuSyn program (Fig. 6a, right and Supplementary
Table S3). These in vitro results suggested that nicardipine may be
effective in enhancing the anticancer effect of docetaxel che-
motherapy. To test this hypothesis, C4-2 tumours were inoculated
into the tibiae of male athymic nude mice. Tumour-bearing mice
were treated with vehicle control, docetaxel, nicardipine, and the
combination of docetaxel and nicardipine, respectively. At the
endpoint, the average PSA level of each group was determined as
79.17 ± 17.92 ng/mL (control), 49.04 ± 14.92 ng/mL (docetaxel,
5 mg/kg, once per week), 42.80 ± 9.29 ng/mL (nicardipine,
10mg/kg, three times per week), and 23.23 ± 6.27 ng/mL (docetaxel
and nicardipine). Compared with the vehicle control, docetaxel
could moderately retard the in vivo growth of C4-2 tumours
(p= 0.048), and nicardipine monotherapy was ineffective in
suppressing tumour growth compared with the vehicle control
(p= 0.090) or docetaxel (p= 0.706). However, the combination of
nicardipine and docetaxel significantly decreased serum PSA levels
compared to the treatment with vehicle control (p < 0.0001),
docetaxel (p= 0.0025), or nicardipine (p= 0.0020) (Fig. 6b). Com-
pared with vehicle control, docetaxel treatment significantly
decreased the body weight, whereas the combination of nicardi-
pine and docetaxel increased the body weight compared to the
docetaxel group (Fig. 6c). These results indicated that as an adjunct
agent, nicardipine could be effective in enhancing the in vivo
efficacy of docetaxel against the skeletal growth of C4-2 tumours.

DISCUSSION
EZH2 overexpression and mutation, as well as aberrant EZH2
signalling, have been associated with advanced stages and poor
clinical outcomes in various types of cancer [15–17]. Numerous

EZH2 inhibitors have been developed, most of which target the
catalytic SET domain via competition with methyl-donating S-
adenosylmethionine (SAM). One of these inhibitors, tazemetostat
(EPZ-6438), was approved in 2020 for locally advanced or
metastatic epithelioid sarcoma [35, 36]. Unfortunately, EZH2
inhibitors have not demonstrated satisfactory clinical outcomes
in other solid tumours [37–39]. The limited success of current
EZH2 inhibitors in clinical settings indicated that blocking the
catalytic activity of EZH2 alone is insufficient and highlighted a
need for novel PRC2-targeting strategies. An alternative approach
is to develop small-molecule compounds that specifically bind the
H3K27me3-interacting ‘aromatic cage’ in EED and allosterically
affect EZH2 enzymatic activity, thereby leading to the loss of PRC2
functions [32]. Interestingly, several allosteric EED inhibitors could
also alter physical interactions between EED and other core
components of PRCs (mainly EZH2 and SUZ12) and destabilise
these proteins [40–44]. Compared with SAM-competitive EZH2
inhibitors, EED inhibitors could achieve a general and more
efficient blockade of the PRC2 oncogenic signalling in highly
heterogeneous cancer cells. An EED inhibitor (MAK683) developed
by Novartis has entered Phase I/II trials in patients with advanced
malignancies (NCT02900651) [45].
Our recent studies revealed an essential role of noncanonical

EED-EZH2 signalling in chemoresistant PCa cells. We have devel-
oped a small molecule, LG1980, as an EED inhibitor with promising
anticancer activity in chemoresistant PCa cells and xenograft
models [18]. These results indicated that pharmacological targeting
of EED could be a promising strategy to overcome chemoresistance
and validated our phenotypic screen as a novel MIPDD platform for
discovering effective EED modulators. In a recent screening using
the ARCaPE/C4-2B-based platform, we identified several potential
inhibitors of chemoresistant PCa, including nicardipine. Here, we
presented experimental evidence that nicardipine is highly specific
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and effective against chemoresistant PCa cells in both cellular and
animal models. We also provided molecular and cellular evidence
supporting a proposedmechanism of action that nicardipine acts as
a putative EED inhibitor and inhibits noncanonical EED-EZH2
signalling in chemoresistant PCa cells (Fig. 3f). These preclinical
studies revealed an unexpected function and mechanism of action
of nicardipine in chemoresistant cancer cells and could have a
significant translational implication.
Nicardipine is an approved drug for treating hypertension,

angina, and related cerebrovascular diseases [19, 46]. As a second-
generation dihydropyridine class of calcium channel blockers
(CCBs), nicardipine inhibits the transmembrane influx of calcium
into cardiac and smooth muscle without changing serum calcium
levels. Given the wide use of CCBs in the management of
cardiovascular diseases as well as the well-recognised role of
calcium signalling in cancer progression [47, 48], there has been a
longtime interest in the possible effects of CCBs on the clinical
outcomes in cancer patients. Since the 1980s, several groups have

investigated the potential anticancer activities of nicardipine and
other CCBs in preclinical and clinical settings. It appeared that
nicardipine could enhance the in vitro and in vivo effects of
certain chemotherapeutics, such as vincristine, carmofur, and
nimustine, in experimental models of PCa, oesophageal cancer,
gastric cancer, glioma, and leukaemia; however, it was not clear
whether the observed effects of nicardipine in human cancer cells
were associated with its function as a CCB [49–54]. In a recent
study, Shi et al. found that nicardipine could enhance the toxic
effect of temozolomide and promote apoptosis in glioma stem
cells, probably through the upregulation of mTOR and inhibition
of autophagy, which is a protective response in glioma cells
during chemotherapy [55].
Only a few studies have been published regarding the clinical

benefits of nicardipine in cancer patients, and the results are
inconclusive and sometimes conflicting. For example, in three
patients with relapsed and chemoresistant non-Hodgkin’s lym-
phoma, nicardipine was found to be capable of increasing the
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efficacy of vinca alkaloids [56]; in contrast, nicardipine failed to
improve adriamycin and vinca alkaloid in seventeen patients with
solid tumours or haematologic malignancy [57]. Although these
studies were largely observational in very small patient cohorts, they
suggested that there is no straightforward strategy for using
nicardipine or other CCBs for cancer treatment in general patient
populations. Supporting this notion, network meta-analyses and
trial sequential analyses of 324,168 participants from randomised
trials found no significant differences in the risk of cancer or cancer-
related death with CCBs or other individual classes of anti-
hypertensive drugs [58].
Among nineteen calcium channel modulators included in a

primary screen on the ARCaPE-shCtrl/ARCaPE-shEPLIN platform,
only four (gallopamil, nicardipine, NNC 55-0396, and verapamil)
exhibited an SI ≥ 6.0 when all compounds were used at the final
concentration of 12.3 μM) (Supplementary Table S4). Molecular
docking studies found that verapamil and NNC 55-0396 had
similar EED-binding energies to nicardipine, while gallopamil
exhibited a higher affinity at the ‘aromatic cage’ than nicardipine
(Supplementary Table S5). Although these results were derived
from a limited set of experiments, and target validation using
molecular and cellular approaches is still needed, it appeared that
the EED docking scores of these compounds might be associated

with their selectivity and potency in chemoresistant PCa cells. The
in silico models used in our study could be integrated into the
current EED-focused MIPDD and provide a more efficient screen
for identifying potential EED inhibitors.
The translational potential of these putative EED inhibitors was

our primary criterion for selecting nicardipine and evaluating its
anticancer activities in preclinical models of chemoresistant PCa. As
an approved drug for treating chronic cardiovascular diseases,
nicardipine exhibits excellent long-term safety profiles in humans
[19]. This drug also has favourable pharmacokinetics and metabo-
lism in terms of its complete absorption and nonlinear accumula-
tion in the circulation following oral administration. The approved
schedule of oral administration (i.e., every 8 h) and a readily
measured effect (e.g., change in blood pressure) from nicardipine
treatment could allow rapid and convenient adjustments in human
trials if any severe adverse effects appear. These pharmacological
and physiological features of nicardipine suggested that this drug
might have a high potential for further clinical development. In
comparison, other approved drugs with high EED-binding affinities
(i.e., gallopamil, verapamil) have limited clinical potential, mainly
due to their relatively higher toxicities in human subjects. For
example, the antiarrhythmic drug gallopamil was withdrawn in
2001 for causing excessive hypotension, bradycardia, or impaired
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treatment groups. ** p < 0.01.

Table 3. Top canonical pathways affected by nicardipine in C4-2B-TaxR cells.

Name p value Overlap

Cell cycle control of chromosomal replication 2.76E–19 39.9% (22/56)

Role of BRCA1 in DNA damage response 9.75E–18 30.0% (24/80)

NER (nucleotide excision repair, enhanced pathway) 5.31E–16 24.3% (25/103)

Hereditary breast cancer signalling 1.83E–13 18.3% (26/142)

Role of CHK proteins in cell cycle checkpoint control 8.83E–12 28.1% (16/57)
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cardiac performance when combined with β-adrenoceptor blockers
[59]. Verapamil, another hypertension drug, was thought to be a
functional inhibitor of ABCB1 (p-glycoprotein) that could re-sensitise
cancer cells to chemotherapeutics. However, verapamil failed to
demonstrate clinical benefits in lung cancer patients, mainly due to
its poor pharmacokinetics, high dose-limiting toxicity, and low
therapeutic window [60].
Our studies provided the first preclinical evidence supporting the

promise of nicardipine as a targeted agent for cancer treatment. The
translational potential of our work could be two-fold. First, the
discovery of nicardipine as a putative EED inhibitor and a potent
compound against chemoresistant PCa provided a solid rationale
for designing biomarker-based, subtype-specific trials to test
the clinical efficacy of nicardipine in PCa patients. For example,
the expression profile of major components of the noncanonical

EED-EZH2 signalling axis, including EED, p-EZH2(S21), SKP2, ABCB1
and survivin, can be evaluated in localised tumours from patients
with high-volume, high-risk PCa. Nicardipine can be offered to
patients with active noncanonical EED-EZH2 signalling as an adjunct
therapy in combination with docetaxel and/or ADT, with the
expectation of eliminating chemoresistant PCa cells and enhancing
the efficacy of standard treatments. Given its excellent pharmaco-
logical properties and safety profiles as a common anti-hyperten-
sive, nicardipine could be promptly tested in human trials and
integrated with the standard of care for chemoresistant PCa.
Second, nicardipine could be modified and optimised to develop
more specific EED inhibitors. Nicardipine-derived analogues
could represent novel first-in-class EED inhibitors with distinct
chemical structures from current ones investigated in academic and
pharmaceutical laboratories.
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