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Radiogenomics: a key component of precision cancer medicine
Zaoqu Liu 1,2,3,6, Tian Duan1,6, Yuyuan Zhang1,6, Siyuan Weng1, Hui Xu1, Yuqing Ren4, Zhenyu Zhang 5✉ and Xinwei Han 1,2,3✉

© The Author(s), under exclusive licence to Springer Nature Limited 2023

Radiogenomics, focusing on the relationship between genomics and imaging phenotypes, has been widely applied to address
tumour heterogeneity and predict immune responsiveness and progression. It is an inevitable consequence of current trends in
precision medicine, as radiogenomics costs less than traditional genetic sequencing and provides access to whole-tumour
information rather than limited biopsy specimens. By providing voxel-by-voxel genetic information, radiogenomics can allow
tailored therapy targeting a complete, heterogeneous tumour or set of tumours. In addition to quantifying lesion characteristics,
radiogenomics can also be used to distinguish benign from malignant entities, as well as patient characteristics, to better stratify
patients according to disease risk, thereby enabling more precise imaging and screening. Here, we have characterised the
radiogenomic application in precision medicine using a multi-omic approach. we outline the main applications of radiogenomics in
diagnosis, treatment planning and evaluations in the field of oncology with the aim of developing quantitative and personalised
medicine. Finally, we discuss the challenges in the field of radiogenomics and the scope and clinical applicability of these methods.
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INTRODUCTION
Since the genomic revolution in the early 1990s, cancer research
has focused on investigating the fundamental causes of diseases
at the genetic level to enable precision treatments. Following the
completion of the Human Genome Project, genomics has evolved
to a more functional level, concentrating on the expression
profiles and roles of genes and proteins. Our understanding of
cancer genetics has changed the way we think about and treat the
disease. A vast number of samples have been used to provide
genome-wide, transcriptome, epigenomic, and proteomic data in
many cancer types, such as the Cancer Genome Atlas (TCGA)
project [1, 2]. Nevertheless, traditional means of genetic analysis
rely on invasive biopsy sampling or post-operative pathological
tissues to perform the procedure, which carries certain risks and
potential complications, therefore cannot be applied to every
cancer patient. Due to intra- or intertumoral heterogeneity [3],
tissue biopsies may not accurately detect important genetic
alterations. Samples are often derived from a small fraction of
heterogeneous lesions and may not accurately represent the
anatomical, functional, and physiological characteristics of the
lesion [4–6]. More importantly, it is impossible to obtain tissue
multiple times throughout the treatment to examine the
response. Thus, integration of genomic or proteomic profiling
into general clinical practice remains difficult [7].
Medical imaging is a crucial technology in medical science and

clinical practice [8]. Whereas, the role of medical imaging is rapidly
evolving from a major diagnostic tool to a predominant role in the
circumstances of personalised precision medicine [9]. Conven-
tional imaging evaluation of tumours depends on qualitative

features such as tumour density, enhancement patterns, regularity
of tumour margins, intratumor cells and acellular components, the
anatomical relationship to surrounding structures, and anatomical
changes [10–13]. In contrast, radiomics, a fast-developing area,
permits the digital decoding of radiographic pictures into
quantitative information gained from the four-channel images,
such as intensity, texture, shape and size metrics [14, 15].
Radiomics is a new technology introduced in 2012 [16], focusing
on extracting quantitative image features from images through
high-throughput algorithms and then filtering, clustering, and
analysing these data to identify and predict tumour heterogeneity
[17–19]. Despite advances in transforming digital medical images
with various relevant data to improve decision-making support,
critical barriers exist in identifying biological interpretations of
radiomic features [20, 21].
As we enter the next era of precision medicine and big data,

many experts have put forward the concept of “Radiogenomics”.
Radiogenomics focuses on developing multi-scale connections
between medical imaging and genomic data. It can be considered
as a combination of radiomics and genomics that addresses the
above shortcomings [22]. Over the past decade, it has grown
tremendously and has shown great potential to develop non-
invasive prognostic and diagnostic approaches to identify
biomarkers for therapy, particularly for cancer, by linking
quantitative imaging features of tumour phenotypes to genomic
signatures [23]. With the improved molecular characterisation of
various cancer types and advances in texture analysis and
machine learning, cancer diagnostics are poised to move into
personalised medicine with radiogenomics [24].
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Although several specialists have achieved significant advances
in image genomics research, the future development of imaginary
genomics confronts massive challenges. The textural character-
istics, resolution, and imaging parameters of imaging equipment
must be increased further. As the volume of clinical data grows, so
will the need for computers and data exchange [25].
Despite the aforementioned limitations, radiogenomics, a field

based on advances in computational analysis of medical imaging
and bioinformatics, can help overcome several difficulties in this
field by contributing to quantifying tumour characteristics,
detecting early relapse after treatment, and driving precision
medicine forward. This review article highlights the present state
of radiogenomics research in tumour characterisation, addresses
several of its limitations, promises, and projects its future
directions.

An overview of radiogenomic workflows
The core idea of radiogenomic is to fuse genomic data reflecting
molecular-level activities with imaging data reflecting quantitative
disease phenotypes to establish the links between genomic and
image features, to gain insight into the genetic background and
development of diseases based on the analysis and distillation of
genomic and imaging information. A detailed introduction to
those tools and methods is given below. In 2012, Lambin et al. [1]
formally introduced the concept of imaging genomics, which is
translating medical images into a large amount of feature
information through automated and high-throughput feature
extraction methods to explore the biological nature of the images
and provide clinical decision support. The radiogenomic workflow
consists of the following steps [2]: (i) the image collection is similar
to “case enrollment” in clinical trials. A variety of image collection
pathways exist, including radiography, ultrasound, magnetic
resonance imaging (MRI), and positron emission tomography
(PET)/CT; (ii) image segmentation, includes manual segmentation,
semi-automatic segmentation, and fully automatic segmentation;
(iii) image feature extraction and identification, i.e., extracting
high-dimensional feature data to quantitatively describe the
properties of regions of interest (ROI), which is the core part of
image histology [1]; (iv) feature selection and model building; (v)
clinical applications, where image histology is most applied,
include tumour classification, tumour staging and prognosis
prediction (Fig. 1).

Several multiple omics major branches of radiomicsgenomics
The recent development of radiogenomics technologies has
brought paradigm shifts to investigating radiomics clinical
application from a multi-omic perspective. Fathi et al. [26] fuse
multiple omics data, namely clinical information, MGMT methyla-
tion, radiomics and genetics, to accurately model clinical outcome
in patients with newly diagnosed GBM. This research has
characterised the radiogenomic application in precision medicine
using a multi-omic approach for accurate stratification of risk
groups. Accordingly, in this review, we break radiogenomics down
into three primary components. We combed the PubMed and
Web of Science databases for relevant papers published between
2017 and 2022 with impact factors (IF) over 5, as shown in Table 1.

Using radiogenomic models to predict the spectrum of mutated
genes. Identifying gene mutations is crucial for cancer diagnosis,
treatment selection and monitoring of treatment effectiveness.
The most common method for detecting these gene mutations is
tissue biopsy, which is invasive, expensive, and time-consuming
and thus unavailable for all patients. Concurrently, radiomics refers
to the automated extraction and analysis of large quantities of
advanced quantitative imaging features obtained from different
imaging modalities using standard radiological scans. The field of
radiogenomics has recently emerged that integrates radiomics
and genomics, possibly facilitating precision medicine. Hence,

further study of radiomic application in genomics is warranted to
help guide more effective cancer detection. In this part, we briefly
review our present knowledge of the role of radiomics in
predicting gene mutations in brain, lung, colorectal, breast, and
kidney tumours. Most studies focused on gene mutations
including single-nucleotide substitutions and insertions/deletions
(indels).
Single-nucleotide polymorphism (SNP) is the most widely

studied genomic variant [27, 28]. SNPs are single-base pair
alterations that can affect coding and noncoding DNA and
protein expression, while GWAS is a molecular genetic study that
uses millions of SNPs in the genome for genetic analysis [29, 30].
GWAS uses millions of single-nucleotide polymorphisms in the
genome as molecular genetic biomarkers to compare and find
genetic variants affecting complex traits [31]. Seibold et al. [32]
used radiogenomics to evaluate the ten most important SNPs in
four genes at the replication stage in 1883 breast cancer patients
and then validated them in 753 breast cancer patients, finding
that rs2682585 in XRCC1 was strongly associated with late skin
toxicity and overall toxic response. Similarly, Kerns et al. [31]
discovered that AGT, COG2, CAPN9, ARV1, AL512328.1 and
LOC101927604 might be related to progressive radiotoxic
haematuria after prostate cancer radiation.
Since specific therapies are available for genomic subgroups of

non-small cell lung cancer (NSCLC), genotyping is crucial for
directing therapy [33]. Radiogenomics could potentially provide
an important technological tool for the rapid non-invasive
genotyping of tumours. Epidermal growth factor receptor (EGFR)
mutations and anaplastic lymphoma kinase (ALK) rearrangements
are crucial biological indicators for treating NSCLC patients with
tyrosine kinase inhibitors (TKIs) [34, 35]. Lv et al. [36] confirmed
that low pSUVmax is integrated with mutant EGFR status and
could be associated with other clinical factors to improve the
discriminability of the EGFR mutation status in several NSCLC
patients whose EGFR testing is unavailable. A total of 849 NSCLC
patients with EGFR or ALK alterations were enrolled in this
retrospective study. Zhang et al. [37] used the LIFEx package to
extract 47 PET and 45 CT imaging features to filter ten imaging
histology features, which were combined with clinical variables to
create a predictive model that showed high predictive power for
EGFR. Similarly, Zhang et al. [38] predicted EGFR mutations in
NSCLC from 485 quantitative texture features from CT images of
training group patients, revealing that the prediction model based
on imaging histological features had excellent performance. Nair
et al. [39], on the other hand, developed an imaging genomics
model that identified EGFR mutations using CT and 18F-FDG-PET-
CT images. With an AUC of 0.8, the FDG-PET-based model could
differentiate between wild-type and mutant EGFR. Altogether,
FGD-PET and CT imaging have robust performance in identifying
EGFR mutations and ALK rearrangements in NSCLC tumours.
The increased incidence of colorectal cancer (CRC) with the

operator increase in morbidity and mortality, poses an enormous
therapeutic challenge [40–42]. In recent years, widespread interest
has been attracted in imaging genomics studies regarding KRAS
mutation status in CRC patients. Shin et al. [43] observed that polyp
morphology, increased axial length, increased axial-to-longitudinal
ratio, and N2 lymph node status was related to KRAS mutations.
Subsequently, a study by Lubner et al. [44] examined 77 CRC liver
metastases and found that texture parameters correlated with
tumour grade, serum carcinoembryonic antigen (CEA), and KRAS
mutation status. Yang et al. [24] modelled and analysed the
relationship between gene mutations and clinical background,
tumour stage, and histological differentiation in 117 CRC patients.
The findings implied that imaging histological features correlated
with KRAS/NRAS/BRAF mutations, and CT may have contributed to
CRC tumour genotypes and further facilitate precise therapy.
The above studies have shown that conventional imaging

features and imaging histological features have good predictive

Z. Liu et al.

742

British Journal of Cancer (2023) 129:741 – 753



value for gene mutations in several cancers. Although cannot
replace puncture biopsy with the advantages of being non-invasive
and reproducible, they may assist in clinical treatment decisions.
Nonetheless, the clinical applications may be limited due to
numerous yet-to-be-discovered radiosensitive SNPs.

Radiomic applications in transcriptomics. Understanding the
numerous roles that each gene may play requires knowledge of

transcriptomics, which is the pattern of gene expression at the level of
genetic transcription in a particular organism or under particular
conditions in particular cells. Transcriptomics can be used in medicine
to better understand the variations in gene expression between
healthy people and sicks. Researchers are given hints into how
variations in gene expression can affect the progression of the
disease by researching which genes are switched on and which are
shut off, and in what groups of people. Therefore, further research on
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Fig. 1 A schematic representation of the integration of radiomics with clinical data, genomic data, and multi-omics data to construct
extremely accurate predictive models. The diagram depicts a general radiogenomic study procedure. The initial step involves data collection
(clinical information, imaging, and genomic data). The datasets are then standardised and subjected to an integrative analysis to describe
each radiomic characteristic and discover unique molecular functions.
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radiomic applications in transcriptomics is necessary to help direct
additional accurate cancer detection. The function of radiomics in
transcriptional biomarkers in tumours of the brain and kidney is
briefly reviewed in this section.
The clinical significance of some prevalent mutations in ccRCC

remains unknown, limiting their utility as clinical biomarkers.
Transcriptional biomarkers, on the other hand, are superior methods
for categorising ccRCC into clinically meaningful molecular sub-
groups. Using next-generation RNA-sequencing data, Brooks et al.
[45] established a 34-gene expression signature for classifying
localised ccRCC into high-risk and low-risk categories. In addition,
Jamshidi et al. [46] performed the GSEA algorithm to identify diverse
oncogenic pathways using MR imaging features. Correlations
between 34-gene loci were discovered, which revealed concordant
variations in gene dosage and mRNA expression, yielding an MR
imaging, mRNA, and CNV radiogenomic association map for GBM.
Another study probed transcriptomics associating molecular features
with 18F-fluorocholine PET/CT imaging phenotypes and its potential
relationship to survival in hepatocellular carcinoma to provide a
pathobiological framework [47]. Similarly, using a radiogenomic
association map links MR image phenotypes to global gene
expression patterns in breast cancer, Yamamoto et al. [48] defined
associations between specificMR image phenotypes and gene sets of
interest to understanding the underlying molecular biology of breast
cancers. They investigated the relationship between 47 elevated MR
image features and long noncoding RNAs and found that MR image
edge enhancement has been demonstrated related to eight lncRNAs,
including HOX transcriptional antisense RNA (HOTAIR).

The combination of radiomics and epigenetics. Gaining insight
into how epigenetic alterations drive cancer formation is an area
of intensive interest in cancer research. As opposed to genetic
mutations, which in the case of cancer are essentially irreversible,
epigenetic modifications are reversible and thus represent
attractive targets for intervention [49]. Cancer is initiated and
developed by epigenetic mechanisms, and epigenetic diversity
encourages dynamic gene expression patterns that aid tumour
evolution and adaption. [50–52]. Radiogenomics give new
approaches to the important relationships between epigenetic
traits and cancer clinicopathological characteristics, highlighting
the potential for epigenetic marks to function as biomarkers in the
context of precision medicine.
To investigate the relationships between CT imaging features,

RUNX3 methylation levels, and survival in clear cell renal cell
carcinoma (ccRCC), Cen et al. [53] constructed a model of renal
clear cell carcinoma and discovered that the presence of indistinct
tumour margins, left-sided tumours, and intra-tumour vessels
significantly predicted the elevation of RUNX3 methylation levels.
Furthermore, Kanas et al. [54] demonstrated an association
between standard preoperative MRI variables and MGMT methy-
lation status in glioblastoma.
Overall, it has become clear that a better understanding of

epigenetic mechanisms and the interplay among epigenetic
omics and radiomics may provide new insights for developing
radiogenomics strategies.

Clinical applications
Since the beginning of this decade, radiogenomics research has
made alarming progress, highlighting the potential of the field to
significantly advance clinical care. Given that radiogenomics is still
in its infancy, the full potential of clinical translation is yet to be
realised. Nevertheless, several studies have shown early promise
for clinical applications. We combed the PubMed and Web of
Science databases for relevant papers published between 2017
and 2022 with impact factors (IF) over 5, as shown in Table 2.

The relationship between imaging phenotypes and molecular
phenotypes. Obtaining an accurate molecular phenotype is a

prerequisite for targeted therapy. Due to the heterogeneity of
malignant tumours, it is difficult to accurately reflect tumour gene
mutations in small pieces of tissue obtained by biopsy [55, 56].
Radiogenomics is dedicated to revealing the relationship between
imaging features (imaging phenotype) and molecular markers
(molecular phenotype) of tumours, thus improving the above
situation [57, 58].
The detection of IDH1 mutations holds great diagnostic and

prognostic significance for glioma. GBM can be classified as IDH-
wild type or IDH-mutant type based on isocitrate dehydrogenase
(IDH) status [59]. Most investigations have used MR imaging to
predict IDH status, with modest success. Based on clinical factors
and MRI multimodal characteristics, the current study applied
machine-learning methods to predict IDH genotypes in high-
grade gliomas. For instance, Zhang et al. [60] constructed a
random forest classifier that used clinical data with multimodal,
preoperative imaging features to predict IDH genotypes in high-
grade gliomas. Besides, Chang et al. [61] performed the deep-
learning technique to non-invasively predict IDH genotype in
grade II-IV glioma, capitalising on conventional MR imaging using
a multi-institutional data set. The model has the potential to serve
as a non-invasive tool that complements invasive tissue sampling,
facilitating patient management at an earlier stage of disease and
during the follow-up.
Breast cancer molecular subtypes, including luminal A, luminal

B, HER2-enriched, and basal-like (Fig. 2), were suggested firstly by
Perou et al. [62] as an approach to explain the differences in
therapeutic responses and patient outcomes beyond what could
be achieved alone by tumour nuclear grade and size. A
considerable amount of subsequent work has validated the
clinical relevance of these molecular subtypes and systemic
therapeutic decisions for chemotherapy, endocrine therapy, and
HER2-targeted therapy partly [63–65]. Mazurowski et al. [66]
examined 48 patients from the cancer imaging archive and
retrieved 23 DCE-MRI features that revealed a link between
luminal B breast cancer and dynamic enhancement features. That
is, the luminal B subtype tended to possess a higher ratio of lesion
enhancement to background parenchymal enhancement. Leith-
ner et al. [67] found that DWI image characteristics, such as first-
order histograms and grayscale covariance matrices, could be
more accurate in identifying breast cancer receptor status and
molecular subtypes, notably for luminal B and HER2-enriched
subtypes. Xie et al. [68] employed multiparametric MR imaging
and whole-tumour histogram analysis to distinguish triple-
negative breast cancer from other subtypes of breast cancer
and demonstrated good accuracy in the differential diagnosis of
triple-negative breast cancer from Luminal A and HER2-enriched
subtypes. Dilorenzo et al. [69] investigated the value of MRI
background parenchymal enhancement (BPE) for the differential
diagnosis of different breast cancer subtypes and showed that
mild BPE suggested Luminal B or HER2-negative subtypes, while
severe BPE suggested triple-negative breast cancer.
New biological insights have led to the recognised classification

of medulloblastoma (MB) into four distinct molecular subgroups-
sonic hedgehog (SHH), wingless (WNT), group 3, and group 4 [59,
70]. The conventional imaging features extracted from preopera-
tive multiparametric MRI were correlated with molecular sub-
groups in MB, allowing the construction of subgroup-specific
nomograms with variable predictive accuracy. Preoperative multi-
parametric magnetic resonance imaging based on nomograms
can reliably predict molecular subtypes of SHH and group 4
medulloblastoma. Yan et al. [71] developed machine-learning
models for predicting molecular subpopulations of MB. The results
showed that machine-learning algorithms offered the potential to
non-invasively predict molecular subpopulations.

Radiogenomics as a tool for assessing the efficacy of oncology
treatments and selecting treatment options. Recent years have
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witnessed unprecedented progress in the research of imaging
genomics, and the image characteristics of tumour tissues can be
used to precisely predict the response to diverse therapies,
including chemotherapy, radiotherapy, targeted therapy and
immunotherapy [72–77].

Immunotherapy: 18F-FDG-PET/CT imaging genomics has been
increasingly studied and applied to predict PD-1/PD-L1 expression
[78–80]. A recent study found that DLS (deeply learned score) can
be served as a substitute for PD-L1 measurement as determined by
IHC to guide individual pre-treatment decisions pending in larger
prospective trials [72]. Similarly, Dall’Olio et al. [74] showed that total
metabolic tumour volume (tMTV) ≥ 75 cm3 could be a biomarker of
poor prognosis in patients with advanced NSCLC and high PD-L1
expression who were administered with first-line pembrolizumab.
The information could be useful in identifying patients who may
benefit from the addition of chemotherapy to pembrolizumab.

Neoadjuvant systemic therapy: Neoadjuvant systemic therapy
(NST) is the standard care for localised and advanced breast cancer,
reducing tumour size and increasing opportunities for breast-
conserving surgery [81]. However, few breast cancer patients
benefit from NST treatment, as some biologically aggressive lesions
may not be effectively controlled after several months of NST
treatment. Accordingly, it is critical to identify patients who could
benefit from NST therapy. Pathological complete response (pCR),
closely associated with a long-term favourable prognosis, can be
used as an indicator to evaluate the effectiveness of NST treatment.
Tsukada et al. [82] predicted whether tumour types would reach
pCR after NST completion or not and revealed that the two MRI-
derived features (tumour growth direction and contouring rate)

were associated with pCR. The research indicated that the tumour
growth direction parallel to the Cooper ligament and the rapid
contouring rate on pre-treatment multiparametric MRI were
predictors of pCR. Kim et al. [77] used recurrence-free survival to
evaluate the prognosis of breast cancer and discovered that
patients with high entropy (high heterogeneity) at T2WI had
significantly lower recurrence-free survival.

Radiotherapy: In the peri-radiotherapy period, radiogenomics
can provide an integrated model that encompasses both imaging
and genetic dimensions to assist clinical decision-making.
Firstly, numerous studies have demonstrated that radioge-

nomics can predict the adverse effects of cancer radiotherapy and
identify genetic markers, thereby facilitating the selection of the
best treatment regimen based on genetic factors and other
tumour characteristics to maximise treatment outcomes
[75, 83–85]. Secondly, radiotherapy techniques nowadays have
evolved from two-dimensional radiotherapy to three-dimensional
radiotherapy and even four-dimensional radiotherapy techniques;
radiotherapy dose distribution has also evolved from point dose
to volume dose distribution, etc. These new radiotherapy
techniques require a large amount of imaging data as the basis.
Radiomics techniques enable detailed and accurate image
phenotyping and demonstrate intra-tumoral heterogeneity in a
wide range of solid tumours [86, 87]. Thirdly, multi-omics
characterisation was extracted and incorporated into the physical
model, which contributed to guiding radiotherapeutic physicists
to augment reirradiation protocols in targeted therapies.

Predict drug response and potential resistance: Radiogenomics
can also be used to predict drug response and potential resistance
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to guide individualised treatment of tumours. As early as 2007,
Kuo et al. [88] found a strong correlation between specific imaging
presentations on enhanced CT and sensitivity of hepatocellular
carcinoma to adriamycin. Precision medicine requires not only the
identification of modifiable surveillance and therapeutic targets
but also the development of reliable, non-invasive technology for
detecting changes in these targets over time. Radiogenomics can
give voxel-by-voxel genetic information for a single, heteroge-
neous tumour or, in the case of metastatic disease, a collection of
cancers, supporting the formulation of personalised treatment
programs [89].

Radiogenomic models as clinical biomarkers to predict prognosis and
recurrence. The establishment of radiogenomics tags by fusing
imaging, genetic and pathological features reveals the link
between imaging and patients’ outcomes, which can accelerate
the introduction of radiogenomics to clinical applications [90]
(Fig. 3).
Developing alternative image biomarkers empowers the ability

of clinicians to predict clinically relevant outcomes. Radiogenomic
venous invasion (RVI) is a contrast-enhanced computed tomo-
graphy (CECT) biomarker of MVI (Fig. 2). Banerjee et al. [90]
assessed RVI capability and discovered that preoperative CECT is
related to poor OS and early disease recurrence. RVI may be
effective in identifying individuals who are less likely to gain a
durable benefit from surgical treatment.
The application of multigene tests to predict the risk of tumour

recurrence has been implemented in clinical practice, such as
Oncotype Dx and Prediction analysis for microarrays (PAM50)
[91–94]. Oncotype Dx is a recurrence score by evaluating the RNA
expression of 21 genes [95]. Ashraf et al. [96, 97] first investigated
the association between 21-gene recurrence scores and imaging
genomics. Woodard et al. [98] found that breast density was
negatively correlated with Oncotype Dx recurrence score (ODxRS),
with indistinct mass margins and elongated linear branch
calcifications significantly associated with higher ODxRS. In
addition to mammographic features, dynamic enhancement

features in MRI may also be an imaging marker of breast cancer
recurrence risk. Li et al. [99] used multiple genetic tests
(MammaPrint, Oncotype DX and PAM50) against computer-
derived breast MRI phenotypes, and a significant correlation was
identified between imaging histological features, especially
tumour size and enhancement texture, and recurrence scores
from multiple genetic tests. The studies above improve our
understanding of transcriptomic signature and radiogenomics
tags and further provide promise for image-based phenotyping in
assessing the risk of breast cancer recurrence [100–102].
The first radiogenomic risk scores (RRS) for kidney cancer were

created by Jamshidi et al. [103], which consisted of four CT
imaging features (up to the presence of tumour necrosis,
infiltration of the transitional zone, the presence of discontinuous
enhancing margins of the tumour, and the presence of attenuated
tumour margins). Of note, independent of disease stage, grade,
and other clinical manifestations, RRS was valuable in predicting
disease-specific survival. Subsequently, several studies confirmed
the reliability of RRS as an indicator of disease-specific survival,
and it was negatively correlated with survival [104, 105].

Challenges in current radiogenomics clinical practice
Due to thousands of quantitative radiomics features being present
in the radiological images, in most cases, the deep-learning
algorithms automatically extract and select the desired and
meaningful deep features rather than hand-crafted traditional
methods for conventional radiomics features. Hence, robust deep-
learning algorithms for developing reliable models are necessary
[106]. These methods can learn from data, automating and
enhancing the process of prediction and improving the perfor-
mance of radiomics-based predictive models. Multiple machine-
learning algorithms were assessed for the training of the model in
patients with cancer by Jena et al. and Saxena et al. [107, 108]. The
authors emphasize the importance of adopting proper machine-
learning strategies for every form of cancer. Nonetheless,
excessive features may contain redundant or unnecessary data,
leading to overfitting. Before being considered as input to
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Fig. 3 A general hierarchical diagram of the systems biology approaches toward diagnosis and prognosis of cancer. The collection of
carcinoma focal for “omics” analysis and the integration of imaging into the omics paradigm enables data mining, model development, and
therefore a rise in diagnostic, prognostic and therapeutic prediction accuracy.
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machine-learning training, the number of features can be reduced
by, for example, doing test–retest analysis on patients or
phantoms (to choose the most reliable/repeatable features) and
assessing redundancy via correlation measures.
Despite the significant promise of radiogenomics analysis in

diverse oncologic applications, the primary limitations of several
research involve variability in feature extraction and lack of
reproducibility. In a two-phantoms study to identify reproducible
and non-redundant radiomic features for computed tomography,
Berenguer et al. discovered that only 71 of the 177 radiomic
features extracted from CT images were reproducible and that
only 10 radiomic features were retained because of redundant
information [109]. At the same time, Traverso et al. found that first-
order features were more repeatable than shape metrics and
textural parameters. Entropy was one of the most stable first-order
characteristics [110]. Therefore, Future radiomics investigations
could benefit from standardising the imaging methodology in
terms of dose administration, acquisition parameters, and the use
of reconstruction kernels with lower noise levels.
Thirdly, gene expression and signalling pathways are extremely

complex while sequencing is expensive and complicated, which
limits large-scale imaging genomics studies. Fourthly, the lack of
consistent standards also impacts feature extraction and image
correlation analysis. Variations in software and imaging equip-
ment, differences in datasets between and within institutions, and
methods of segmenting ROIs, for example, can all impact feature
extraction [111].
Lastly, the majority of studies are retrospective with small

sample sizes. On the other hand, to evaluate the link between
various oncological features and the related genes of interest, the
majority of studies relied on single-centre patient cohorts. When
there are insufficient samples, the stratification of training,
validation, and testing datasets are inadequate, which has a
detrimental impact on the model adaption, optimisation, and
assessment processes.

DISCUSSION
Advances in high-throughput imaging technology have spear-
headed the brand new generation of “omics” research and the
increasing availability of complex data elements obtained from
“omics” technology. Imaging plays a critical role in promoting the
development of genome-driven signatures and the new domain
of radiogenomics. Radiogenomics is an emerging interdisciplinary
field that exploits the relationship between medical images and
genomic data to identify biological markers that can reflect
genetic characteristics. It plays a significant non-invasive role in
disease diagnosis, individualised treatment, prognosis prediction
and efficacy evaluation.
Despite the technical challenges that lie ahead, we have reason

to be optimistic based on the progress that this domain has seen
over the past few years. Grand challenges ahead for radio-
genomics that we are particularly excited about in the sense that
we think they could contribute to accelerating progress across the
board. Firstly, prospective, multicenter clinical trials and the
generation of huge shared radiogenomics datasets might be
used by research teams worldwide to formulate and evaluate
innovative radiogenomics strategies. These could be an intriguing
method for advancing the quality of radiogenomics studies and
facilitating their incorporation into clinical practice. Thus, scientists
should be motivated to contribute to existing datasets [112]. To
establish a robust database for radiomics imaging of cancer,
researchers must have unrestricted access to materials such as
gene expression and molecular features and radiomics data.
Secondly, standardising analytical methodologies and image

collection techniques are crucial for reproducibility across institu-
tions. The Radiologic Society of North America and the
Quantitative Imaging Network (QIN) are establishing consensus

standards and digital phantoms to facilitate the clinical application
of radiogenomics [112–114]. Thirdly, radiogenomic studies are
prone to overfitting and/or selection bias, and the continuous
emergence of better algorithms (e.g., deep learning, neural
networks) may optimise the data. Visualisation of deep-learning
characteristics and prediction models could potentially aid in
resolving this issue [113].
Investigators should evaluate radiomics quality relying on

homogeneous evaluation criteria and reporting guidelines to
enhance the robustness and generalisability of future radio-
genomics models [115]. In addition, the transparent reporting of a
multivariable prediction model for individual prognosis or
diagnosis (TRIPOD) statement could give writers additional
instructions for developing or validating prediction models.

CONCLUSIONS
In summary, this review provides an overview of radiogenomic
research methods and summarises the current radiogenomic
achievements. The focus of this article is to provide insight into
the strengths and limitations of radiogenomics as a key component
of precision cancer medicine, providing clinicians with valuable
information to help guide more effective cancer detection and
treatment strategies. The findings indicate that radiogenomics
reflects the progression of radiology-pathology from the anatomi-
chistologic level to the genetic level and characterises the interface
between biological systems methods and imaging. The ultimate
target of radiogenomics is evaluating imaging biomarkers incorpor-
ating phenotypic and genotypic metrics in the expectation of
forecasting outcomes and stratifying patients for more precise
therapeutic management. With the growth of clinical data and
improved machine-learning approaches, it will play an increasingly
essential role in the objective of non-invasively uncovering relevant
features that reflect the potential biological functions most strongly
related to clinical outcomes.
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