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Abstract

Background: African Americans (AAs) experience higher rates of preterm birth and fetal 

growth restriction relative to other pregnant populations. Differential in utero exposure 

to environmental chemicals may partially explain these health disparities, as AAs are 

disproportionately exposed to environmental hazards.

Objective: We examined the individual and mixture effects of non-persistent chemicals and 

persistent organic pollutants (POPs) on gestational age at birth and birthweight for gestational age 

z-scores within a prospective cohort of pregnant AAs.

Methods: First-trimester serum and urine samples obtained from participants within the 

Atlanta African American Maternal-Child cohort were analyzed for 43 environmental chemicals, 
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including per-and polyfluoroalkyl substances (PFAS), polybrominated diphenyl ethers (PBDEs), 

organochlorine pesticides, pyrethroid insecticides, phthalates, bisphenol A, nicotine, and the 

primary metabolite of delta-9-tetrahydrocannabinol. Linear regression was used to estimate 

individual associations between chemicals and gestational age and birthweight z-scores (N ranging 

from 107 to 523). Mixture associations were estimated using quantile g-computation, principal 

component (PC) analyses, and hierarchical Bayesian kernel machine regression among complete 

cases (N=86).

Results: Using quantile g-computation, increasing all chemical exposures by one quantile was 

modestly associated with a reduction in gestational age (mean change per quartile increase= 

−0.47, 95% CI= −1.56, 0.61) and birthweight z-scores (mean change per quartile increase= 

−0.49, 95% CI= −1.14, 0.15). All PCs were associated with a reduction in birthweight z-scores; 

associations were greatest in magnitude for the two PCs reflecting exposure to combined tobacco, 

insecticides, PBDEs, and phthalates. In single pollutant models, we observed inconsistent and 

largely non-significant associations.

Signifance: We conducted multiple targeted exposure assessment methods to quantify levels 

of environmental chemicals and leveraged mixture methods to quantify their joint effects on 

gestational age and birthweight z-scores. Our findings suggest that prenatal exposure to multiple 

classes of persistent and non-persistent chemicals is associated with reduced gestational age and 

birthweight z-scores in AAs.
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Introduction

Low birthweight and preterm birth are the leading causes of infant morbidity and mortality 

worldwide.1,2 Disparities in adverse pregnancy outcomes are well-documented, and African 

Americans (AAs) consistently experience preterm birth and fetal growth restriction at rates 

nearly double their white counterparts.3 Known risk factors for adverse pregnancy outcomes 

include older maternal age, smoking or alcohol consumption during pregnancy, pre-existing 

conditions (e.g., obesity, hypertension, and diabetes), and lower socioeconomic status (SES). 

However, these known risk factors do not fully account for health disparities in pregnancy 

and birth outcomes,4 suggesting that environmental exposures, which disproportionately 

impact AAs, may be contributing factors.5-7

Over 350,000 chemicals and their mixtures are registered for use in commerce.8 However, 

the actual number of chemicals on the global market is believed to be substantially higher.8 

Only a small fraction of these chemicals have been tested for human health effects; even 

fewer are routinely included in human biomonitoring studies. This is problematic, as 

representative studies find that nearly all individuals in the United States have detectable 

levels of multiple environmental chemicals.9-11

Some of the most widely detected chemicals in our environment include non-persistent 

and persistent organic pollutants (POPs). These chemicals are found in food and water 
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sources, personal care products, home furnishings, and elsewhere.12,13 POPs include several 

per-and polyfluoroalkyl substances (PFAS), polybrominated diphenyl ethers (PBDEs), and 

organochlorine pesticides (OCPs), while examples of non-persistent chemicals include 

pyrethroid and organophosphate insecticides, phthalates and alkylated phenols. A defining 

characteristic of POPs is that they do not easily break down in the environment and body, 

indicating that exposures can persist for many years, regardless of whether the compound is 

removed from commerce.12,14,15 In contrast, non-persistent chemicals have a short half-life 

of only a few hours or days and are readily excreted in urine.16 Despite this, human 

biomonitoring studies show that exposure to both persistent and non-persistent chemicals is 

ubiquitous due to continuous exposures.17-20

Exposure to environmental chemicals is particularly troubling during pregnancy, as many 

have been linked to adverse pregnancy outcomes.21-24 Additionally, these chemicals have 

been detected in the cord blood of newborns,19,25,26 indicating they can cross the placenta 

and directly expose the developing fetus. Despite this, our understanding of their effects on 

perinatal health largely comes from studies that have examined a single chemical at a time. 

Historically, studies that have examined mixtures of chemicals have largely focused on a 

single chemical class,21,27-29 which does not account for exposure to numerous chemicals 

simultaneously.17-19

To date, we have a limited understanding of how cumulative exposure to environmental 

chemicals influences adverse pregnancy outcomes.30-32 This is critical, as individual 

chemicals across classes may work together to produce additive or synergistic effects. 

Furthermore, few studies have been conducted among AAs, a historically marginalized 

population that consistently experiences elevated rates of adverse pregnancy outcomes and is 

often exposed to the highest levels of environmental hazards.

Notably, environmental exposures are highly plausible and potentially major contributors to 

racial disparities in adverse pregnancy outcomes,4 as racial residential segregation, a tactic 

historically known as redlining, has had a powerful impact on psychosocial and physical 

exposures that disproportionately impacts Black Americans.33 Additionally, systematic 

racism that has resulted in the isolation and disenfranchisement of predominantly Black 

communities, continues to facilitate residential segregation and unequal distribution of 

resources between Black and white communities.33 In fact, sites that emit toxicants most 

hazardous to human health, such as landfills and chemical plants, are disproportionately 

placed in non-white communities.34 Despite our knowledge of this history of calculated 

disenfranchisement, we have yet to fully understand the biological basis of health inequities 

that are made manifest through our nation’s history of civic and environmental injustice.

To address this knowledge gap, we leveraged the Atlanta African American Maternal-

Child cohort,35,36 which has previously quantified levels of 43 emerging parent and/or 

metabolites of selected environmental chemicals, including PFAS, PBDEs, OCPs, pyrethroid 

and organophosphate insecticides, phthalates, bisphenol A (BPA), nicotine, and the primary 

metabolite of delta-9-tetrahydrocannabinol, a cannabinoid molecule in marijuana, during 

early pregnancy. To better understand how these chemicals influence fetal development, we 

utilized three different mixtures approaches to estimate the associations between individual 
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chemicals and their joint effects on gestational age at birth and birthweight for gestational 

age z-scores, a proxy for fetal growth. We hypothesized that an increase in the combined 

exposure levels would be associated with a reduction in gestational age and birthweight 

z-scores.

2. Methods

2.1. Study Population

Our analytic sample included 547 participants enrolled between 2014-2019 in the Atlanta 

African American Maternal-Child Cohort, an ongoing prospective birth cohort described in 

detail elsewhere.35,36 Briefly, pregnant women were recruited between 8-14 weeks gestation 

from two hospitals in metropolitan Atlanta, Georgia. Participants recruited from Emory 

Healthcare are generally higher SES, while those recruited from Grady Health Systems 

are more socioeconomically diverse. As part of the study, participants consented to a 

review of their medical record and provided blood and urine during early pregnancy (range: 

8-14 weeks gestation). Individuals were eligible for inclusion if they self-identified as AA 

and female, not pregnant with multiples, fluent in English, and had no chronic medical 

conditions. All participants provided written, informed consent prior to participating. The 

Institutional Review Board at Emory University approved the ATL AA study (approval 

reference number 68441).

2.2. Environmental Chemical Exposure Assessment

Concentrations of phthalates, BPA, pyrethroid insecticides, cotinine, and 11-nor-9-carboxy-

Δ9-tetrahydrocannabinol (COOH-THC; the main psychoactive constituent of marijuana) 

were analyzed in urine, and concentrations of PFAS, PBDEs, and OCPs were analyzed in 

serum obtained between 8-14 weeks gestation. Serum and urine samples were stored at 

−80°C prior to analysis. Across all chemicals, values below the limit of detection (LOD), the 

concentration was replaced with LOD/LOD ∕ 2. We natural log transformed all chemicals 

for downstream analyses, as all distributions were right skewed.37

Urinary creatinine was measured in the 1000-fold diluted urine samples without extraction. 

The diluted urine samples were spiked with the stable isotope analog, injected, and analyzed 

using an LC-MS/MS instrument operated in negative electrospray ionization mode.38 The 

target compound was analyzed using multi-reaction monitoring mode. Quantification of 

urinary creatinine was performed using isotope dilution calibration. A matrix-matched 

standard calibration curve was used. Replicates of NIST SRM 3667 were included in the 

analysis and the recoveries were well within ±20 of the certified values.

Across chemical classes, the sample size ranged from 107 to 523, as chemical exposure 

assessment was conducted across numerous projects and was limited by funding. There were 

86 participants who had serum and urine sample analyzed for all environmental chemicals. 

Thus, we conducted our mixture analyses on those chemicals with >70% above the LOD 

within the complete cases (N=86). This included 4 PFAS (PFHxS, PFOA, PFOS, PFNA), 

2 OCPs (HCB, p’p’-DDE), 2 PBDEs (BDE-100, BDE-47), one insecticide (3-PBA), 7 
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phthalates (MEP, MBP, MiBP, MBzP, MEHP, MEOHP, MEHHP), 2 biomarkers of tobacco 

exposure (3OH-COT, COT), and BPA.

2.2.1. Per- and poly-fluoroalkyl substances (PFAS)—Serum samples were 

analyzed for PFAS levels at the Children’s Health Exposure Analysis Resource (CHEAR) 

and Human Health Exposure Analysis Resource (HHEAR) laboratories, including 

Wadsworth Center/New York University Laboratory Hub (Wadsworth/NYU) and the 

Laboratory of Exposure Assessment and Development for Environmental Research 

(LEADER) at Emory University. Laboratories in CHEAR and HHEAR have participated 

in activities to produce harmonized measurements among them.39 The details of analytical 

methods used in both labs have been described in detail elsewhere.6,40 Briefly, each serum 

sample was spiked with isotopic internal standards, treated by solid phase extraction, 

and analyzed using a liquid chromatographic-tandem mass spectrometric (LC-MS/MS) 

instrument operated in negative electrospray ionization mode. The target compounds 

were analyzed using multi-reaction monitoring mode. Quantification of target PFAS was 

performed using isotope dilution calibration. A matrix-matched standard calibration curve 

was used. Bench and blind quality control samples and blanks were analyzed alongside 

unknown samples. Replicates of standard reference materials (SRM) from National Institute 

of Standards and Technology (NIST) (SRM 1958) were included in the analysis to ensure 

the quality of the data produced. The recoveries of the NIST SRM materials were well 

within the acceptable range (i.e., ±20 of the certified values). Both laboratories participate 

in and are certified by the German External Quality Assessment Scheme twice annually for 

serum PFAS quantification and laboratory measurements have been cross-validated between 

the two labs conducting PFAS measurements (the Pearson correlation coefficients ranged 

from 0.88 to 0.93, and the relative percent differences ranged from 0.12 to 20.2% with a 

median of 4.8% in the 11 overlapping samples).6

2.2.2. Polybrominated diphenyl ethers (PBDEs)—Concentrations of PBDE 

congeners BDE–47, BDE–85, BDE–99, BDE–100, BDE–153, and BDE–154 were analyzed 

in the LEADER laboratory at Emory University. This method has been described in detail 

elsewhere.41-43 Briefly, samples were fortified with isotopically labeled analogues of the 

target chemicals, homogenized and deprotonated. Supernatants subsequently were extracted 

twice with hexane and dichloromethane and passed through an activated silica gel column 

to remove residual biogenic material. Sample extracts were concentrated, injected, and 

analyzed using a gas chromatographic-tandem mass spectrometric (GC-MS/MS) instrument. 

The target compounds were analyzed using multi-reaction monitoring mode. Quantification 

of the target PBDEs was performed using isotope dilution calibration. A solvent-based 

standard calibration curve was used. Replicates of NIST SRM 1958 were included in the 

analysis and the recoveries were well within ±20 of the certified values. We did not adjust 

for total lipids, as information on maternal serum total cholesterol and free triglycerides was 

not available in our analytic sample.

2.2.3. Organochlorine pesticides (OCPs)—Analysis of OCPs was conducted 

at the LEADER laboratory using a modified version of the method described by 

Marder et al.44 OCPs included hexachlorobenzene (HCB), β-hexachlorocyclohexane (β-
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HCH), 1,1-dichloro-2,2-bis(4- 4- chlorophenyl )ethylene (o,p’-DDE), transnonachlor (TNC), 

dichlorodiphenyldichloroethylene (p,p’-DDE), 1,1,1-tricloro-2,2-bis (p-chlorophenyl) ethane 

(p,p’-DDT) o,p'-1,1'-(2,2,2-Trichloroethane-1,1-diyl)bis(4- chlorobenzene) (o,p’-DDT), and 

3,5,6-trichloro-2-pyridinol (TCPy). Briefly, serum samples were fortified with isotopically 

labeled analogues of the target chemicals and subjected to liquid–liquid extraction followed 

by solid-phase extraction. Sample extracts were concentrated, injected, and analyzed using 

a GC-MS/MS instrument. The target compounds were analyzed using multi-reaction 

monitoring mode. Quantification of the target OCPs was performed using isotope dilution 

calibration. A matrix-matched standard calibration curve was used. Replicates of NIST SRM 

1958 were included in the analysis and the recoveries were well within ±20 of the certified 

values.44

2.2.4. Pyrethroid insecticides—Urine samples were analyzed for a common 

metabolite of synthetic pyrethroids, 3-phenoxybenzoic acid (3-PBA), and two 

specific metabolites of permethrin, cypermethrin and cyfluthrin, cis- or trans-3-(2,2-

dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DCCA, trans-DCCA), using 

a modification of a previously validated method.45 Briefly, samples were spiked with 

stable isotopic analogues of the target analytes and then enzymatically digested using 

purified β-glucuronidase and sulfatase enzymes (derived from H. pomatia) to liberate 

bound metabolites. The hydrolyzed urine samples were extracted using solid phase 

extraction. Sample extracts were concentrated, injected, and analyzed using an LC-MS/MS 

instrument operated in negative electrospray ionization mode. The target compounds were 

analyzed using multi-reaction monitoring mode. Quantification of the target metabolites was 

performed using isotope dilution calibration. A matrix-matched standard calibration curve 

was used. The laboratory successfully participated in the proficiency testing program offered 

by the German External Quality Assessment Scheme (G-EQUAS).

2.2.5. Phthalates—Concentrations of eight maternal urinary phthalate metabolites were 

analyzed at the LEADER laboratory and included monoethyl phthalate (MEP), mono-n-

butyl phthalate (MBP), monoisobutyl phthalate (MiBP), Monobenzyl phthalate (MBzP), 

mono(2-ethlyhexyl) phthalate (MEHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), 

mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono(2-ethly-5-carboxypentyl) 

phthalate (MECPP). Measurement of phthalate metabolites has been previously described.46 

Briefly, samples were spiked with stable isotopic analogues of the target analytes and then 

enzymatically digested using purified β-glucuronidase and sulfatase enzymes (derived from 

H. pomatia) to liberate bound metabolites. The hydrolyzed urine samples were extracted 

using solid phase extraction. Sample extracts were concentrated, injected, and analyzed 

using an LC-MS/MS instrument operated in negative electrospray ionization mode. The 

target compounds were analyzed using multi-reaction monitoring mode. Quantification 

of the phthalate metabolites was performed using isotope dilution calibration. A matrix-

matched standard calibration curve was used. Replicates of NIST SRM 3672 and 3673 were 

included in the analysis and the recoveries were well within ±20 of the certified values.

2.2.6. Bisphenol A (BPA)—Exposure assessment of BPA was conducted at the 

LEADER laboratory using a modification of the method by Zhou et al.47 Briefly, a 
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1-mL aliquot of urine was spiked with isotopically labeled analogues of BPA, and was 

then subjected to an enzyme hydrolysis to liberate glucuronide-bound conjugates. The 

hydrolysate was subsequently extracted using an ABS Elut-NEXUS solid phase extraction 

column, eluting with acetonitrile and ethyl acetate. The extract was concentrated to dryness 

and reconstituted in mobile phase for analysis using LC-MS/MS. Analyte concentrations 

were calculated using isotope dilution calibration. To avoid biases between batches, samples 

were randomized according to a Fisher-Yates algorithm.48,49

2.2.7. Tobacco and Marijuana—The LEADER laboratory measured concentrations 

of cotinine (COT), trans-3-hydroxycotinine (3OH-COT), and 11-nor-9-carboxy-Δ9-

tetrahydrocannabinol (COOH-THC) using a fully validated method.50 COT and 3OH-

COT are the primary metabolites of nicotine and often serve as biomarkers of tobacco 

exposure. COOH-THC is the primary metabolite of delta-9-tetrahydrocannabinol, the main 

psychoactive constituent of cannabis (marijuana), and COOH-THC concentrations reflect 

exposure to marijuana. Urine samples were spiked with stable isotopic analogues of 

the target analytes and then enzymatically digested using purified β-glucuronidase and 

sulfatase enzymes (derived from H. pomatia) to liberate bound metabolites. The hydrolyzed 

urine samples were extracted using supported liquid extraction. Sample extracts were 

concentrated, injected, and analyzed using an LC-MS/MS instrument. The instrument was 

operated in positive electrospray ionization mode during the analysis of COT and 3OH-

COT and in negative mode for COOH-THC. The target compounds were analyzed using 

multi-reaction monitoring mode. Quantification of the target metabolites was performed 

using isotope dilution calibration. A matrix-matched standard calibration curve was used. 

Replicates of NIST SRM 3672, 3673, and 1507b were included in the analysis and the 

recoveries were well within ±20 of the certified values.

2.3. Birth Outcomes

Gestational age at delivery was abstracted from the medical record and estimated using 

best obstetrical estimate based upon the date of delivery in relation to the estimated date 

of confinement, as recommended by the American College of Obstetrics and Gynecology.51 

Birthweight in grams was obtained from the first weight measured in the delivery room. As 

a proxy for fetal growth, we calculated sex-specific birthweight for gestational age z-scores 

using a US population-based reference for singleton births.52 Due to sample size limitations 

and to enhance statistical power, we focused our analysis on continuous outcomes and did 

not examine categorical definitions of preterm birth or small for gestational age.

2.4. Covariates

Marital status (married or partnered and co-habiting, single or partnered, and not 

cohabiting), maternal level of education (less than high school, high school diploma, 

college degree, graduate degree), type of health insurance during pregnancy (private, 

public), and number of members in the household were obtained via a standardized 

interview questionnaire that was administered at enrollment. An income to poverty ratio 

was calculated by using a combination of the number of members in the household and self-

reported annual household income. Maternal body mass index (BMI; kg/m2) was calculated 

using weight and height measurements obtained during the first clinical visit between 8-14 
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weeks’ gestation. Information regarding parity and self-reported alcohol consumption during 

pregnancy was abstracted from the medical record.

2.5. Statistical Analysis

We examined the distributions of demographic characteristics in our analytic sample using 

means, standard deviations (SDs), frequencies, and counts. The distributions of chemicals 

were assessed using geometric means, geometric SDs, and selected percentiles. Correlations 

between chemicals with >70% detection were estimated using Spearman correlation 

coefficients (ρ). Unadjusted and adjusted linear regression models were used to estimate 

single pollutant association between chemicals and gestational age and birthweight z-scores, 

respectively. In these models, all chemicals were natural log transformed and standardized 

to the population’s interquartile range (IQR). Single pollutant associations were estimated 

among complete cases included in mixture models, as well as among the largest possible 

analytic sample for each chemical class. Covariates retained in adjusted models included 

maternal education, maternal age, parity, alcohol consumption, and early pregnancy body 

mass index (BMI). These covariates were chosen via a Directed Acyclic Graph (DAG; 

Figure S1) that was informed by a literature review and associations with exposures and 

outcomes in our study population.

We used three approaches to estimate the cumulative effect of exposures to all chemicals on 

birth outcomes. Mixtures analyses were restricted to complete cases that had information 

on all chemicals (N=86) and were adjusted for the same set of covariates as linear 

regression models. First, we utilized quantile g-computation, which estimates the effect of 

simultaneously increasing all exposures in the mixture by one quartile.53 With this method, 

all exposures included in the mixture are assigned a positive or negative weight, based on the 

direction of independent effect. Positive and negative weights sum to 1 and are interpreted 

as the proportion of the partial effect in the positive or negative direction due to a single 

exposure. Effect estimates obtained from quantile g-computation are interpreted as the effect 

on the outcome (birthweight z-scores or gestational age) associated with simultaneously 

increasing all chemical exposures in the mixture by one quantile.

Our second approach utilized principal component analysis (PCA), a data reduction 

technique that enables us to identify clusters of exposure patterns. Using scree plots, we 

identified five principal components (PCs) that explained 68% of the variance in our data. 

We then used linear regression to examine unadjusted and adjusted associations between the 

five PCs and gestational age and birthweight z-scores. All PCs were included concurrently 

in the same model, as PCA produces uncorrelated components without the worry of 

multicollinearity. Covariates retained in mixture models were analogous to those included in 

single analyte models.

We applied Bayesian Kernel Machine Regression (BKMR) with hierarchical variable 

selection in our third approach.54,55 BKMR was performed with 10,000 iterations and 

all chemicals were natural log transformed. We used BKMR with a hierarchical variable 

selection based on pre-defined groups of persistent (PFAS, PBDEs, OCPs, and pyrethroid 

insecticides) and non-persistent (tobacco, phthalates, and BPA) chemicals. We calculated 

the group posterior inclusion probability (groupPIP) and conditional posterior inclusion 
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probability (condPIP), with the former representing the probability of including a particular 

biomarker group within the model and the latter representing the probability that a specific 

biomarker is included within its group. PIPs range from 0 to 1 and are used to highlight 

the top contributors to an observed mixture effect. We then assessed linearity by visually 

examining individual univariate exposure-response functions. We also estimated the overall 

mixture effect, which compares the change in the outcome when all chemicals are set at the 

75th and 25th percentile relative to the median value. Lastly, we calculated individual effect 

estimates, which compares the effect on the outcome when each chemical is set at the 75th 

percentile relative to the 25th percentile holding all other chemicals constant.

We conducted a number of sensitivity analyses to examine the robustness of our findings. 

We first explored sex differences by examining single analyte associations stratified by 

infant sex. Second, because PBDEs are lipophilic and information on total lipid levels 

was unavailable in our analytic sample, we utilized quantile g-computation to estimate the 

mixture effect removing PBDEs (N=86). Third, we removed early pregnancy BMI from 

our linear regression models, as some chemicals included in our analyses are classified as 

obesogens.56 Lastly, in an effort to increase our sample size, we removed OCPs and PBDEs 

from quantile g-computation models (N=230).

3. Results

There were 547 participants who had information on gestational age and birthweight for 

gestational z-scores available at the time of our analysis. Of this group, 86 participants 

had biospecimens measured for PFAS, PBDES, OCPs, insecticides, phthalates, BPA, and 

marijuana and nicotine. In the full cohort, the mean maternal age was 25 years (SD=4.9) 

and mean early pregnancy BMI was 29 kg/m2 (SD=7.9) (Table 1). Approximately half of 

the participants were unmarried and not cohabitating (52%) and 68% had a high school or 

college degree. Relative to the full cohort, those retained in mixture models were more likely 

to be unmarried and not cohabitating (62%) and to have a high school degree (45%) (Table 

1).

Among the PFAS, the highest geometric mean was for PFOS (geometric mean= 1.89 

ng/mL, geometric SD= 2.05), while the highest geometric mean among the PBDEs and 

pyrethroid insecticides was for BDE-47 (geometric mean= 89.84 pg/mL, geometric SD= 

2.08) and TCPy (geometric mean= 0.75 ng/mL, geometric SD= 4.15). Within the phthalate 

metabolites, MEP had the highest geometric mean (geometric mean= 0.65 μg/g creatinine, 

geometric SD= 2.83; Table 2). The distributions were similar when restricting to our 

analytic sample for mixture models (Table S1). Spearman correlation coefficients revealed 

that chemicals within a class were moderately to strongly correlated (Figure 1). With 

the exception of BPA and the phthalates, chemicals were not strongly correlated across 

classes. In adjusted single pollutant models restricted to our analytic sample for mixtures 

(N=86), we observed that COT and 3-OHCOT were associated with increased gestational 

age and reduced birthweight z-scores (Figure 2; Table S2). Individual biomarkers of PFAS, 

PBDEs, OCPs, pyrethroid insecticides, phthalates, and BPA were not strongly associated 

with gestational age and birthweight z-scores within this analytic sample (Table S2). In our 

linear regression models estimating single pollutant associations within the largest possible 
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sample size, we observed that an IQR increase in BDE-99, BDE-47, ppDDE, HCB, and 

PFNA was associated with lower birthweight z-scores, although confidence intervals largely 

included the null value (Table S3). Associations were similar in linear regression models 

removing early pregnancy BMI (Table S4). When stratifying by infant sex, a non-significant 

inverse association between phthalate metabolite concentrations and gestational age was 

observed among males only (Table S5).

Using quantile g-computation, increasing all exposures in the mixture by one quartile 

was associated with a modest reduction in both gestational age and birthweight z-scores 

(mean change per quartile increase= −0.43, 95% CI= −1.56, 0.61; mean change per quartile 

increase= −0.49, 95% CI= −1.14, 0.15, respectively) (Figure 3; Table S6). MiBP, MEOHP, 

PFOA, PFOS, and BDE-99 were assigned the largest negative weights in the model which 

included gestational age as the outcome, while MEHHP, HCB, and COT were assigned 

the largest negative weights in the model for birthweight z-scores (Figure S2). The overall 

mixture effect was attenuated when PBDEs and OCPs were removed as exposures from 

quantile g-computation models (Table S7).

Our PCA identified five meaningful PCs from our exposure data. We characterized each PC 

by the chemicals that explained the highest variance and were positively associated with 

each of the PCs (Figure 3). PC1 had high loadings from PFHxS, PFNA, PFOA, and PFOS 

and we characterized this PC as reflecting high PFAS exposure. PC2 had high loadings from 

nearly all chemicals. Thus, PC2 reflected general pollution exposure. PC3 had high loadings 

from COT and 3-OHCOT, and this PC was characterized as reflecting tobacco exposure. 

PC4 was reflective of exposure to PBDE, nicotine, and certain phthalates, as indicated by the 

high loadings from BDE-47, BDE-99, cotinine, and MiBP. PC5 reflected exposure to DEHP 

and insecticides, given the high loadings from MEHHP, MEHP, MEOHP, and p,p’-DDE. We 

observed that PC3 and PC5 were associated with an increase in gestational age (β= 0.25, 

95% CI= 0.04, 0.46; β=0.19, 95% CI= −0.09, 0.47, respectively), while PC2 was associated 

with a modest reduction. All PCs were associated with a reduction in birthweight z-scores, 

and the strongest associations were observed with PC4 and PC5 (β= −0.16, 95% CI= −0.32, 

0.01; β= −0.16, −0.34, 0.03, respectively) (Figure 3; Table S6).

The univariate exposure-response functions estimated from BKMR showed primarily linear 

relationships with gestational age and birthweight z-scores (Figure S3 and Figure S4). No 

individual chemicals were significantly associated with either birth outcome (Figure S5) 

and we observed a non-significant, inverse association between the overall mixture and 

birthweight z-scores (Figure S6). BKMR identified both persistent (groupPIP= 0.68) and 

non-persistent (groupPIP= 0.64) as important exposures groups for birthweight z-scores. 

When gestational age was the outcome of interest, non-persistent chemicals did not 

substantially contribute to the overall mixture effect, while persistent chemicals were a 

moderate contributor (groupPIP= 0.27) (Table S8).

4. Discussion

In the present study, we examined associations between prenatal exposure to multiple classes 

of environmental chemicals in relation to gestational age and birthweight for gestational age 
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z-scores, a proxy for fetal growth. Using quantile g-computation, a novel method designed 

for examining exposure mixtures, we observed that increasing exposure to all chemicals 

was associated with a modest, non-significant, reduction in gestational age and birthweight 

z-scores. Similarly, using PCA, we observed that the PC reflecting exposure to PFAS, 

as well as the PC reflecting general pollutant exposure (i.e., high loadings from PFAS, 

PBDEs, pesticides, insecticides, and phthalates), was associated with slightly reduced fetal 

growth. In single pollutant models, we observed inconsistent and largely non-significant 

associations. Our study, conducted among AAs, provides important information regarding 

the perinatal health effects associated with environmental exposures among a population that 

is routinely exposed to the highest levels of environmental hazards and experience highest 

rates of adverse birth outcomes.

Our results are consistent with prior studies that have used single pollutant models to 

demonstrate prenatal exposure to environmental chemicals is harmful for fetal development. 

Here, we observed that exposure to BDE-47 and BDE-99 was suggestively associated 

with reduced fetal growth. This aligns with previous investigations conducted in San 

Francisco and the Salinas Valley, which observed lower birthweight z-scores and birthweight 

in relation to increasing BDE-47 and BDE-99.57,58 We similarly found that increasing 

exposure to p,p’-DDE and HCB was associated with a non-significant reduction in fetal 

growth, which aligns well with epidemiological evidence from agricultural workers.59 

Numerous studies have found that prenatal exposure to phthalates, phenols, OCPs, 

pyrethroid insecticides, PFAS, and PBDEs is associated with reduced gestational age and 

increased risk of preterm birth,21,58,60-68 although this was not observed in our study.

A unique aspect of our study was that we quantified exposure levels of multiple classes of 

environmental chemicals using advanced targeted exposure assessment. This represents an 

important advancement over prior studies focusing on a single chemical class. Furthermore, 

we applied three mixtures approaches and incorporated multiple classes of chemical 

exposures to estimate cumulative effects and identify chemical exposure profiles. The 

combination of these methods is an important step to increase our understanding of the 

effects of chemicals on perinatal health and fetal development. Results were similar across 

methods and suggest that environmental chemicals, particularly persistent organic pollutants, 

are associated with reduced fetal growth. Our results contribute to a growing body of 

literature showing that joint exposures to multiple chemicals is associated with an increased 

risk of adverse health outcomes, and that the effect is greater in magnitude than the effect 

of a single chemical or single chemical class alone.31,65,69 Prior studies examining chemical 

mixtures in relation to birth outcomes have produced inconsistent results, which may be 

reflective of underlying differences in study populations and application of different mixture 

methods. For example, within the EARTH study, comprised of participants seeking fertility 

treatment, mixtures of parental (i.e., maternal and paternal) exposures to phthalates and 

phenols, estimated using BKMR, was associated with an increased risk of preterm birth.70 In 

the HOME cohort in Cincinnati, exposure to organochlorine pesticides, some phenols, and 

cadmium as estimated by PCA was associated with reduced birth length, a marker of fetal 

growth, but not birthweight z-scores, gestational age, or head circumference.31 Exposure to a 

mixture of PBDEs, PFAS, metals, and OCPs was not strongly associated with fetal growth in 

a prospective birth cohort in Western Australia.71
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We recognize, and attempt to address through this research, that humans are not exposed 

solely to individual chemicals one at a time. Rather, we interact with environmental 

chemicals in combination, which may lead to environmental health disparities. There is a 

growing body of literature showing that communities of color experience a disproportionate 

burden of toxic chemicals in the environment.72 Compared to whites, Black women are 

disproportionately targeted by consumer marketing for personal care products that contain 

mixtures of many of the chemicals included in this analysis, which are known endocrine 

disrupting toxicants.5 This leads to disparities in exposure, as studies have shown that 

Black women are more than six times as likely to use hair products that contain endocrine-

disrupting chemicals relative to whites.73 Additionally, relative to whites, Black children 

are more likely to live in neighborhoods that experience increased air pollution due to 

the ongoing consequences of discriminatory housing practices.33 During pregnancy, non-

Hispanic Blacks also have disproportionately higher levels of PBDEs relative to whites 

and other non-white racial groups.7 Identifying potential causes of exposure disparities in 

levels of persistent and non-persistent chemicals among Black pregnant people will require 

research aimed at identifying real-world exposure patterns.

Our results should be interpreted in light of its limitations. Serum lipid data were unavailable 

in our study population and we are unable to estimate lipid adjusted PBDE concentrations. 

However, there is debate regarding whether to account for lipid concentrations in the 

analysis of lipophilic chemicals, and adjustment for serum lipids may induce a spurious 

association if unknown factors are associated with both adverse pregnancy outcomes and 

lipid levels.74 Nonetheless, early pregnancy BMI, a common surrogate for adiposity, was 

retained in our adjusted models, and we conducted sensitivity analyses removing PBDEs 

from our mixture models. Additionally, we had a relatively small sample size for those 

who had information on all environmental chemicals available, which may have limited our 

statistical power. The sample size available for each chemical class was principally driven 

by the different funding sources and amounts of funding available for assays for various 

chemical classes. However, we conducted numerous additional analyses, such as removing 

certain chemical classes from quantile g-computation models, in an effort to increase our 

sample size (Table S7). We also restricted our statistical analyses to those chemicals that 

were well-detected, which hinders our ability to make inferences regarding the health effects 

of chemicals detected at low levels.

Despite these limitations, this study has many important strengths. First, our study 

population was comprised solely of AAs, a population that is largely excluded from 

environmental epidemiologic studies yet more likely to be exposed to environmental 

chemicals. The results from our study may provide important information related to 

factors contributing to persistent health disparities and the inexplicably high rates of 

adverse pregnancy outcomes in this population. Additionally, pregnancy outcomes in this 

study population were based on early pregnancy dating between 8-14 weeks gestation 

and were ascertained by the abstraction of pregnancy, labor and delivery, and neonatal 

records by medical personnel, minimizing the chance of outcome misclassification. We also 

assessed exposure to 43 environmental chemicals and employed mixture methods to assess 

cumulative effects and create exposure profiles. This represents an important advancement 

over prior studies that focus on the effects of a single chemical class.
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4.1. Conclusions

Among AA pregnant women in Atlanta, Georgia, we observed that increasing exposure 

to environmental chemicals was associated with suggestive reductions in birthweight 

for gestational age z-scores. The effects were generally stronger when considering joint 

exposure to all chemicals, as opposed to single pollutant models assessing the impact of a 

single chemical one at a time. Our results provide important information regarding the health 

effects associated with prenatal chemical exposures among a population who experiences 

high rates of adverse pregnancy outcomes. Future studies should examine associations 

between chemical mixtures and alternative newborn anthropometric measures (e.g., birth 

length), as well as focus on identifying upstream predictors of exposure and investigating the 

molecular mechanisms underlying the chemical toxicities in order to identify opportunities 

for intervention.
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Impact statement

African Americans (AAs) experience higher rates of preterm birth and fetal growth 

restriction relative to other pregnant populations. Differential in utero exposure to 

environmental chemicals may partially explain these health disparities, as AAs are 

disproportionately exposed to environmental hazards. In the present study, we analyzed 

serum and urine samples for levels of 43 environmental chemicals. We used quantile 

g-computation, principal component analysis, and BKMR to assess associations between 

chemical exposure mixtures and adverse birth outcomes. Our findings suggest that 

prenatal exposure to multiple classes of chemicals is associated with reduced birthweight 

z-scores, a proxy for fetal growth, in AAs.
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Figure 1. 
Spearman correlations between chemical exposures with >70% detection in the Atlanta 

African American Maternal-Child study population, 2016-2020 (N=86).
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Figure 2. 
Change in gestational age (2A) and birthweight z-score (2B) in association with an 

interquartile range increase in individual chemicals, estimated using linear regression within 

the Atlanta African American Maternal-Child cohort, 2016-2020 (N=86).

Note: Models are adjusted for maternal education, maternal age, parity, alcohol 

consumption, and early pregnancy body mass index.

Abbreviations: CI, confidence interval.
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Figure 3. 
Adjusted differences in gestational age (3A) and birthweight z-scores (3B) in relation to 

principal component scores and one quartile increase in the chemical mixture, estimated 

using quantile g-computation, and (3C) heat map of loading factors from principal 

component analysis (PCA) of chemical concentrations among pregnant women in the 

Atlanta African American Maternal-Child cohort, 2016-2020 (N=86).

Note: Models in (3A) and (3B) are adjusted for maternal education, maternal age, parity, 

alcohol consumption, and early pregnancy body mass index. In (3C), red indicates the range 

of positive loading factors and blue indicates the range of negative loading factors.
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Table 1.

Demographic characteristics of Atlanta African American Maternal-Child study population, 2016-2020 and 

the sub-population used in this analysis.

Full Cohort (N=547) Analytic Sample for
Mixtures (N=86)

N (%) or Mean (SD) N (%) or Mean (SD)

Maternal Age (years) 25 (4.9) 26 (4.7)

Maternal Body Mass Index (kg/m2) 29 (7.9) 29 (6.9)

Marital Status

 Married/Co-habiting 263 (48 %) 33 (38 %)

 Single 284 (52 %) 53 (62 %)

Maternal Education

 <High School 87 (16 %) 13 (15 %)

 High School 213 (39 %) 39 (45 %)

 College Degree 158 (29 %) 21 (24 %)

 Graduate Degree 89 (16 %) 13 (15 %)

Income to Poverty Ratio

 <100% 243 (44 %) 39 (45 %)

 100-150% 121 (22 %) 16 (19 %)

 150-300% 116 (21 %) 16 (19 %)

 >300% 67 (12 %) 15 (17 %)

Alcohol Use During Pregnancy

 No 483 (88 %) 77 (90 %)

 Yes 64 (12 %) 9 (10 %)

Parity

 0 254 (46 %) 35 (41 %)

 ≥1 293 (54 %) 51 (59 %)

Health Insurance

 Public 433 (79 %) 68 (79 %)

 Private 114 (21 %) 18 (21 %)

Delivery Hospital

 Emory 221 (40 %) 34 (40 %)

 Grady 326 (60 %) 52 (60 %)

Infant Sex

 Male 257 (47 %) 41 (48 %)

 Female 272 (50 %) 45 (52 %)

 Missing 18 (3.3%) 0 (0%)

Gestational Age (weeks) 38 (4.6) 39 (1.6)

 Missing 12 (2.2%) 0 (0%)

Birthweight (grams) 3026 (624) 3062 (433)

 Missing 26 (4.8%) 0 (0%)

Birthweight z-scores −0.47 (1.1) −0.44 (1.08)
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Full Cohort (N=547) Analytic Sample for
Mixtures (N=86)

N (%) or Mean (SD) N (%) or Mean (SD)

 Missing 26 (4.8%) 0 (0%)
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Table 2.

Distribution of first trimester serum and urinary levels of environmental chemicals in the Atlanta African 

American Maternal-Child study population, 2016-2020.

Percentiles

N % Above
LOD

Geometric Mean
(Geometric SD)

5 25 50 75 95

Per-and polyfluoroalkyl substances (PFAS) (ng/mL)

PFHxS 523 97.51 1.16 (2.06) 0.30 0.81 1.24 1.75 3.61

PFOS 523 97.9 1.89 (2.50) 0.53 1.38 2.12 3.23 5.44

PFOA 523 97.32 0.62 (2.36) 0.11 0.45 0.70 1.06 1.69

PFNA 523 96.75 0.26 (2.35) 0.05 0.17 0.30 0.47 0.81

PFBS 428 27.57 0.03 (3.48) 0.01 0.01 0.01 0.03 0.44

PFHPA 428 19.63 0.04 (2.03) 0.02 0.04 0.04 0.04 0.22

PFDA 428 57.24 0.07 (2.85) 0.03 0.03 0.07 0.17 0.40

PFUNDA 428 51.17 0.04 (3.03) 0.01 0.01 0.02 0.09 0.27

PFDODA 428 7.94 0.03 (1.71) 0.01 0.03 0.03 0.03 0.06

PFOSA 428 3.04 0.01 (1.28) 0.01 0.01 0.01 0.01 0.01

NETFOSAA 355 5.07 0.01 (1.32) 0.01 0.01 0.01 0.01 0.02

NMFOSAA 428 52.57 0.04 (3.04) 0.01 0.01 0.03 0.09 0.26

PFPEA 355 48.17 0.06 (2.00) 0.04 0.04 0.04 0.11 0.22

PFHXA 428 9.58 0.04 (1.99) 0.01 0.04 0.04 0.04 0.21

PFDS 75 0 0.01 (1.00) 0.01 0.01 0.01 0.01 0.01

Organochlorine pesticides (OCPs) (ng/mL)

HCB 107 98.13 0.07 (1.41) 0.04 0.05 0.06 0.07 0.11

p’p’-DDE 107 100 0.2 (1.74) 0.09 0.14 0.20 0.28 0.53

β-HCH 107 0 0.2 (1.19) 0.19 0.19 0.20 0.20 0.22

TCPy 300 68.67 0.75 (4.15) 0.09 0.09 1.13 2.14 4.58

o,p’-DDE 107 1.87 0.2 (1.34) 0.19 0.19 0.20 0.20 0.22

TNC 107 35.51 0.12 (2.20) 0.03 0.05 0.20 0.20 0.20

o,p’-DDT 107 1.87 0.2 (1.26) 0.19 0.19 0.20 0.20 0.22

p,p’-DDT 107 0.93 0.2 (1.21) 0.19 0.19 0.20 0.20 0.22

Pyrethroid insecticides (μg/g creatnine)

3-PBA 251 75.58 0.003 (4.90) 0.002 0.002 0.004 0.01 0.03

trans-DCCA 251 10.56 0.01 (2.64) 0.002 0.002 0.004 0.01 0.04

cis-DCCA 251 6.93 0.01 (2.41) 0.002 0.003 0.004 0.01 0.03

Polybrominated diphenyl ethers (PBDEs) (pg/mL)

BDE-47 311 100 89.84 (2.08) 32.9 55.52 83.86 136.46 352.58

BDE-99 311 78.14 23.1 (2.35) 7.81 10.91 22.11 38.19 104.89

BDE-100 311 73.63 13.32 (2.99) 2.81 3.29 15.44 31.3 70.36

BDE-85 311 1.93 48.58 (2.05) 16.67 17.86 78.12 78.12 78.12

BDE-154 311 8.36 86.5 (1.24) 78.12 78.12 78.12 89.29 130.41

BDE-153 311 11.25 57.4 (1.96) 16.67 51.63 78.12 78.12 125

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2024 August 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Eick et al. Page 26

Percentiles

N % Above
LOD

Geometric Mean
(Geometric SD)

5 25 50 75 95

Marijuana and tobacco (μg/g creatnine)

3-OHCOT 252 70.63 0.15 (17.38) 0.004 0.01 0.11 1.29 24.00

COT 252 71.03 0.08 (13.39) 0.003 0.01 0.05 0.65 9.96

COOH-THC 304 41.12 11.91 (5.68) 3.5 3.5 3.5 42.79 432.46

Phthalate metabolites (μg/g creatnine)

MEP 245 100 0.65 (2.83) 0.14 0.3 0.57 1.31 4.41

MBP 245 83.67 0.06 (2.61) 0.01 0.03 0.07 0.11 0.3

MiBP 245 85.71 0.05 (2.52) 0.01 0.03 0.05 0.1 0.23

MBzP 245 99.59 0.04 (2.84) 0.01 0.02 0.03 0.06 0.21

MEHP 245 90.2 0.01 (3.43) 0.001 0.005 0.01 0.02 0.06

MEOHP 245 97.55 0.02 (2.43) 0.01 0.01 0.02 0.03 0.1

MEHHP 245 99.59 0.03 (2.5) 0.01 0.02 0.03 0.06 0.18

MECPP 245 64.49 0.05 (2.08) 0.02 0.03 0.04 0.08 0.19

Bisphenols (μg/g creatnine)

BPA 245 80.41 0.01 (2.35) 0.002 0.002 0.01 0.01 0.03

Abbreviations: LOD, limit of detection; SD, standard deviation. Note: values below the LOD were replaced with LOD divided by the square root of 
2.
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