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BSTRACT 

equence assignment is a key step of the model 
 uilding pr ocess in both cr yog enic electron mi- 
roscopy (cryo-EM) and macromolecular crystallog- 
aphy (MX). If the assignment fails, it can result in 

ifficult to identify errors affecting the interpretation 

f a model. There are many model validation strate- 
ies that help experimentalists in this step of protein 

odel b uilding, b ut the y are virtuall y non-e xistent 
 or nuc leic acids. Here, I present doubleHelix ––a 

omprehensive method for assignment, identifica- 
ion, and validation of nucleic acid sequences in 

tructures determined using cryo-EM and MX. The 

ethod combines a neural netw ork c lassifier of 
ucleobase identities and a sequence-independent 
econdary structure assignment approach. I show 

hat the presented method can successfully as- 
ist sequence-assignment step in nucleic-acid model 
uilding at lower resolutions, where visual map inter- 
retation is very difficult. Moreover, I present exam- 
les of sequence assignment errors detected using 

oubleHelix in cryo-EM and MX structures of ribo- 
omes deposited in the Protein Data Bank, which es- 
aped the scrutiny of available model-validation ap- 
roac hes. The doub leHelix program source code is 

vailable under BSD-3 license at https://gitlab.com/ 
c hojnowski/doub lehelix . 
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RAPHICAL ABSTRACT 

NTRODUCTION 

ucleic acids are key players in many cellular processes 
anging from gene expression to the catalysis of chemical 
eactions. For many nucleic acid molecules tertiary struc- 
ure determines function, much like for proteins. Ne v erthe- 
ess, our understanding of the structure-function relation- 
hip in nucleic acids clearly lags behind proteins, which is 
eflected by the disproportion of structures deposited in the 
rotein Data Bank (PDB) ( 1 ). As of January 2023, out of 
00 708 available structures only 15 374 (7%) contained a 

ucleic acid component. The resolution revolution in cryo- 
enic electr on micr oscopy (cryo-EM) seems to be slowly 

hanging this picture as more and more challenging nucleic- 
cid complex es ar e being determined using this technique. 
n 2022, out of 1454 structures with nucleic-acid compo- 
ents deposited in the PDB as many as 804 (55%) were 
etermined using cryo-EM. Many of these cryo-EM struc- 
ures would be very difficult to solve using other techniques 
wing to their size and structural heterogeneity ( 2 ). 
The release of the Artificial Intelligence (AI) based 

tructur e pr ediction programs AlphaFold2 ( 3 ) and 

oseTTAFold ( 4 ) provided means for accurate and widely 
9 40 89 902 149; Email: gchojno wski@embl-hambur g.de 

ids Research. 
s Attribution License (http: // creati v ecommons.org / licenses / by / 4.0 / ), which 
e original work is properly cited. 
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accessible structur e pr ediction of protein structur es. Al-
though they did not solve the problem of protein structure
determina tion the accura te predictions proved useful
for solving the phase problem in macromolecular X-ray
crystallo gra phy and the interpretation of cryo-EM maps
( 5 ). There is no AlphaFold2 or RoseTTAFold equivalent
for nucleic acids and most lik ely w on’t be soon as building
AI 3D structur e pr ediction tools r equir es huge and di v erse
training sets of reliable structural models that are currently
not available for nucleic acids. The PDB-deposited models
are strongly biased towards ribosomal RNA that is usually
highly conserved across all kingdoms of li v e. Moreov er,
as will be shown later in this wor k, availab le e xperimental
RNA structures contain difficult to identify errors that may
reduce generalization properties of structure prediction
methods. Although attempts to build such tools are already
taken (e.g. RoseTTAFoldNA ( 6 ) and ARES ( 7 )), experi-
mental techniques will continue to be the method of choice
for detailed structural studies of nucleic acid complexes,
with all their limitations and bottlenecks. 

MX and cryo-EM remain the most frequently used ex-
perimental approaches for the structure determination of
large biomolecules. The main result of both these methods
is an atomic model traced into a map - an interpretation
of experimental observations given a priori knowledge of
biomolecular structure. Although, the main effort of the
method de v eloper comm unity is clearl y focused on proteins,
se v eral techniques facilitating experimental determination
of nucleic acid structures in cryo-EM and MX have been
de v eloped, e.g. NAUTILUS ( 8 ), ARP / wARP ( 9 ), PHENIX
( 10 ), RCrane ( 11 ), COOT ( 12 ), ISOLDE ( 13 ), DeepTracer
( 14 ) and ModelAngelo ( 15 ). As with proteins, nucleic acid
model building in these methods usually starts with trac-
ing into a density map a ribose-phosphate backbone that
makes up two-thirds of a polynucleotide mass. The back-
bone model is subsequently assigned to a target sequence
and complemented with base moieties. 

Sequence assignment is a crucial step in macromolecu-
lar model building. It is r equir ed for the identification and
completion of missing fragments in initial models. It is also
a fundamental pr er equisite of a model interpretation. Fail-
ure may lead to register-shift errors, where residues are sys-
tematically assigned an identity of a residue a few positions
before or ahead in sequence. Although register-shifts may
bias model interpretation, they remain one of the most dif-
ficult problems to identify and correct in macromolecular
models ( 16 ). In protein models, register-shifts often result
in backbone-geometry outliers when se v eral sidechains are
forced into too small density volumes, which can be detected
using geometry validation approaches like CaBLAM ( 17 ).
Moreover, backbone tracing issues (e.g. deletion or inser-
tion) that caused register shift can be occasionally detected
as a geometry outlier ( 18 ). Ne v ertheless, it has been shown
that regardless of the effort made to validate protein models,
r egister-shift errors ar e r elati v ely common in PDB ( 19 , 20 ).
Particularly affected are very large structures, for example
ribosomes, where detailed inspection of a model using in-
teracti v e tools (e.g. COOT or ISOLDE) is rarely feasible. 

Sequence assignment errors in nucleic acids are e v en
more difficult to identify than in proteins. They rarely re-
sult in se v ere geometry issues during model refinement as
the ribose-phosphate backbone dominates scattering and
its geometry is weakly affected by the presence of misas-
signed nucleobases. Mor eover, small differ ences between
different types of purines and pyrimidines makes visual val-
idation of a sequence assignment very challenging unless
high-resolution maps are available. 

The most prominent issue related to a sequence assign-
ment error in nucleic acid structures are steric clashes aris-
ing from the presence of base-paired nucleobases that don’t
fit their secondary structure context - non-isostericity ( 21 ).
For example, a Watson–Crick pair in cis orientation that
erroneously involves two guanines is too large to fit into a
double-helical region ( 22 ). At lower resolutions, howe v er,
this will be promptly masked by a refinement software and
the bases that are weakly restrained by a map shifted to
a non-clashing conformation. Ne v ertheless, these relati v ely
rare issues can be in principle be detected using standard
model-validation software, e.g. Molprobity ( 17 ). 

Another, rar ely r ecognised, issue r elated to the se-
quence assignment in model building are unknown tar-
get sequences. Until recently, structural studies of macro-
molecules of unknown identity, e.g. extracted from natu-
ral sour ces, wer e attempted pr edominantly using MX ( 23 ).
Recent de v elopments in cryo-EM, howe v er, forged a com-
pletely new path to the studies of uncharacterised macro-
molecules. It has been shown that cryo-EM reconstruc-
tions of protein nucleic-acid complex es, at r esolutions high
enough for de-novo model building, can be determined di-
rectly in a cell using subtomogram averaging ( 24 ). High-
resolution structural information can be also retrie v ed
from a systematic cryo-EM analysis of cell lysate fractions
( 25 , 26 ). In a recent study Skalidis and co-w ork ers ( 27 ) pre-
sented a complete workflow for identifying biomolecules di-
rectly from nati v e cell e xtracts combining cryo-EM with AI
structur e pr ediction methods. Although ther e ar e in princi-
ple no technical limitations to the identification of nucleic-
acid sequences directly from cryo-EM reconstruction, to the
best of my knowledge there is no computational tool avail-
able that could be used for this purpose. 

In this work, I present doubleHelix ; a computer program
for comprehensi v e nucleic-acid sequence identification, as-
signment, and validation in MX and cryo-EM models. Sim-
ilarly to a pre viously de v eloped program findMySequence
( 28 ) for protein-sequence identifica tion, doub leHelix uses
neural network classifiers for estimating residue-type prob-
abilities gi v en a backbone model and a density map. W ha t
makes the doubleHelix program unique is the way it ad-
dresses the inherent nucleobase-type ambiguity that makes
it impossible to distinguish adenine from guanine and cy-
tosine from uracil or thymine unless a very high-resolution
experimental data is available. The program estimates only
the probabilities of purines and pyrimidines in a model.
This information is complemented with base-pairing re-
straints obtained using a new approach that relies on a
backbone conformation ignoring nucleobase identities that
are not known before the sequence assignment. The base-
pair identification approach is based on alignment of re-
current nucleic-acid structural motifs of known secondary
structure (e.g. A- or B-form double helices) to the target
model. I show that despite its simplicity this approach is
both highly specific and accurate. Moreover, the secondary
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tructure information it provides readily improves sequence 
ssignment and identification performance at lower resolu- 
ions where base-type classification reliability is reduced. I 
lso show an example of a previously unidentified RNA- 
equence assignment errors in mammalian and bacterial ri- 
osome structures deposited in the PDB that could have 
een avoided if doubleHelix had been used for model build- 

ng and validation. 

N O VER VIEW OF THE DOUBLEHELIX METHOD 

he doubleHelix program r equir es on input a model in PDB 

r mmCIF format. For the sequence identification and as- 
ignment, it also r equir es a corr esponding ma p, w hich can
e provided in CCP4 / MRC format for cryo-EM models or 
s a MTZ file with structure factor amplitudes and phases 
or crystal structures. The doubleHelix program provides 
our basic functionalities: 

Secondary structure restr aints gener ator for nucleic-acid 

models 

Gi v en RNA or DNA model on input the program gener- 
tes base-pair and -stacking restraints in formats accepted 

y COOT and popular refinement programs REFMAC5 

 29 ), PHENIX ( 30 ) and ISOLDE ( 13 ). Additionally, it gen-
rates a PYMOL ( 31 ) script that can be used for visualising 

he restraints (Figure 1 C). The restraints are also generated 

or interacting model fragments modelled as separate chains 
e.g. DNA duplexes). 

Identification of unknown sequences of nucleic-acid 

models 

For a nucleic acid model and a corresponding map 

CCP4 / MRC or MTZ f ormats f or cry o-EM and MX, re-
pecti v el y), the pro gram identifies the most plausible se- 
uence from a sequence-database in FASTA format gi v en 

stimated nucleobase-type probabilities and input model 
econdary structure (Figure 1 D). By default, the program 

dentifies a sequence that best matches all nucleic-acid 

hains fragments in the input model. 

Assignment of nucleic acid models to known target 
sequences 

For a nucleic acid model and a corresponding map 

CCP4 / MRC or MTZ f ormats f or cry o-EM and MX, re-
pecti v el y), the pro gram assigns continuous pol ynucleotide 
hain fragments to the target sequence and rebuilds the 
ases accordingl y. A part from the estimated nucleobase- 
ype probabilities, base-pairs identified within the frag- 
ents are used as additional restraints (Figure 1 E). 

Sequence assignment validation in nucleic-acid models 

Gi v en a nucleic-acid model, a corresponding map 

CCP4 / MRC or MTZ f ormats f or EM and MX, respec-
i v ely) and the set of all model sequences, the program eval- 
ates the plausibility of the model’s sequence assignment. 
his feature is implemented as an extension of the c hec k- 
ySequence program and uses an algorithm described pre- 
iously ( 19 ). Users interested in the validation of nucleic 
cid model sequence assignment should refer to instruc- 
ions available on the c hec kMySequence project page. 

ATERIALS AND METHODS 

ecurr ent structur al motifs in nucleic acids 

he doubleHelix program identifies base pairs in RNA 

nd DNA models from a local similarity of backbone 
oordinates with small ‘search-fragments’ of known sec- 
ndary structure. Model, double helical A-RNA and B- 
NA sear ch-fragments wer e generated using the X3DNA 

uite ( 32 ). Non-helical search fragments were selected us- 
ng RNA Bricks ( 33 ) database. Selected sets of r ecurr ent
NA fragments classified as ‘loops’ with at least 500, 100, 

5 and 10 occurrences in the database correspond to 83, 
32, 1430 and 2664 sear ch-fragments r especti v ely (as of 28 

arch 2020). 

ibosome crystal structures for secondary structure assign- 
ent benchmarks 

s a r efer ence for the secondary structur e assignment 
enchmarks, I used crystal structures of ribosomes avail- 
ble in PDB as of 28 March 2020. From all structures deter- 
ined at a resolution better than 3.0 Å , I selected ones with 

rystallo gra phic R-free factor below 0.3. To reduce the set 
edundancy, from each group of similar structures (e.g. orig- 
nating from the same publication) I selected models with 

he lowest R-work / R-free difference. The resulting set con- 
ained eight structures originating from Haloarcula maris- 
ortui , Thermus thermophilus , and Deinococcus radiodurans 

PDB entries 1s72, 4yb b , 7rqa, 1hnx, 1fjg, 1k73, 4y4o, 6oxi). 
or each of the models, secondary structure was determined 

sing the ClaRN A pro gram ( 34 ) and used as a ground-
ruth. 

eference set of ribosome cryo-EM structur es f or sequence 
dentification benchmarks 

rom the PDB, I selected cryo-EM structures of ribosomes 
etermined at a resolution better than 3.5 Å . Among 102 

uch structures available as of 4 February 2020, I selected 

7 with half-maps available for download in the Electron 

icroscopy Data Bank (EMDB). For each of the half-map 

airs local resolution maps were calculated using Resmap 

ersion 1.1.4 ( 35 ) with default parameters. 
The selected models (PDB entries 3j79, 3j7a, 3j7q, 5iqr, 

mdv, 5mdw , 5mdy , 5ngm, 5umd, 5wdt, 5we4, 5wfs, 6okk, 
p5i, 6p5j, 6p5k, 6p5n) originated from fiv e different organ- 
sms: Plasmodium falciparum, Esc heric hia coli, Staphylococ- 
us aur eus, Sus scr of a and Ory ctolagus cuniculus . For each
f them, nucleotide sequences corresponding to RNA fea- 
ures annotated based on the genome sequence were down- 
oaded from NCBI ( 36 ) and used as r efer ences for the se-
uence identification benchmarks. The r efer ence sets con- 
ain tRN A, rRN A and ncRN A sequences, except for those 
orresponding to eukaryotic organisms that additionally 

ontain mRNA sequences. To ensure that exact matches 
re available in the reference sets I added target rRNA se- 
uences to each of them. 
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Figure 1. Schematic r epr esentation of the doubleHelix workflow. Key steps are color-coded and grouped in dashed rectangles; ( A ) input map (cryo-EM 

or MX), nucleic acid model, and target sequences ( B ) nucleobase-type probability estimation, ( C ) base-pair and refinement restraints assignment based 
on matched r ecurr ent structural motifs, ( D ) sequence identification and ( E ) assignment based on estimated nucleobase-type probabilities and secondary 
structure. All steps are integrated in the software and performed automatically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Structures used for training neural network classifiers 

As map features observed in cryo-EM and MX maps differ
in fine detail, two separate neural networks were trained for
each of these experimental methods. 

For training the cryo-EM nucleobase-type classifier from
the cryo-EM structures of ribosomes initially selected for
sequence identification benchmarks, for w hich half-ma ps
were not available in EMDB, I randomly selected 10 (PDB
entries 5afi, 5mmi, 5u9f, 5wdt, 6eri, 6h4n, 6ogi, 6om0,
6q8y , 6sgc). Additionally , 142 PDB-deposited cryo-EM
structures containing a DNA, but not an RNA compo-
nent determined at resolution 3.5 Å or better with map-
to-model correla tion coef ficient above 0.8 as estima ted for
complete models (including non-NA components) using
phenix.map model cc ( 37 ) were added to the training set. 

For training a crystal structure nucleobase-type classi-
fier, I selected eight structures and corresponding maps that
were also used for benchmarking secondary structure as-
signment procedur e. Mor eover, 100 crystal structur es ran-
domly selected from PDB that contain a DNA, but not an
RNA component, determined at resolution 3.5 Å or better
with R-free–R-work below 0.3 were added to the training
set. 

Ribosome structures for the base-type classifier benchmarks 

For benchmarking the residue type neural network clas-
sifiers, I selected fiv e the highest resolution cryo-EM and
MX structures available in PDB as of 24 April 2023 and
released after training the base-type classifiers. The result-
ing set contained crystal structurers refined between 2.3 and
2.5 Å resolution (PDB entries 8cvl, 6xhv, 8cvj, 7rqe and
7r qa). The r esolution of selected cryo-EM structur es var-
ied between 1.5 and 1.9 Å (PDB entries 8b0x, 8glp, 8a3d,
8aye and 7k00). All the models contain modified nucleic
acids residues as modelled by their authors. Each modified
residue in the set was classified as a purine or pyrimidine
based on the presence of imidazole rings. Specifically, the
classification was based on the presence of both N1 and N9
atoms within a base, which are located a pproximatel y 4.1 Å
apart from each other. 

Ribosome crystal structures for sequence identification and
assignment benchmarks 

For RNA sequence identification benchmarks, I arbitrar-
ily selected two crystal structure models of Thermus ther-
mophilus 30S ribosomal subunit determined at a resolu-
tion 2.8 ̊A (PDB entry 2uub) and 3.3 ̊A (PDB entry 6mpi).
For both targets, r e-r efined structur es wer e downloaded
from the PDB REDO server ( 38 ). Initiall y, a randoml y
selected 90% of ribosomal RNA nucleobases were mu-
tated in both models (purines to pyrimidines and vice
versa) keeping canonical base-pairing interactions identi-
fied using doubleHelix (the procedure is implemented in
doubleHelix program and can be enabled with an op-
tion “-- randomize = 0.9 ”). The model coordinates were
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ubsequently randomised with 0.2 ̊A RMSD ignoring any 

eometry restraints and automatically refined using the 
DB REDO w e b server. For both models the randomi- 
ation procedure clearly affected the R-work / R-free fac- 
or values that increased from 0.19 / 0.23 to 0.25 / 0.29 and 

rom 0.20 / 0.25 to 0.23 / 0.27 for better and worse resolu-
ion structures respecti v el y. The automaticall y refined ran- 
omised models with corresponding maximum likelihood, 
ombined 2mFo-DFc maps were used for sequence identi- 
cation and assignment benchmarks. 
For the sequence identification benchmarks, nucleotide 

equences corresponding to RNA fea tures annota ted based 

n the Thermus thermophilus genome were downloaded 

rom NCBI and used for making queries. 

eur al netw ork base-type classifier 

o estimate the probability that a gi v en nucleotide fitted into 

 map corresponds to a purine or pyrimidine two indepen- 
ent neural-network classifiers wer e pr epar ed. The classi- 
ers have identical ar chitectur e but ar e trained on distinct 
raining sets deri v ed from crystal structures or cryo-EM 

odels and their respecti v e maps. 
Nucleotides are described with a vector of map values 

ampled around a putati v e base moiety (a residue descrip- 
or). The map is sampled on a regular grid with 1.0 Å spac- 
ng. The grid is centred at the N1 or N9 atom for purine 
nd pyrimidine respecti v ely and spanned by orthonormal 
ectors defined by glycosidic bond (e x ), the normal vector 
f the ribose best-fitting plane (e y ), and their cross product 
e z = e x × e y ). For a gi v en nucleotide the input to the classi-
er contains a cloud of 403 grid points that are within 1.0 Å 

istance from any atom of a nucleobase mutated to Guanine 
n any r otation ar ound the glycosidic bond. In practice a 

recomputed cloud is aligned to each nucleotide using C2’, 
1’ and O4’ ribose or deoxyribose atoms. 
The neural-network model input is a vector of length 403 

the residue descriptor described above). The model con- 
ains two, fully connected hidden layers. The first layer has 
 R eLU (R ectified Linear Unit) activation function, which 

ets all negati v e neuron inputs to zero, and 403 output fea-
ures. The second layer has 2 output features and uses the 
og-softmax normalisation function enabling estimation of 
utput classification probabilities. To avoid overfitting, an 

dditional dropout layer was inserted between the two hid- 
en layers. The dropout layer at each training step disables 
euron connections selected at random with probability P . 
he models were trained for 1000 epochs with P = 0.5, 
 batch size of 20 residue descriptors in each parameters 
pdate cycle, and a 10% validation set. The models were 
rained using the ADAM optimization algorithm ( 39 ) with 

 learning rate of 1e–5 that resulted in the best test-set 
ccuracies. 

For training the crystal structure classifier I used 84 887 

nd 9431 nucleobase descriptors for training and test-set re- 
pecti v ely. The accuracies of a resulting model were 0.98 and 

.96 for the training and test sets, respecti v el y. Similarl y, for
raining the EM classifier I used 85 092 and 9454 residue de- 
criptors in training and test-sets, respecti v ely. The resulting 

odel estimated accuracies were 0.95 and 0.92 for training 

nd test set, respecti v ely. 
econdary structure assignment procedure 

nlike DN A, w hich occurs in nature predominantly in 

 double-helical form, RNA molecules are often single- 
tranded and fold into complex structures stabilised by 

tacking and base-pairing interactions ( 40 ). Folded RNA 

olecules have a modular ar chitectur e in which the double- 
elical r egions ar e intertwined with differ ent types of loops 
hat define the topology of the structure and stabilise it 
hrough long-range interactions. Many of these loops are 
 ecurr ent and can be found in a similar structural context 
n many, possibly evolutionary unrelated, RNA molecules 
 33 ). Most importantly, it is the overall module geome- 
ry and base-pairing pattern rather than the nucleotide se- 
uence that is conserved across different occurrences of the 
ame module ( 41 ). This feature of RNA molecules is used in 

he doubleHelix program for the inference of base-pairing 

nteractions from the local geometry of sugar-phosphate 
ackbone. This approach ignores both identities and mu- 
ual orientation of bases, which is particularly important in 

he analysis of preliminary, not fully refined models, where 
ase identities are not yet known and their coordinates, un- 

ike relati v ely heavy backbone, may be inaccurate. 
The program superposes small RNA or DNA search- 

ragments of known secondary structure onto the input 
odel using an algorithm described previously as a part of 
 model-building program Brickworx ( 2 ). First, all possible 
riplets of phosphate group P-atoms in a search-fragment 
re structurally aligned with similar P-atom triplets from 

he input structure. Resulting rigid body transformation is 
pplied to the complete fragment to identify matching nu- 
leotides in the search fragment and input structure. Finally, 
he match is refined using all sugar-phosphate backbone 
toms. If the resulting root-mean-square deviation (RMSD) 
s below 1.0 Å (the threshold defined in the Results sec- 
ion), search-fragment base pairs are assigned to the cor- 
 esponding r esidues in the input model. If multiple, over- 
apping matches of search-fragments are identified, the one 
ith the lowest RMSD is selected. 
For the sake of computa tional ef ficiency, the input model 

rocessing is divided into two steps. Firstl y, onl y a double- 
elical fragment is matched to identify Watson-Crick base- 
airs. In this step, A-RNA or B-DNA search fragments 
re used depending on the target nucleic acid type. Next, 
ll nucleotides within stacked Watson-Crick base-paired re- 
ions (except flanking residues) are removed from the input 
odel. In the second step, used only in case of RNA targets, 
 predefined set of r ecurr ent RNA motifs is matched to the 
emaining nucleotides in the input model. In case of base- 
air assignment conflicts, the ones detected in the second 

tep are gi v en preference. 

equence identification procedure 

or the identification of the most plausible sequence 
n a database, gi v en input model residue-type probabili- 
ies and secondary structure, doubleHelix uses sequence- 
omparison tools from the INFERNAL suite ( 42 ) (Figure 
 D). Initially, pr edicted r esidue-type probabilities ar e con- 
erted into a multiple sequence alignment (MSA), where 
ractions of residue types in each column correspond to 
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predicted probabilities. The MSA, combined with base-
pairing pattern is encoded in a Stockholm format (STO),
which is an input to the cmbuild program. The resulting Co-
variance Model (CM) is further calibrated with cmalibrate
and used to query sequence databases using the cmsearch
program with default parameters. The Hidden Markov
Model (profile-HMM) queries are enabled by adding the
-- hmmonly k eyw ord to cmsearch and skipping the calibra-
tion step. Sequence hits with the lowest E-values are re-
turned to the user (3 by default). 

Sequence assignment procedure 

Analo gousl y to the sequence identification procedure, dou-
bleHelix uses the estimated base-type probabilities to as-
sign RNA or DNA models to a target sequence. For a con-
tin uous polyn ucleotide fragment in the input model a neu-
ral network classifier is used to estimate base-type (purine
or pyrimidine) probabilities for each residue. The result-
ing scoring matrix is aligned to the target sequence and the
probability of each tentati v e alignment is approximated by
a product of the probability estimates for each residue in
the fragment, assuming their independence. If any residue
pair in the fragment forms a Watson–Crick base-pair (de-
tected using a procedure described above) an additional,
low-probability correction factor (0.1) is used if for a ten-
tati v e alignment the two bases are either both purines or
pyrimidines, which is very unlikely for a Watson–Crick in-
teraction. Otherwise, the correction term is 1. 

Although the neural-network classifier has been cali-
brated and the pr edicted r esidue-type probabilities gener-
ally reflect expected frequencies, the accuracy of predictions
may vary depending on local map resolution and quality
of the models ( 9 ). Ther efor e, for each tentati v e assignment
of a fragment to a target sequence the method estimates a
p-value, or probability that a gi v en alignment has been ob-
served by chance. A tentative alignment probability is com-
pared to a background distribution of the fragment align-
ment probabilities for a long, random sequence. To addi-
tionally account for the varying target-sequence lengths an
additional extreme-value distribution theorem correction is
applied as described before ( 19 ). 

Implementation 

The doubleHelix program was implemented using Python3
with an e xtensi v e use of numpy ( 43 ), scipy ( 44 ), CCTBX
( 45 ) and CCP4 ( 46 ) libraries and utility programs. The neu-
ral network classifier used in this work was trained using
Pytorch ( 47 ) and deployed to a C code using keras2c ( https:
//github.com/f0uriest/keras2c ). For making the rRNA se-
quence database queries, the program uses INFERNAL
suite version 1.1.4. 

RESULTS AND DISCUSSION 

Secondary structure assignment 

The base-pair assignment in the doubleHelix program re-
lies on structural alignment of r ecurr ent motifs with known
secondary structur e (sear ch-fragments) to the input model.
The method uses fiv e different sets of search-fragments.
First, A- or B-form double helices, for RNA and DNA tar-
get models, respecti v el y, are tried. Additionall y, for RN A
models, the method uses four sets of the most frequent re-
current RNA motifs from the RNA Bricks database (see
Materials and Methods for details). Although the double-
helical search fragments can be used for the identification
of the canonical Watson–Crick base-pairs only, the other
search fragments allow for the identification of any base-
pairing interaction type. 

The base-pair assignment procedure parameters provid-
ing maximum performance are 2-base-pair double-helical
search fragments with 1.0 Å RMSD thr eshold (Figur e 2 A).
This can be explained with a relati v ely high structural het-
erogeneity observed in double-helical structures ( 48 ), which
cannot be r epr esented using longer, idealised search models.
Interestingly, an additional search step with recurrent RNA
motifs with at least 500 occurrences in the RNA Bricks
database further improves precision of the Watson-Crick
base-pairs assignment. The resulting Watson-Crick base-
pair assignment f 1-score 0.94 is comparable to a value of
0.95 reported for a recently described program CSSR ( 49 ),
which also relies on backbone conformations only. With
doubleHelix this translates to the recall of 0.91 and precision
0.98 (no corresponding results were reported for CSSR).
Unlike doub leHelix, howe v er, CSSR focuses e xclusi v ely on
pairs of nucleotides compatible with canonical base pair-
ing (A / U, G / C or G / U) that makes the two methods not
directly comparable. Another advantage of the doubleHelix
approach over CSSR is its ability to identify stackings and
non-canonical base-pairs with r ecall / pr ecision of 0.63 / 0.89
and 0.47 / 0.94, respecti v ely (Figure 2 B). This, howe v er, re-
quires the use of a larger set of r ecurr ent RNA motifs with
at least 100 instances in the RNA Bricks database that re-
sults in an increased computational cost. For example, for
a tRNA model (76 nucleotides, PDB entry 1ehz) processing
time on a standard laptop increases from 4 s in default con-
figuration to 13 s. For a complete porcine 28S rRNA (3938
nucleotides, PDB entry 3j7q) these times increase from 1 to
almost 8 h. This, howe v er, is needed only for the accurate as-
signment of non-canonical base-pairs in RNA models (e.g.
as refinement restraints). By default, for the identification of
Watson–Crick base-pairs the doubleHelix uses the smallest
set of RNA r ecurr ent motifs providing maximum perfor-
mance at a reasonable computational cost. 

Base-type classifier benchmarks 

The neural network residue-type classifiers used in this work
were trained ignoring any base modifications in the struc-
tures. Howe v er, these modifications can effecti v ely alter the
scattering properties of a base and introduce bias in the
classification results. To examine the impact of the base
modifications on the classification performance, I selected
ten high-resolution models of ribosomes containing modi-
fied ribonucleotides, as described in Materials and Methods
section. 

The crystal structure models of ribosomes contained in
total 45 784 standard ribonucleotides out of which 99%
have been correctly classified. Among 358 modified bases
the most frequent were pseudouridines (81) and all of them
wer e corr ectly classified as p yrimidines. For other ribonu-

https://github.com/f0uriest/keras2c
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Figure 2. Performance of RNA secondary structure assignment based on structural alignment of recurrent motifs for ( A ) canonical (Watson–Crick) and 
( B ) non-canonical base-pairs. Each data point r epr esents performance for a gi v en stem length (2 or 3 bp) and main-chain atoms RMSD maximising 
classification f 1-score (harmonic mean of precision and recall). Data-point labels correspond to the number of r ecurr ent RNA motifs used for model 
interpretation; RN A stem onl y (0), motifs with at least 500 (1), 100 (2), 25 (3) and 10 (4) occurrences in RNA Bricks database. Precision and r ecall wer e 
estimated using ClaRNA ( 34 ) base-pair classification as ground truth. 
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leotides with modified bases, 222 out of 234 (95%) were 
orrectly classified as purines or pyrimidines. For the re- 
aining modifica tions tha t do not af fect the base (e.g. O2’- 
ethyluridine), 39 out of 42 (93%) were classified correctly. 
In the set of cryo-EM models, 98% out of 28 791 stan- 

ard ribonucleotides, 297 out of 301 (99%) modifications 
ot affecting bases, and all 294 pseudouridines were classi- 
ed correctly. Among ribonucleotides with base modifica- 
ions 89 out of 91 (98%) were classified correctly. 

Overall, the performance of base-type classifiers for both 

ryo-EM and MX agrees with the estimates from the train- 
ng procedure. This includes modified bases, e v en though 

i v en high-resolution of the maps, the modifications are 
sually resolved in the density. It can be expected that at 

ower resolutions the effect of base-modifications will be 
lso negligible as modifications are not resolved in the maps 
n ywa y. 

equence identification in cryo-EM 

or the identification of a nucleic acid model the doubleHe- 
ix program finds the most plausible sequence in a database 
i v en nucleobase-type probabilities (purine or pyrimidine) 
stimated based on a backbone model and correspond- 
ng cryo-EM map. Secondary structur e r estraints, deri v ed 

irectly from a backbone model, are used as an addi- 
ional source of information. Both base-type probabilities 
nd base-pairing information are used to query sequence 
atabases using the INFERNAL suite as described in the 
aterials and Methods section. I observed that this ap- 

roach allows for a sequence identification up to 4.5 ̊A local 
esolution for fragments of 50 amino acid residues (Figure 
 A) when Covariance Models (CMs) and secondary struc- 
ure information is used. The use of Hidden Markov Models 
HMMs), which neglects base-pairing information, clearly 

educes the method performance (Figure 3 A). The use of 
onger fragments of 100 r esidues, further incr eases the reso- 
ution limit of the method applicability up to 5.5 Å when the 
ase-pairing information and CMs are used (Figure 3 A). 
verall, the E -value provided by the INFERNAL suite is 
 r eliable measur e of the sequence identification r eliability. 
her e ar e, howe v er, a fe w model fragments for which the

dentified sequence has a relati v ely low sequence identity to 

he target, despite a reliable E -value score (Figure 3 B). This 
ssue can be attributed to the reduction of the sequence iden- 
ification problem to purines and pyrimidines only that may 

ccasionally make different sequence fragments practically 

ndistinguishable. 

equence assignment in cryo-EM 

t has been shown that a neural network-based assignment 
f protein model sequence can provide reliable results up to 

ocal map resolutions where de novo model building would 

e very challenging ( 50 ). Moreover, a carefully derived se- 
uence assignment reliability score, the p-value, accurately 

eparates correct fr om wr ong alignments independently of 
ocal map resolution. The assignment of polynucleotide se- 
uences, howe v er, presents a particular challenge compared 

o proteins. First of all, nucleic acid models are often built 
e novo into lower resolution map regions, as double-helical 
ragments are excellent and universal models for map inter- 
r etation. Mor eov er, e v en at moderate resolutions the tar- 
et sequence is effecti v ely reduced to only two types of nu- 
leobases (purines and pyrimidines) tha t grea tly increases 
equence assignment ambiguity. 

I observed that similarly to proteins the neural-network 

lassifier implemented in doubleHelix provides a reliable 
eans of assigning polynucleotide sequences to model frag- 
ents at local resolutions as low as 5 ̊A , e v en though the re-

uired fragment lengths are clearly longer (Figure 4 A). For 
 total number of 18 655 RNA test-fragments of 20 residues 
see Materials and Methods for details), the assigned se- 
uence matched the corresponding model in 83% (15 461) 
f cases. For longer fragments of 40 residues the number of 
orrectly assigned sequences increases to 95% (17 383). 
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Figure 3. Sequence-identification benchmarks with continuous fragments of 50 and 100 nucleic acid residues selected at random from cryo-EM ribosomal 
RNA models. Comparison of the method performances for an identification of model sequence with (CM) and without (HMM) the use of base-pairing 
information. The sequence identification performance is shown as a function of ( A ) local resolution of EM maps and ( B ) E -value of the sequence assignment 
estimated by the INFERNAL suite. The (B) plot horizontal axis shows -log(E-value); higher values correspond to lower E -values and mor e r eliable sequence 
identification results. The continuous and dashed curves are logistic regression estimates of a probability that an identified sequence will have at least 90% 

sequence identity to the target sequence. 

Figure 4. Medians and 90% confidence intervals for sequence assignment p-value as a function of local resolution for RNA chain test-fragments of 20 
and 40 nucleic acid r esidues. P anel ( A ) shows fragments with sequences matching r efer ence. Fragments for which assigned and r efer ence model sequences 
differ are presented in panel ( B ). The dashed line corresponds to a 99.5% one-sided confidence interval estimated for fragments of 20 nucleic acids with an 
assigned sequence different from the input-model sequence. Blue circles depict an outlier presented in the text (porcine 28S rRNA, PDB entry 3j7q). The 
plots’ ordinate axes show –log(p-value) for the test-fragments; higher values correspond to lower p-values and more reliable sequence assignments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The p-value, or the probability of observing a gi v en se-
quence assignment by chance, provides a reliable estimate
of the alignment accuracy that doesn’t depend on local
map r esolution (Figur e 4 B). Indeed, a one-sided 99.5%
confidence interval for fragments with sequence assign-
ment that doesn’t match the r efer ence (dashed line on Fig-
ur e 4 ) corr esponds to 62% and 17% of cases with match-
ing sequences for fragments of 20 and 40 residues re-
specti v ely. Although sequence mismatches with a p-value
outside this region are expected to be very rare, I ob-
serv ed se v er al such test-fr agments in the benchmark set
(blue circles on Figure 4 B), all of them correspond to
a single model of porcine 28S rRNA (PDB entry 3j7q).
I will discuss this outlier in more detail in the next
section. 
 

Sequence assignment outlier: mammalian 28S rRNA 

In the cryo-EM benchmark set, I identified se v eral clear
outliers, w here RN A test-fragments were assigned reliable
(low p-value) sequences different from the reference model
(Figure 4 B). All the fragments originate from an expansion
segment (ES7a) of a cryo-EM structure of porcine 28S ri-
bosomal subunit determined at 3.4 ̊A resolution (PDB en-
try 3j7q). Closer inspection of the model re v ealed se v eral
nucleobases poorly fitting the EM reconstruction, which is
understandab le gi v en limited resolution, but no clearly vis-
ible sequence assignment issues. As there is no higher res-
olution structure for the porcine ribosome available, which
could be used to validate the sequence register, I decided to
use as a r efer ence the closest homologue from rabbit (98% of
sequence identity), for which a structure determined at 3 ̊A
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esolution has been recently deposited (PDB entry 6r5q). 
or a detailed comparison I selected a fragment of the 
S7a that has a strictly conserved sequence in both organ- 

sms according to an alignment generated using R-coffee 
 51 ). Structural alignment of the corresponding model frag- 
ents, howe v er, re v ealed multiple differences between cor- 

esponding nucleobase identities, se v eral of them resulting 

n base-pairing violations (Figure 5 C). I also observed that 
e v eral differences in sequence preserving secondary struc- 
ur e ar e visible as clear density-fit outliers (Figure 5 A). The 
roblem is easily solved by shifting the sequences of the two 

hain fragments by one residue, as suggested by the dou- 
leHelix pro gram, w hich results in a perfect fit between the 
orcine and rabbit models (Figure 5 B). 

NA sequence identification and assignment in MX 

 crystallo gra phic diffraction experiment provides only 

mplitudes of complex structure factors required for cal- 
ulating electron-density maps. Missing phases need to be 
eri v ed from other sources, for example a tentati v e model 
f the unknown crystal structure from Molecular Replace- 
ent procedure. The use of model-deri v ed phases for calcu- 

ating electron-density maps ine vitab ly results in so-called 

model bias’ - the presence in a map of model features that 
re absent in a crystal structure. The same issue may be 
xpected when a tentative crystal structure model polynu- 
leotide sequence doesn’t match an unknown crystal struc- 
ure. Although the model bias is reduced in maximum like- 
ihood ma ps ( 54 ), routinel y used for model building and re-
nement in MX, the problem is not completely eliminated. 
o investigate how the model-bias issue affects the sequence 

dentification and assignment procedures I benchmarked 

hem using ribosome crystal structures with randomised 

RNA sequences. I used two crystal structure models of 
hermus thermophilus 30S ribosomal subunit determined 

t resolutions 2.8 ̊A (PDB entry 2uub) and 3.3 ̊A (PDB en- 
ry 6mpi). Additionally, to remove any effect related to the 
resence of protein chain models that were refined in the 
resence of the correct rRNA sequences all atomic coor- 
inates were randomised with 0.2 ̊A RMSD. The resulting, 
andomized 30S models were refined using REFMAC5 and 

he PDB REDO w e bserv er. Interestingly, observ ed model 
ias in both randomised structures is moderate and clear 
equence mismatches can be noticed for few (but not all) 
ucleobases (Figure 6 B and D ). 
The sequence identification procedure was very effecti v e 

or the randomised 2.8 ̊A resolution model. Among 1000 

ontinuous, randoml y selected rRN A fragments of 100 

esidues, doubleHelix identified a correct target sequence 
n 99% of cases. For shorter fragments of 50 residues this 
raction reduces to 76%. At lower resolution (randomised 

mpi model at 3.3 ̊A resolution) the performance clearly 

educes. The program provided a correct hit in 86% and 

2% and of cases for test-fragments of 100 and 50 residues 
especti v el y. Interestingl y, I also observed that the use of 
econdary structure information for the sequence identifi- 
ation clearly improves the method performance. Without 
ase-pairing restraints the fraction of correctly identified se- 
uences for fragments of 100 residues reduces to 90% and 
2% for better and worse resolution structures. In all cases t
he incorrect hits can be easily filtered based on E-value re- 
urned by INFERNAL suite where values smaller than 0.1 

uarantee a correct solution (Figure 7 A). 
For sequence assignment the method correctly identi- 

ed sequences of 46% and 65% of 1000 continuous rRNA 

ragments of 20 nucleic acid residues selected at random 

rom randomised models at worse and better resolution 

especti v ely. These numbers increase to 82% and 94% for 
onger fragments of 40 residues. The correct sequence as- 
ignments are also clear ly separ ated from incorrect ones by 

-value with the 99.5% one-sided confidence interval for 
rongly assigned fragments matching a value estimated for 
M models (Figures 4 B and 7B ). 

ase study: sequence register errors in crystal structure of the 
arge ribosomal subunit of S. Aureus 

he doubleHelix program has been integrated into a pre- 
iously de v eloped tool called c hec kMySequence, w hich is 
sed for validating sequence assignment in protein mod- 
ls . This integration enables a fully automated validation 

f sequence assignment for complete protein-nucleic acid 

omple xes. Benchmar ks of the updated c hec kMySequence 
ethod re v ealed a particularly inter esting structur e of the 

arge ribosomal subunit from S. aureus . The program iden- 
ified in this model plausible register shift errors in two ribo- 
omal proteins (L18 and L4) and 5S rRNA. The structure 
as determined at 3.5 ̊A resolution (PDB entry 4wce, ( 55 )) 
nd refined to R-work / R-free factor values of 0.202 / 0.246 

nd c lashscor e 11. 
A detailed discussion of the register shift error correction 

n ribosomal proteins is out of scope of this work and will 
e presented only briefly. The protein chains were replaced 

ith corresponding predictions from AlphaFold2 database 
release 4 for UniProt entries Q2FW07 and Q2FW22 for L4 

nd L18 respecti v el y) subsequentl y refined using COO T in 

eal space with self-restrains generated at 5 Å cut-off. Both 

r edicted models wer e assigned a very high confidence score 
pLDDT > 90), which was observed to usually correspond 

o minor differences in loop and side-chain conformations 
ompared to reliab le e xperimental models ( 56 ). Compari- 
on of the deposited and corrected protein chains of both 

roteins re v ealed multiple plausib le tracing issues and con- 
rmed register-shifts suggested by c hec kMySequence . 
The target sequence of the 5S rRNA chain consists of 

14 residues that were all traced in the map (chain Y 

n the deposited model). The c hec kMySequence scan re- 
 ealed an alternati v e sequence assignment with p-value of 
.01 (very reliable according to Figure 7 B) for a chain 

ragment following residue 81. The alternati v e sequence 
orresponds to a register shift by one base which sug- 
ests that a residue could have been omitted in the de- 
osited model (deletion). Although closer inspection of 
he crystal structure re v ealed se v eral clear density outliers 
or bases (Figure 8 A), there were no signs of tracing is- 
ues. To confirm the chain sequence correctness, I per- 
ormed sequence identification using doubleHelix with the 
eposited 5S chain coordinates, corresponding maximum 

ikelihood 2mFo-DFc map, and a set of RNA sequences 
or S. aureus strain NCTC8325 downloaded from NCBI. At 
he time of writing (25.11.2022) there were two assemblies 
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Figure 5. Fragments with strictly conserved sequence of porcine ( A ) and rabbit ( B ) expansion segments (ES7a) in 28S rRNA with corresponding cryo-EM 

reconstructions at 3.4 ̊A and 3.0 ̊A resolution, respecti v ely. Black model on panel (A) and grey on panel (B) represent deposited coordinates whereas porcine 
structure with sequence re-assigned using doubleHelix is depicted in red. Aligned sequences and secondary structures of the rabbit and porcine models are 
presented on panel ( C ). Although the register shift in deposited porcine structure preserves most of the base-pairs (green and b lue boxes), se v eral of them 

are visible as clear density-fit outliers (bases in red rectangles and labelled on panel A). There are also multiple secondary structure violations (shown in 
orange). Secondary structur e pr esented on panel (C) was identified from the corr ected model using ClaRNA. The figur e was pr epar ed using ChimeraX 

( 52 ) and R-chie w e bserver ( 53 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

available (GCF 900475245 and GCF 900475245) each con-
taining roughly 100 tRNA, rRNA, and ncRNA sequences.

In the RNA sequence sets doubleHelix identified two,
different 5S genes (96% sequence identity), both very re-
liable hits with E -value below 1e-20 (see Figure 7 A). One
of the sequences, howe v er, scored visib ly better that the
other (7e-25 versus 4e-21 for NC 007795.1 rrna 7 and
NC 007795.1 rrna 6 respecti v el y), w hich has been previ-
ously shown to be a good evidence for a better fit to the
data for protein models ( 28 ). The deposited 5S model was
assigned the sequence variant with worse E-value, which re-
sulted in the map-model fit outliers mentioned above (Fig-
ure 8 A). The model, after re-assigning the 5S sequence
variant identified with better E-value and subsequent re-
strained refinement with REFMAC5 and PDB REDO
shows much better fit to the map (Figure 8 B). The new
base identities are also more favourable for the formation
of canonical base-pairs in the model (Figure 8 C). The fi-
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Figure 6. Corresponding fragments of Thermus thermophilus 28S ribosomal subunit crystal structures used for the sequence identification and assignment 
benchmarks. Two models with randomised rRNA sequence were generated based on crystal structures determined at a resolution of 2.8 Å (PDB entry 2uub, 
panels A and B ) and 3.3 ̊A (PDB entry 6mpi, panels C and D ). The panels depict residue range 1262–1273 with corresponding combined 2mFo-DFc (grey) 
and difference mFo-DFc (red / green) maximum likelihood maps contoured at 2 � and 3 � le v els respecti v ely; as deposited (A, C) and after randomising 
a tomic coordina tes and muta ting 90% of nucleobases (B, D, see Materials and Methods for details). Both deposited and randomised structures were 
automatically refined using the PDB REDO w e b server. 
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al model of complete ribosome, after correcting tracing 

ssues in the two protein chains (L4 and L18) and the 
S chain sequence refines with clearly better scores; R- 
ork / R-fr ee r educes to 0.195 / 0.237 (from 0.202 / 0.247) and
lashscore to 5 (from 11). The additional base-pairs, vi- 
ually better map-to-model fit and reduced global model- 
uality scores together provide good evidence of improved 

greement of the corrected model with the experimental 
ata. 

ONCLUSIONS 

equence assignment is a key step of macromolecular model 
uilding that may lead to difficult to identify errors af- 
ecting structur e interpr etation. Ne v ertheless, it has been 

hown that protein models deposited in the PDB, despite 
 xpensi v e model validation efforts, contain many register- 
hift errors ( 16 , 20 , 57 ). Validation and assignment of nucleic
cid sequences presents a particular challenge compared to 

roteins; the models are usually poorly resolved in cryo- 
M and MX maps and available sequence-information is in 

ractice limited to two nucleobase-types. Moreover, valida- 
ion of nucleic acid models addresses predominantly back- 
one conforma tions tha t ar e rar ely affected by nucleobase- 
equence assignment issues. In consequence, the reliability 

f availab le, e xperimentally determined nucleic acid models 
s very difficult to assess. This may result in unintended error 
ropagation, where a newly deposited model contains an er- 
or inherited from an earlier one used for model building. 
rrors can also detrimentally affect efforts of bioinformati- 
ians working on large-scale structural analyses or structure 
rediction methods. 
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Figure 7. Performance of ( A ) sequence-identification and ( B ) sequence-assignment for fragments selected at random from two MX ribosomal RNA models 
determined at a resolution of 2.8 ̊A (PDB entry 2uub) and 3.3 ̊A (PDB entry 6mpi). The random fragments used for sequence identification and assignment 
had 50 and 20 nucleic acids, respecti v ely. The continuous curves are logistic regression estimates of a probability that an identified sequence will have at 
least 90% sequence identity to the target sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Her e, I pr esented doubleHelix ; a new program for a com-
prehensi v e assignment, identification, and validation of nu-
cleic acid sequences in cryo-EM and MX. I show that the
a pproach, w hich relies on a neural-network base-type clas-
sifier, can successfully identify and assign sequences of cryo-
EM model fragments at local resolution as low as 5 Å .
I also show that base-pairing information, deri v ed from
backbone-geometry, clearly improves the program’s per-
formance at lower resolutions but is not essential. This
is particularly important for large nucleic acid structures
with very low content of paired bases; for example the try-
panosomal mitochondrial ribosome ( 58 ). 

Nucleic acid model building in cryo-EM and MX usually
begins with tracing a ribose-phosphate backbone, which is
then assigned to a target sequence. Although the former
step can be addressed by se v eral fully automated and in-
teracti v e tools, the sequence assignment remains an open
issue. Popular crystal structure building programs and mod-
ern, AI-based EM model building tools (e.g. DeepTracer
or ModelAngelo) usually produce intermediate models that
need to be completed and partially assigned to the target se-
quence using interacti v e software ( 14 , 15 ). The doubleHelix
pr ogram should pr ove useful in this model building step. It
can be used for assigning nucleic acid model fragments to
the target sequence after each round of model rebuilding
(and refinement in case of MX). It can help a user identify
model connectivity and make decisions about consecutive
modelling steps. Particularly important for this purpose is
the sequence-assignment score provided by doubleHelix (p-
value) that can help assessing local correctness of interme-
diate models. 

The doubleHelix software can be also used for generat-
ing base-pairing restraints ready-to-use with the most pop-
ular cryo-EM and MX model-building and refinement tools
(REFMAC5, PHENIX, COOT, ISOLDE). I have shown
that the approach can successfully identify 91% of canon-
ical base-pairs with 98% precision without relying on base
conformation or identity. This may be particularly useful
in early stages of the model building process as available
base-pairing restr aints gener ation a pproaches are strictl y
dependent on base-identities and the detection of hydrogen-
bonding patterns that r equir es accurate relati v e positioning
of paired-bases (LibG ( 59 ), Phenix suite ( 60 )). An exception
here is a pipeline implemented in PDB REDO ( 61 ) relying
on base-pair assignment by DSSR suite, which is by design
less sensiti v e to the structure distortions ( 62 ). 

The presented doubleHelix benchmarks re v ealed a plausi-
ble sequence-register error in an expansion segment ES7a of
a mammalian ribosome model deposited in the PDB (PDB
entry 3j7q / EMDB entry EMD-2650). Expansion segments
(ES) ar e pr esent only in eukaryotic ribosomes and exhibit
a surprising le v el of variability between different organ-
isms. Ne v ertheless, the function of ES remains poorly un-
derstood, which makes them an important r esear ch tar-
get ( 63 ). Ribosomes are usuall y highl y conserved across all
kingdoms of li v e and ribosome models already available in
the PDB can be often used to greatly simplify model build-
ing and refinement process of newly determined structures.
The high variability of the ES at a structural and sequence
le v el makes them one of the few rRNA regions that require
in-depth modelling. Not surprisingly, this results in spo-
radic errors, which may hinder efforts aimed at understand-
ing ES function. The problem is even more important for
newly determined nucleic-acid complex structures for which
at least partial models that could be used for model build-
ing are not available in the PDB. This makes the doubleHe-
lix progr am particular ly useful in structure determination
using cryo-EM and MX as a reliable tool for nucleic-acid
model sequence assignment and validation. 

To facilitate the use of doubleHelix for model validation,
it has been incorporated into a previously released, open-
source sequence-assignment validation tool c hec kMySe-
quence that can now process complete protein-nucleic acid
complexes. The method enables a conceptually simple and
fully automated detection of the most common sequence
assignment issues in models of proteins, RNA, DNA,
and their complexes that include register-shifts, sequence
mismatches (single-residue differences between model and
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Figure 8. Fragment of 5S rRNA model from a crystal structure of large ribosomal subunit of S. aureus refined at 3.5 Å resolution. High negati v e (red) 
and positi v e (gr een) differ ence density map values near Guanine Y / 87 and Cytosine Y / 86 correspond to excess and missing atoms in the model ( A ). 
After re-assigning the model to a sequence of different 5S gene variant and subsequent r estrained r efinement in REFMAC5 and PDB REDO map-model 
fit clearly improves ( B ). The new sequence also clearly improves base-pairing pattern of the model ( C ). For clarity, only a sequence fragment including 
the stem loop depicted in panels (A, B) is shown (highlighted with a red box). Most sequence mismatches between the two 5S sequence variants can be 
corrected by introducing a gap to the alignment (shown as a grey box) that corresponds to a single base register-shift identified by c hec kMySequence . 
Maximum likelihood combined 2mFo-DFc and difference mFo-DFc maps on panels (A, B) are contoured at 2 � and 3 � le v el, respecti v ely. Secondary 
structur e pr esented on panel (C) was identified in the corrected model using ClaRNA. The figure was pr epar ed using Pymol ( 31 ) and R-chie w e bserver 
( 53 ). 
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arget sequence), problems with residue numbering (e.g. 
ontinuous residue numbering ignoring parts of a model 
hat were not traced). With an example of bacterial ribo- 
ome crystal structure, I show that the c hec kMySequence 
an successfully identify errors in both protein and nu- 
leic acid components of complex structur es, r esulting from 

odel tracing issues and errors in r efer ence sequences that 
ould be otherwise very difficult to identify. Owing to its 
erformance and full automation, c hec kMySequence is a p- 
licable to the analysis of very large models. For example, 
alidation of a complete cryo-EM structures of 80S ribo- 
ome at 3.4 Å resolution discussed in this work, with 48 

hains and over 11 000 protein and nucleic acid residues 
akes less than six minutes on a laptop. 
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DA T A A V AILABILITY 

The doubleHelix program source code and installation in-
structions are available at https://gitlab.com/gchojnowski/
doub lehelix . The doub leHelix sequence assignment algo-
rithm has been added to the c hec kMySequence pro gram
to enab le comprehensi v e validation of sequence assign-
ment in the models of protein-nucleic acid complexes.
The updated method is available at https://gitlab.com/
gchojno wski/checkm ysequence . Corrected models of mam-
malian and bacterial ribosome structures presented in
this work are available at https://doi.org/10.5281/zenodo.
7650444 . 
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