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Cross-slip of screw dislocations in crystalline solids is a stress-driven thermally activated
process essential to many phenomena during plastic deformation, including dislocation
pattern formation, strain hardening, and dynamic recovery. Molecular dynamics (MD)
simulation has played an important role in determining the microscopic mechanisms of
cross-slip. However, due to its limited timescale, MD can only predict cross-slip rates
in high-stress or high-temperature conditions. The transition state theory can predict
the cross-slip rate over a broad range of stress and temperature conditions, but its
predictions have been found to be several orders of magnitude too low in comparison
to MD results. This discrepancy can be expressed as an anomalously large activation
entropy whose physical origin remains unclear. Here, we resolve this discrepancy by
showing that the large activation entropy results from anharmonic effects, including
thermal softening, thermal expansion, and soft vibrational modes of the dislocation.
We expect these anharmonic effects to be significant in a wide range of stress-driven
thermally activated processes in solids.
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Dislocation slip is the primary source of plastic deformation in crystalline solids. Cross-
slip occurs when a screw dislocation changes its slip plane (Fig. 1A). This stress-driven,
thermally activated process is critical in creating dislocation patterns (1) and bypassing
obstacles (2, 3), which leads to strain hardening and dynamic recovery (4–6) during
plastic deformation. It has long been challenging to accurately predict the cross-slip rate
as a function of stress and temperature. Many experimental (7, 8) and theoretical (9, 10)
analyses have been performed to determine the activation parameters for cross-slip based
on the continuum theory of dislocations. However, the applicability of the continuum
theory is questionable (11) since the changes in dislocation core structure during cross-
slip can be confined to only a few lattice spacings. Fully atomistic models are needed
to uncover the fundamental physical mechanisms of cross-slip. Unfortunately, direct
molecular dynamics (MD) simulation has a limited timescale (typically less than 100 ns),
so it is applicable only when cross-slip occurs at a high rate, i.e., under a high-stress or
high-temperature condition (12, 13).

The transition state theory (TST), combined with minimum energy paths (MEP)
calculations, provides a theoretical framework to predict the rate of thermally activated
processes in solids over a wide range of stress and temperature conditions (14–16). For a
screw dislocation segment of length L, the cross-slip rate as a function of temperature T
under applied stress tensor �app (Fig. 1B) can be written as

r(T, �app, L) = �(L) exp
[
−
Hc(�app)
kBT

]
, [1]

where Hc is the activation enthalpy obtained from MEP calculations, and kB is the
Boltzmann constant. The rate prefactor �(L) is proportional to the dislocation length L
and can be written as �(L) = �e L/b, where �e is an effective attempt frequency, and b
is the magnitude of the dislocation Burgers vector and hence the smallest repeat distance
along the dislocation. In cross-slip models used in discrete dislocation dynamics (DDD)
simulations, the rate prefactor is linked to the vibrational frequency of the dislocation
line and is commonly expressed as �(L) = �D L/L0, where �D ∼ 1013s−1 is the Debye
frequency, and L0 = 1 μm is a reference length (17, 18). Given that the reported
activation enthalpy Hc for the cross-slip in Cu is in the range of 0.5–3 eV (7–9, 19),
together with the rate prefactor estimates above, cross-slip is not expected to occur in
direct MD simulations except at very high temperatures or stresses.
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Fig. 1. Discrepancy between MD rates and TST predictions. (A) Simulation cell (20[11̄0] × 20[111] × 10[1̄1̄2]) with a screw dislocation along the x-direction,
visualized by OVITO (26). Atoms are colored according to their centrosymmetric parameter (CSP), given an fcc crystal structure (12 neighbors). The atoms with
CSP > 1 are extracted to visualize the dislocation core structure. The screw dislocation changes the slip plane from (111) to (111̄) following the Freidel–Escaig
mechanism (27). The three Escaig–Schmid stresses components �app = (�ge , �cs , �ce) controlling the cross-slip process are applied on the two slip planes. The
cross-slipped dislocation moves along the cross-slip plane (blue arrow) if �cs is applied and finally annihilates at the free surface. (B) Converged minimum-energy
paths of cross-slip, calculated at zero stress �app = 0 and fixed applied stress �app = (−0.6,−0.8,0.8) GPa. The positive directions of the shear stresses are
marked as arrows in A. (C) Cross-slip rates at different temperatures obtained by MD simulations (solid line) and predicted by TST Eq. 1 (dashed line) under
fixed applied stress �app.

However, previous studies (10, 12, 13) have shown that cross-
slip occurs in direct MD simulations at a much higher rate than
expected (Fig. 1C ). This discrepancy has led to the suggestion
that the previous estimates of the rate prefactor are incorrect and
need to be multiplied by a factor of exp

[
Sc(�app)/kB

]
, where Sc

is a stress-dependent activation entropy whose physical origin has
remained elusive for dislocation cross-slip. It has been estimated
either through an empirical estimate based on the Meyer–Neldel
rule (13) or simplified line tension models (20) but not from
fully atomistic models due to numerical difficulties (10). The
anomalous activation entropy has also been reported in atomistic
simulations of dislocation nucleation (21, 22) and dislocation
motion (23, 24). The unknown origin of the activation entropy
has even raised doubts about whether TST is applicable in certain
thermally activated dislocation processes (23, 25).

This work provides a systematic and fully atomistic approach
to resolve the discrepancy in the cross-slip rates and uncover
the physical origin of the anomalously large activation entropy.
We carry out high-throughput minimum-energy paths (MEP)

calculations to map out the stress dependence of the activation
enthalpyHc(�app). The rate prefactor is determined from the har-
monic transition state theory (HTST), with essential corrections
applied to soft vibrational modes of the dislocation. Our approach
reveals that in order to resolve the rate discrepancy between MD
and TST predictions, anharmonic effects of thermal softening
and thermal expansion must be appropriately considered. These
effects cause the solid to experience more significant shear and
volumetric deformations when temperature increases at constant
applied stress and cause a pronounced drop in the cross-slip
activation barrier, giving rise to the activation entropy Sc. We find
that Sc is more pronounced at higher stress, contrary to previous
estimates (13) based on the Meyer–Neldel rule (28). This work
demonstrates the applicability of HTST (after corrections) to
dislocation cross-slip and provides a quantitative approach to
predict its rate and activation entropy. The significant activation
entropy is expected to influence the rate of a wide range of
stress-driven thermally activated processes in solids, such as phase
transformation and twin boundary migration.
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Results

We use face-centered cubic (FCC) nickel as an example to
investigate dislocation cross-slip behaviors. The interatomic force
field is modeled by the embedded-atom model (EAM) “vnih”
(29) because its stacking fault energy is in good agreement with
both experimental measurements and first-principle calculations
(11, 30). The simulation cell is large enough (N = 78,400 atoms)
to avoid boundary effects on dislocation cross-slip rates. A screw
dislocation along the x-direction passes through the center of the
simulation cell. The cell is periodic in x- and z- directions and has
free surfaces on the y-direction. Shear stresses �app = (�g

e , �c
s , �c

e)
are applied to provide driving forces for cross-slip. As shown in
Fig. 1A, the applied stress contains Escaig (e) and Schmid (s)
components on the original slip (g) plane (111) and the cross-
slip (c) plane (111̄) (Materials and Methods). The Schmid stress
on the original slip plane �g

s is set to zero so that the dislocation
does not move prior to cross-slip (31). The effect of this stress
component can be accounted for by introducing an additional
term in the effective stress as discussed in refs. 11, 13, 31, and 32.

MD simulations of cross-slip are carried out using the
LAMMPS package (33). The initial configuration is heated up
to the target temperature T using the Nosé-Hoover thermostat
(NVT ensemble) while keeping a constant applied stress at
�app = (−0.6,−0.8, 0.8) GPa by adjusting the strain. After
equilibration, the simulation continues at constant T and the
corresponding stress until the dislocation cross-slips (at time tcs)
and annihilates at the surface (Materials and Methods). The MD
simulation is repeated 32 times at each temperature. The cross-
slip rate rMD, estimated as the inverse of the average cross-slip
time t̄cs, is plotted against the temperature in Fig. 1C. The
temperature dependence of the cross-slip rate is seen to follow
the Arrhenius law,

rMD = �MD exp
[
−
HMD

c
kBT

]
, [2]

where HMD
c = 0.60 eV and �MD = 2.18× 1016 s−1 are

parameters obtained from fitting the MD data.
We proceed to analyze the cross-slip rates by TST. The

activation enthalpy Hc represents the energy difference between
the transition state (i.e., saddle point on the potential energy
landscape) and the initial state of the thermally activated cross-
slip. To find the transition state under the applied stress �app, we
first determine the minimum-energy path (MEP) using the free-
end string method (34, 35). Given the MEP, the exact transition
state (saddle point) is then obtained by the dimer method (36)
(Materials and Methods). Fig. 1B illustrates two converged MEPs
with and without the applied stress �app corresponding to the MD
simulations, respectively. As expected, the applied stress lowers
the activation enthalpy of cross-slip. Furthermore, the activation
enthalpy of cross-slip under the applied stress, Hc = 0.60 eV,
perfectly matches the value HMD

c extracted from the MD
simulations (Fig. 1C ). On the other hand, if we adopt the
commonly used estimate for the frequency prefactor (17, 18),
�(L) = �D L/L0, for the dislocation length (L ≈ 10 nm)
considered here, we would arrive at �(L) ≈ 1011 s−1, which is
more than five orders of magnitude lower than MD predictions
(Fig. 1C ). This paper’s primary purpose is to identify the physical
origin of this discrepancy.

To go beyond a heuristic estimate, we use the harmonic
transition state theory (HTST) to compute the rate prefactor
more rigorously. In HTST, the rate prefactor is expressed as
follows (14):

�HTST =
∏3N−3

i=1 �Ai∏3N−4
j=1 �Sj

, [3]

where �Ai and �Si are frequencies of the eigenmodes of the initial
state (A) and the transition state (S), respectively. The three rigid-
body translational modes (with zero frequency) are excluded from
the product in both states A and S. For state S, the mode along the
reaction coordinate (with imaginary frequency) is also excluded.
Although HTST is often employed to study thermally activated
processes in solids at moderately low temperatures, it has never
been successfully applied to dislocation cross-slip due to several
challenges.

First, a direct implementation of Eq. 3 requires diagonal-
izing the Hessian matrix of the system to obtain the eigen-
frequencies (37) (for both states A and S). The Hessian matrix
is quite large (size 3N × 3N ), and a full diagonalization is
computationally very expensive. In this work, we take advantage
of the fact that the product of eigen-frequencies can be obtained
from the determinant of the Hessian matrix, which can be
computed much more efficiently (e.g., using LU decomposition)
than to obtain all the eigen-frequencies individually. To avoid
the determinant becoming zero due to the rigid-body translation
modes, we slightly perturb the Hessian matrix to impart a small
but nonzero frequency to these modes (Materials and Methods).

Second, the harmonic approximation is not valid at room
temperature or above for some of the soft vibrational modes. For
example, the saddle state S contains a constriction of the stacking
fault, which can be formed anywhere along the dislocation line.
Motion of this constriction along the dislocation line, i.e., the
so-called Goldstone mode, produces periodic energy variations
with an amplitude of around 20 meV (10), even lower than the
thermal energy. In this case, approximating the periodic potential
landscape by a quadratic function leads to a large error in the
partition function. Here, we account for these soft vibrational
modes by numerically evaluating the partition function in their
eigen-directions and introduce a correction factor (�̃A/�̃S) to the
cross-slip rate prediction, where �̃S is the correction factor for the
Goldstone mode in the saddle state S and �̃A is the correction
factor for the uniform glide mode of the screw dislocation on its
slip plane in state A (SI Appendix, Text I).

Using the above two methods, we can now evaluate the HTST-
based rate prefactor, �(L) = �HTST · �̃A/�̃S. For the stress
condition considered above, �(L) = 4.56× 1012 s−1, which,
although higher than previous estimates, is still much lower than
�MD. As a result, the predicted cross-slip rate (black line) is still
3 to 4 orders of magnitude lower than the MD results (Fig. 2B).

To resolve the remaining discrepancy, we note that the
activation enthalpy Hc at a given stress �app is often computed as
an activation energy Ec at a given strain " corresponding to stress
�app. To make this point more explicit, we express the cross-slip
rate as a function of strain " and temperature T ,

rHTST(", T ) = �HTST
�̃A

�̃S
exp

[
−
Ec(")
kBT

]
. [4]

For consistency, " should be the strain "T ≡ "(�app, T )
corresponding to stress �app at temperature T . However, most
of the MEP methods, which are based on energy minimization,
are performed at zero temperature. Let us define "0 ≡ "(�app, 0)
as the strain corresponding to stress �app at zero temperature. In
the above, we have reported that Ec("0) = Hc(�app) = 0.60 eV.
From Eq. 4, it can be clearly seen that an inconsistency would
arise if " = "T is used on the left-hand side and " = "0 is used
on the right hand side.
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A B

Fig. 2. Activation entropy due to the thermal strain. (A) Activated energy calculated at zero-temperature strain "0 and corresponding finite-temperature strain
"T . The inset diagram schematically shows the thermal strain caused by temperature increase with the same applied stress �app. (B) Estimated rates using
HTST (Eq. 4) with the activation energy and prefactor evaluated at "0 and "T . The benchmark average MD rates are shown as the stars (see SI Appendix, Text VII
for the statistical analysis of the MD simulations).

While the difference between "T and "0 has been implicitly
assumed to be small and often neglected, here, we show that it
has a pronounced effect on the predicted cross-slip rate. If the
applied stress �app remains constant as temperature is increased,
the strain "T increases in both the deviatoric and volumetric
components, as sketched in the Inset of Fig. 2A. Fig. 2A shows
that the computed activation energy Ec("T ) decreases linearly
with temperature, i.e., Ec("T ) = Ec("0) − T · Sc(�app), where
Sc(�app) = 7.7 kB is the negative slope of the Ec-T curve and can
be called an activation entropy. Inserting this expression of Ec("T )
into Eq. 4, we can express the HTST-based rate prediction as

rHTST("T , T )

= �HTST
�̃A

�̃S
exp

[
Sc(�app)

kB

]
exp

[
−
Ec("0)
kBT

]
. [5]

The new rate prefactor, �(L) = �HTST·(�̃A/�̃S)·exp(Sc/kB) =
2.71× 1016 s−1, is in very good agreement with �MD. Fig. 2B
shows that the resulting HTST-based predictions of cross-slip
rates now agree well with MD results.

Discussion

In the example considered above, we observe that the large
discrepancy between previous TST-based predictions of cross-
slip rate and MD results is mostly due to the change of
strain with increasing temperature at a constant applied stress.
Due to the thermal softening effect, the same shear stress will
result in greater shear strain at higher temperature. Due to the
thermal expansion effect, the volumetric strain also increases with
increasing temperature. We have repeated the MD simulations
and HTST calculations of cross-slip rates at two more applied
stress conditions, and the results support the same conclusions
(SI Appendix Text II).

To examine how the activation entropy depends on the
applied stress, we compute Sc at 27 different stress conditions
(for �g

e = 0,−0.4,−0.8 GPa, �c
s = 0,−0.4,−0.8 GPa, and

�c
e = 0, 0.4, 0.8 GPa, respectively). We have previously shown

that the activation enthalpy Hc(�app) as a function of these
three shear stress components can be expressed in terms of a
one-dimension function of an effective stress (31), defined as
�∗ = Cg

e �
g
e +C c

e�c
e + (Dc

s�c
s )

2, where Cg
e , C c

e and Dc
s are fitting

constants. Fig. 3 shows that the activation entropy Sc generally
increases with the effective stress �∗, although it is not a function
of �∗ alone (SI Appendix Text II).

The empirical Meyer–Neldel (MN) compensation rule, Sc =
Hc/Tm, where Tm is the melting temperature, is often used
to estimate the activation entropy (13). Because the cross-
slip activation enthalpy Hc(�app) is a monotonically decreasing
function of �∗, the MN rule would predict a decreasing Sc with
increasing �∗, which is opposite to the trend shown in Fig. 3.
Our results show that the physics behind the MN rule (38),
if present, plays a minor role for the rate of dislocation cross-
slip. Fig. 3 clearly shows that the activation entropy Sc due to

Fig. 3. Stress-dependent activation entropy Sc . Solid dots represent the
activation entropy of 27 applied Escaig–Schmid stress conditions from MEP
calculations using the same method as Fig. 2A. The dashed lines are the
estimated activation entropy from Eq. 6.
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anharmonic effects becomes smaller at lower stress; in fact Sc
vanishes in the zero stress limit, as we will show below. This
may be a reason for neglecting the activation entropy effects
in previous studies of dislocation cross-slip (10). Under the
temperature and stress conditions considered here, our results
show that the quasi-harmonic approximation (QHA) presented
here provides a good description of dislocation cross-slip in FCC
Ni, as long as the thermal expansion/softening effects and the
soft-mode corrections are appropriately accounted for. At even
higher temperatures, or for other materials and processes, QHA
may be insufficient and other anharmonic effects may need to be
considered (39–42).

We now seek a close-form expression for Sc as a function of
stress, which will not only reveal more insight into the physical
nature of the activation entropy but also provide a needed tool
for predicting the cross-slip rate in mesoscale models such as
discrete dislocation dynamics (18, 43). We begin by defining �̃
as the stress of the crystal at zero temperature when subjected to
the strain "T , i.e., "T = "(�̃, 0) = "(�app, T ). �̃ is the stress
in the simulation cell when performing MEP calculations for
Ec("T ); hence, there is a one-to-one correspondence between
"T and �̃. At temperature T , the stress of the crystal subjected
to strain "T is simply �app. But if the temperature is set to
zero with the strain fixed at "T , the stress value changes, i.e.,
�̃ = �app + �̂I+ �ex, where �̂ is a hydrostatic (tensile) stress and
�ex is an excess shear stress. We performed 500 MEP calculations
of cross-slip at different stress �̃ and fit the activation energy
H̃c(�̃) = Ec("T ) results as a function of �̃ (SI Appendix Text
IV). The functional form of H̃c(�̃) is a generalization of the
Hc(�app) function established in our previous work (31) and
reduces to Hc(�app) when �̂ = 0. Given the analytic function
H̃c(�̃), we obtain the following expression for the activation
entropy (SI Appendix Text V)

Sc = −K �V

(
∂H̃c

∂�̂

)
+

1
�

(
∂�
∂T

) (
∂H̃c

∂�

)
· � , [6]

where K is bulk modulus, �V is volumetric thermal expansion
coefficient, and � is shear modulus. Fig. 3 shows that Eq. 6
agrees very well with the activation entropy computed above.
The two terms in Eq. 6 can be identified as the contributions
from thermal expansion and thermal softening effects to the
activation entropy. Both terms vanish at the zero-stress limit. If
we consider a low-stress case where the local �e

g is only 50 MPa,
the estimated activation entropy Sc = 0.6 kB and the discrepancy
between the Heuristic estimation 1× 1011 s−1 and 5× 1012 s−1

becomes much smaller. However, the local stress on a dislocation
is the superposition of the applied stress and the stress field of
all other dislocations. Therefore, the local stress on the screw
dislocation can be high, leading to a large activation entropy,
even when the applied stress is low.

Eq. 6, combined with Eq. 5, leads to a theoretical model that
accurately predicts the cross-slip rate as a function of applied
stress. It can serve as an essential input for mesoscale models such
as discrete dislocation dynamics (44). Because Eq. 6 expresses
Sc in terms of fundamental materials parameters and stress
dependence of activation enthalpy, it is generally applicable to
all stress-driven thermally activated processes in solids, such as
dislocation motion in bcc metals, phase transformation, and
twinning. Although the rate theory (Eqs. 5 and 6) we present
here is only benchmarked against direct MD simulations at high
stress/temperature conditions, it can predict the cross-slip rate
over a wide range of stress and temperature conditions.

In conclusion, we have resolved a long-standing discrepancy
between TST and direct MD predictions of cross-slip rate and
show that the anomalously large activation entropy is ultimately
caused by the increasing shear and volumetric strain with increas-
ing temperature at constant applied stress. These anharmonic
effects, i.e., thermal softening and thermal expansion, although
previously ignored, can lead to orders-of-magnitude changes in
the prediction of the cross-slip rate. We obtain an analytical
expression for the activation entropy, which not only provides
accurate predictions of cross-slip rate for mesoscale models but
also shows that our findings are generally applicable to all stress-
driven thermally activated processes in solids.

Materials and Methods
Prepare a Single Screw Dislocation under Applied Stress. The dislocation
structure is similar to that of our previous works (11, 31). We start with a perfect
fcc nickel crystal (lattice constant a0 = 3.52 Å) with simulation box dimension
of 20[11̄0] × 20[111] × 10[1̄1̄2]. 10% of the atoms are removed on each
side of the y-direction to create free surfaces, resulting in 78,400 atoms in the
simulation cell. A single straight left-hand screw dislocation is created at the
center of the yz-plane with Burger’s vector b = a0[1̄10]/2 along the positive
x-direction� = [11̄0]. The initial configuration is obtained by splitting the screw
dislocation into two Shockley partial dislocations (orange arrows in Fig. 1A) with
stacking fault on the gliding plane, i.e., the (111) plane (31).

We perform energy minimization with applied shear stresses �app =

(�g
e , �c

s , �c
e) to the dislocation structure. The Cartesian stress tensor can be

calculated from the applied stress as

�g
s = �xy , �g

e = �yz ,

�c
s =

2
√

2�xz − �xy
3

, [7]

�c
e =

7�yz + 2
√

2
(
�zz − �yy

)
9

,

where �zz = −�yy is enforced to enable a one-on-one mapping between the
Cartesian stress and the Escaig–Schmid stress components, and �xy is set to be
zero to avoid the screw dislocation moving on the original slip plane.

On the one hand, due to free surfaces in the y-direction, stress components
(�xy , �yy , �yz) are applied by external forces fy = (A/Nxz)(�xy , �yy , �yz) to
the first layer of atoms (Nxz = 1,600 atoms in total) on the free surfaces,
and A = HxHz is the area of the surface. On the other hand, due to the
periodic boundary condition on x- and z- directions, the stress components
(�xx , �zz , �xz) are controlled by adjusting the components (Hx , Hz , Hxz) in the
simulation cell iteratively until the stresses are converged. The simulation cell
matrix (cell vectors) H = [c1|c2|c3] is defined as

H =

Hx Hxy Hxz
0 Hy Hyz
0 0 Hz

 . [8]

The stress of the dislocation configuration is calculated by averaging the
atomic stress (45) of all the atoms 20 Å below the free surfaces to avoid the
surface effect. The convergence tolerance of the stress is±0.05 MPa.

Minimum-Energy Path (MEP) Search. To perform MEP search, we first prepare
the initial stateAbefore the transition state and the final stateBafter the transition
state. The converged metastable dislocation structure from the previous section
is used as the initial state A. The final state B is prepared with the same full
screw dislocation structure as state A, but with the middle half of the dislocation
dissociated on the cross-slip plane (111̄), while the rest of the dislocation still
dissociates on (111) (31). Energy minimization is then performed to obtain
the final state B under the same applied shear stress �app. In order to obtain
a better initial guess and help with the convergence of the MEP search, the
conjugate-gradient energy minimization on the final state B is performed only
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for five iterations so that the cross-slipped dislocation does not move toward
the free surface and annihilate, i.e., the state B is not too far away from the
transition state. Starting from a linear interpolation (32 image copies) between
states A and B as the initial guess, the MEP search is performed using the
free-end string method (34) with reparameterization and trimming (35). After
the string method is converged, we use the dimer method (36) to obtain the
exact transition state S. Starting from the two images closest to the maximum
value as the initial dimer, we iteratively shrink the dimer until the distance
is below 1× 10−7 Å. The external forces fy and simulation cell matrix H
from state A are applied during all the energy minimization steps in state-B
preparation, MEP search, and dimer method to ensure the same applied stress
condition �app.

Molecular Dynamics (MD) Simulation. MD simulations of dislocation cross-
slip are performed using the LAMMPS package (33). To prepare the dislocation
structure at finite temperature T under the applied stress condition �app, we
start from the state Awith zero applied stress. The system is gradually heated up
to the target temperature T and equilibrated for 10 ps using the Nosé–Hoover
thermostat (46) with zero stress applied, to avoid premature cross-slip. The
configuration is then gradually loaded to the target stress �app and further
equilibrated for 2 ps. The method to control the stress is the same as in the
previous sections. After the system is equilibrated, we apply a small random
perturbation (uniform distribution with the magnitude of±1× 10−4 Å·s−1)
to the initial velocity before continuing the MD simulation to avoid repeated
MD trajectories. The MD simulation is continued until cross-slip occurs (sudden
release of the applied stress) and the cross-slip time tcs is recorded. A detailed
discussion of the statistical analysis is provided in SI Appendix Text VII.

Harmonic Vibrational Frequencies. The product of the harmonic vibrational
frequencies in Eq. 4 is obtained from the Hessian matrices of the initial state
A (KA) and the transition state S (KS ). The standard approach to obtain the

prefactor is to diagonalize KA and KS . However, for our system (N = 78,400),
the Hessian matrices have a size of 3N × 3N = 235,200 × 235,200, which
requires significant computational load. Instead, we can calculate the products
of the eigen-frequencies from the determinant if and only if K is nonsingular.

To avoid the nonsigularity from the three rigid-body translational modes
(eigen-frequency � = 0), we couple three soft harmonic spring forces k to
the x-, y-, and z-directions on one atom (atom #1) in both states A and S. This
is equivalent to modifying the first three diagonal elements of the Hessian
matrix K,

K11 → K11 + k; K22 → K22 + k; K33 → K33 + k. [9]

We then obtain the product of the eigen-frequencies by calculating the
determinant of the modified Hessian matrix using the sparse LU decomposition
in MATLAB. The negative eigenvalue of the Hessian matrix at state S is obtained
by finding the minimum eigenvalue using the “eigs” method in MATLAB. The
soft spring frequencies are selected to be k = 1× 10−4 eV/Å, which will be
canceled out while calculating the prefactor �HTST from taking the ratio between
the determinant of state S and stateA. A detailed proof of the method is provided
in SI Appendix Text VI.

Data, Materials, and Software Availability. Cross-slip simulation data and
code have been deposited in MD++ (https://gitlab.com/micronano_public/
MDpp) (47).
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