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Carboxypeptidase E (CPE) facilitates the conversion of
prohormones into mature hormones and is highly ex-
pressed in multiple neuroendocrine tissues. Carriers of
CPE mutations have elevated plasma proinsulin and de-
velop severe obesity and hyperglycemia. We aimed to de-
termine whether loss of Cpe in pancreatic b-cells disrupts
proinsulin processing and accelerates development of dia-
betes and obesity in mice. Pancreatic b-cell–specific Cpe
knockout mice (bCpeKO; Cpefl/fl x Ins1Cre/+) lack mature
insulin granules and have elevated proinsulin in plasma;
however, glucose-and KCl-stimulated insulin secretion in
bCpeKO islets remained intact. High-fat diet–fed bCpeKO
mice showedweight gain and glucose tolerance compara-
ble with those of Wt littermates. Notably, b-cell area was
increased in chow-fedbCpeKOmice andb-cell replication
was elevated in bCpeKO islets. Transcriptomic analysis of
bCpeKO b-cells revealed elevated glycolysis and Hif1a-
target gene expression. On high glucose challenge,b-cells
from bCpeKOmice showed reducedmitochondrialmem-
brane potential, increased reactive oxygen species, re-
duced MafA, and elevated Aldh1a3 transcript levels.
Following multiple low-dose streptozotocin injections,
bCpeKOmice had accelerated development of hypergly-
cemia with reduced b-cell insulin and Glut2 expression.
These findings suggest that Cpe and proper proinsulin
processing are critical in maintaining b-cell function dur-
ing the development of hyperglycemia.

Proinsulin is processed into mature insulin and C-peptide
by prohormone convertase (PC)1/3 and PC2 and carboxy-
peptidase E (CPE) (1–3) prior to secretion from pancreatic
b-cells. Failure of this process leads to insufficient mature
insulin release and onset of hyperglycemia (4–6) and has
been observed in diabetes pathogenesis (7,8).

Prohormone processing enzymes are highly expressed
in neuroendocrine cells, and subjects with mutations in
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mia induced by multiple low-dose streptozotocin injec-
tions is accelerated in bCpeKOmice.
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these genes often display cognitive impairments and obe-
sity. A CPE truncating mutation (c.76_98del) causes morbid
obesity and severe hyperglycemia (9), a CPE nonconserva-
tive missense mutation (c.847C>T) reduces enzymatic ac-
tivity associated with early-onset type 2 diabetes (10), and
homozygous nonsense CPE mutations (c.405C>A) cause
obesity and hypogonadotropic hypogonadism (11). Simi-
larly, Cpe whole-body knockout mice develop spontaneous
obesity and behavioral abnormalities (12), and Cpe mu-
tant mice (Cpefat/fat) are obese and infertile (13).

To understand the role of Cpe in b-cell function and glu-
cose homeostasis, we generated pancreatic b-cell–specific
Cpe knockout mice. We performed biochemical and top-
down proteomic analysis to evaluate hormone processing
patterns in b-cells. We also analyzed b-cell transcriptomic
profiles and performed live-cell imaging analysis to under-
stand whether deficiency of Cpe, and the increased compen-
satory production of proinsulin, leads to islet dysfunction
and dysglycemia. Finally, we tested whether the lack of Cpe
in b-cells increases susceptibility to diet- or secretory stress–
induced hyperglycemia in mice. Our model provides a use-
ful tool to understand the role of reduced prohormone
processing efficiency and increased (pro)insulin transla-
tion in b-cells during diabetes development and sheds
light on whether impaired prohormone processing in
b-cells is a cause of diabetes and obesity in subjects
with CPE mutations.

RESEARCH DESIGN AND METHODS

Human Pancreas Tissue
Paraffin-embedded pancreatic tissue sections were obtained
from the Network for Pancreatic Organ donors with
Diabetes (nPOD) and Alberta Diabetes Institute IsletCore
(Supplementary Table 1).

Mouse Studies
b-Cell–specific Cpe knockout (bCpeKO) and inducible b-cell–
specific Cpe knockout (ibCpeKO) mice were generated through
crossing the offspring of C57BL/6N-Cpetm1a(EUCOMM)Hmgu/Ieg
mice and Tg(CAG-flpo)1Afst mice with B6(Cg)-Ins1tm1.1(cre)Thor/J
or Tg(Pdx1-cre/Esr1) mice. In addition, Gt(ROSA)
26Sor tm4(ACTB-tdTomato,-EGFP)Luo reporter mice were bred with
bCpeKO mice for b-cell sorting and RNA sequencing. The
control mice used for biochemical, imaging, and metabolic ex-
periments are as follows: Ins1Cre/1;Cpefl/1 (bCpeHet) as well
as Ins11/1;Cpefl/fl or Ins11/1;Cpefl/1 (Wt). For diet studies,
8-week-old mice received either a low-fat diet (LFD) (10%
fat), or a high-fat diet (HFD) (45% fat; Research Diets). For
secretory stress studies, 10-week-old male mice received sa-
line or streptozotocin (STZ): multiple injections of low-dose
STZ (MLD-STZ) (35 mg/kg body wt i.p. daily for 5 days;
Sigma-Aldrich). Metabolic assays (such as intraperitoneal glu-
cose tolerance test (IPGTT), insulin tolerance test (ITT), and
body mass composition analysis) were performed in a blinded
fashion and have previously been described (14). For in vivo
b-cell proliferation studies, after tamoxifen-induced Cpe

deletion, a 60% fat diet (Research Diets) was given for
48 h (15) in combination with 5-ethynyl-2'-deoxyuridine
(40 mg/kg body wt i.p. injection twice daily, EdU; Toronto
Research Chemicals) (16). All studies were approved by
the Animal Care and Use Committee at the University of
British Columbia.

Islet Studies
Mouse islets were isolated and cultured as previously de-
scribed (14). For electron micrograph studies, freshly iso-
lated islets were fixed in 2% glutaraldehyde (pH 7.4) at
room temperature, shipped, processed, and imaged by the
Electron Microscopy Facility at McMaster University Health
Science Centre. PC1/3 and PC2 enzyme activity assays were
performed as previously described (17) with a Spectra-
Max M3 plate reader (Molecular Devices). For respirome-
try studies, mouse islets were dispersed and analyzed by
Seahorse XFe96 Analyzer (Agilent Technologies). For
analysis of insulin secretion dynamics, islets were incu-
bated in a perifusion system (Biorep Technologies) with
1.67 mmol/L glucose, 1.67 mmol/L glucose, and 16.7 mmol/L
glucose plus 30 mmol/L KCl Krebs-Ringer buffer sequentially.
Insulin concentrations in perifusates were analyzed with ro-
dent insulin (ALPCO) and proinsulin (Mercodia) ELISAs.
For measurement of glucose uptake, islets were precultured
in glucose-free media, dispersed with Accutase (Innovative
Cell Technologies), and treated with 2-NBDG (2-deoxy-2-
[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose; Invitro-
gen) for 5 min, prior to flow cytometry analysis.

For exocytosis studies, dispersed islet b-cells were patch
clamped in whole-cell voltage-clamp configuration with use
of a HEKA EPC 10 amplifier and PATCHMASTER software
(HEKA Electronik, Lambrecht, Germany) as previously de-
scribed (18). Exocytosis was monitored as increases in cell
capacitance, elicited by either a series of 500-ms membrane
depolarizations from �70 to 0 mV or increase in the dura-
tion of membrane depolarizations. For FACS-sorted b-cell
bulk-RNA sequencing experiments, freshly isolated islets
were dispersed and GFP1 live cells were collected with BD
FACSAria Cell Sorter for RNA isolation via an RNeasy Plus
Micro Kit (QIAGEN). After quality control analysis with an
Agilent 2100 Bioanalyzer, an RNA library was prepared with
use of the NeoPrep Library Prep system with TruSeq
Stranded mRNA kit (Illumina); RNA sequencing was per-
formed with Illumina NextSeq 500; reads were aligned with
TopHat to the reference genome of UCSC Genome Browser
mm10, assembled by Cufflinks; and a list of differentially ex-
pressed genes was generated via DESeq2. Gene set enrich-
ment analysis, network visualization, and volcano plot were
generated via Gene Set Enrichment Analysis (GSEA v4.2.3),
Cytoscape (v3.9.1), and EnhancedVolcano (v1.14.0) in RStu-
dio (v1.4.1717).

Top-down Proteomic Analysis
Islet pellets were homogenized in 8 mol/L urea lysis
buffer, reduced, alkylated, quenched, and clarified with
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tris(2-carboxyethyl)phosphine, iodoacetamide, and dithio-
threitol, before 3 kDa molecular weight cutoff filtration.
Samples were analyzed with a Waters nanoACQUITY UPLC
system with mobile phases consisting of 0.2% formic acid
in H2O and 0.2% formic acid in acetonitrile. For tandem
mass spectrometry analysis of proteins, the nanoACQUITY
UPLC system was coupled to a Thermo Scientific Orbitrap
Fusion Lumos mass spectrometer equipped with the FAIMS
Pro interface (19). Proteoform identification was performed
with TopPIC (v1.4). Downstream data analysis and quantifi-
cation were performed with use of MSstats (v4.0.1) and
TopPICR (v0.0.3) R packages.

Immunoblot Studies
Mouse islets were lysed in an NP-40–based buffer and ana-
lyzed through reducing or nonreducing Tricine–urea–SDS-
PAGE (20), and blotted with use of antibodies listed in
Supplementary Table 2, on a LI-COR Biosciences Odyssey
Imaging System. For analysis of insulin biosynthesis, islets
were preincubated in methionine-free RPMI medium for
90 min and then treated with L-azidohomoalaine (Invitro-
gen) and 5 or 25 mmol/L glucose Krebs-Ringer buffer for
90 min. Islets were lysed, click labeled with biotin-alkyne
(Invitrogen), and immunoprecipitated and the eluted pro-
teins were analyzed on a Tricine–urea–SDS-PAGE system.

Immunostaining and Image Analysis
Dispersed mouse islet cells were seeded on chamber slides
(ibidi or Thermo Fisher Scientific) overnight and cultured in
5 or 25 mmol/L glucose RPMI media for the indicated times.
For cell proliferation experiments, EdU was added during the
last 24 h of treatment, followed by click labeling and staining
(Invitrogen). TUNEL staining was performed according to
the manufacturer’s manual (Roche). For live-cell imaging ex-
periments, cells were labeled with CellROX, MitoSOX, tetra-
methylrhodamine methyl ester (TMRM) (Thermo Fisher
Scientific), and MitoTracker Green (MTG) (New England
Biolabs) and imaged with use of an SP5II laser scanning con-
focal microscope (Leica Microsystems). Cpd and proinsulin
costained b-cells were imaged on an SP8 X STED (STimu-
lated Emission Depletion) white light laser confocal imaging
system. b-Cell area was analyzed with immunohistochemis-
try staining against insulin with a BX61 microscope (Olym-
pus). All antibodies used are listed in Supplementary Table 2.
Image analyses were performed with ImageJ (21), QuPath,
ilastik, and CellProfiler pipelines.

Quantitative RT-PCR Experiments
Islet mRNA and DNA were isolated with PureLink RNA Micro
(Invitrogen) and QIAamp DNA Micro (QIAGEN) kits, and
cDNA was synthesized with a SuperScript VILO kit (Invi-
trogen). mRNA and DNA levels were analyzed with SYBR
Green–based quantitative real-time PCR (ViiA 7 Real-Time
PCR System; Applied Biosystems). Primer sequences are
listed in Supplementary Table 2.

Statistical Analysis
Statistical analyses were performed through GraphPad Prism
9 or R. After normality tests, data sets with normal distribu-
tion or with small sample numbers were analyzed using Stu-
dent t test or ANOVA followed by post hoc analysis. Data
with nonnormal distribution were analyzed with the
Wilcoxon rank sum test. Statistical significance is indicated
in the figures as follows: *P < 0.05. All data are presented
as mean ± SEM.

Data and Resource Availability
Data and reagents generated in the current study are avail-
able from the corresponding author on reasonable request.

RESULTS

Loss of Mature Insulin Granules and Elevated Plasma
Proinsulin in bCpeKO Mice
CPE is highly expressed in human and mouse islet endo-
crine cells (Fig. 1A and B). To study the roles of Cpe in
b-cells, we generated bCpeKO mice by crossing Ins1Cre/1

and Cpefl/fl mice (Fig. 1C–E). The deletion of Cpe in b-cells
leads to near-total loss of mature insulin granules (Fig. 1F)
and significantly elevated fasting plasma proinsulin-like im-
munoreactivity (Fig. 1G and H). As most immunoassays
likely cross-react with target peptide with various C- and
N-terminal extensions, we decided to analyze the propep-
tide repertoire with biochemical and proteomic approaches.

Permissive Peptide Processing in bCpeKO Islets
Proinsulin is first processed by PC1/3 to form split-32,33
proinsulin with overhanging basic residues. Cpe then re-
moves these basic residues to yield the des-31,32 proinsu-
lin intermediate, which is cleaved by PC2 (or PC1/3) to
produce mature insulin following trimming of the remain-
ing basic residues by Cpe (1–3). To study the impact of
b-cell Cpe deficiency on proinsulin processing, we ana-
lyzed proinsulin forms using a nonreducing SDS-PAGE
system. We found that higher-molecular-weight proinsulin
forms were increased in bCpeKO islets. The lower bands
are likely the combination of mature insulin and insulin
with basic residue extensions, as their molecular weights
are similar and may not be separated by electrophoresis.
(Fig. 2A). Similar to proinsulin, islet amyloid polypeptide
(IAPP) is also synthesized as a larger precursor, proIAPP,
and is processed by PC1/3, PC2, Cpe, and Pam to form
amidated IAPP (14,22–24). Nonamidated IAPP and inter-
mediate proIAPP (proIAPP1–48) forms are increased in
bCpeKO islets, although amidated IAPP levels appear com-
parable between Wt and bCpeKO islets (Fig. 2B). Proteo-
mic assessment confirmed that intact proinsulin levels are
increased in bCpeKO islets, while levels of the mature insu-
lin are reduced (Fig. 2C and D). Full-length proIAPP levels
are also increased, while levels of amidated mature IAPP
level are not reduced, in bCpeKO islets (Fig. 2E and F).

To determine whether Cpe deletion creates feedback
inhibition of peptide hormone maturation, we analyzed
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prohormone processing enzyme transcript and protein
levels. Expression of insulin, IAPP, and processing enzyme
transcripts are comparable between bCpeKO and Wt islets
(Fig. 2G). ProPC1/3 protein (87 kDa) levels are elevated, as
are PC2 and proSAAS (Fig. 2H and I); however, total islet
PC1/3-specific activity is not changed (Fig. 2J). PC2-specific
activity is reduced in bCpeKO mice (Fig. 2K), which may
occur through increased 7B2-mediated inhibition of PC2
activity (25). We also found that Cpe is not the only car-
boxypeptidase capable of processing peptide hormones in
b-cells. Despite near-complete recombination and deletion
of Cpe (Fig. 1C–E), mature insulin remains detectable, and
mature IAPP is expressed at levels similar to those of Wt
islets (Fig. 2B). Carboxypeptidase D (CPD) has been de-
tected in the Golgi network of rodent b-cells (26) and may
not be removed from immature insulin granules in condi-
tions such as cargo protein CCDC186 deficiency (27). CPD
is expressed in human islet b-cells (Fig. 2L). Increased pres-
ence of Cpd in proinsulin-containing organelles such as the
Golgi network or immature insulin granules may aid the
processing of prohormones in the absence of Cpe, as the co-
localization of Cpd and proinsulin is significantly higher in
Cpe-deficient b-cells (Fig. 2M and N).

bCpeKO Mice Do Not Develop Diet-Induced Obesity
and Diabetes
Unlike Cpe whole-body knockout mice or Cpe mutant mice
(12,13), 8 week-old bCpeKO mice do not develop early-
onset obesity and diabetes (males [Fig. 3A–C] and females
[Fig. 3D–F]). Islets from bCpeKO mice displayed insulin

secretion dynamics comparable with those of Wt islets (Fig.
3G), speaking against a role for Cpe as a granule-sorting re-
ceptor in b-cells. Interestingly, proinsulin was released upon
high glucose and KCl stimulation (Fig. 3H), suggesting that
the proinsulin-containing granules are likely equipped with
appropriate granule contents that allow for efficient granule
release. Rates of exocytosis were also comparable between
Wt and Cpe-deficient b-cells (Fig. 3I), although exocytosis
events proximal to the plasma membrane, measured by a
time-train depolarization experiment, were slightly reduced
in b-cells from bCpeKO mice (Fig. 3J).

To promote the development of obesity and insulin resis-
tance, we placed 8-week-old bCpeKO mice on a control LFD
(10% fat) or HFD (45% fat) for a duration of 6 months. In
the LFD-treated group, weight gain of bCpeKO mice was
similar to that of their Wt littermates (males [Fig. 4A] and
females [Fig. 4F]), suggesting that the lack of Cpe in b-cells
does not lead to spontaneous development of obesity. At
20 weeks post-LFD, male bCpeKO mice displayed modestly
increased fasting blood glucose levels (Fig. 4B); however, their
glucose tolerance, insulin tolerance, and percent fat mass,
measured at 16 weeks and 20 weeks post-LFD, remained
comparable with those of Wt littermates (Fig. 4C–E). Female
bCpeKO mice have slightly elevated fasting blood glucose lev-
els at 4 and 22 weeks post-LFD, yet displayed glucose toler-
ance, insulin tolerance, and body fat mass similar to those of
littermates (Fig. 4G–J). Inappropriate proinsulin processing
associated with b-cell Cpe deficiency does not contribute to
accelerated development of HFD-induced obesity (males
[Fig. 4K] and females [Fig. 4P]). Male and female bCpeKO
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Figure 1—Elevated proinsulin levels in bCpeKO mice. A–C: Expression of CPE in human and mouse pancreatic islet cells was analyzed
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mice showed fasting blood glucose levels, glucose tolerance,
insulin tolerance, and percent fat mass similar to those of
their littermates (Fig. 4L–O and Q–T).

Increased b-Cell Proliferation in Cpe-Deficient Mice
Despite comparable glucose tolerance, b-cell area in LFD-
treated bCpeKO male and female mice was elevated (Fig.
5A and B). Although HFD promoted compensatory b-cell
expansion in Wt mice, bCpeKO mice did not have an in-
crease in b-cell area (Fig. 5C and D). To study the cause
of increased b-cell area in bCpeKO mice on LFD, we first
examined the b-cell proliferation rate by analyzing the
frequency of Ki671 b-cells. However, the number of pro-
liferating b-cells in mice fed LFD for 6 months was too
low to allow for appropriate comparison between bCpeKO
and Wt mice (data not shown). We therefore isolated islets
from 10-week-old mice, cultured them in 5 or 20 mmol/L
glucose media for 72 h, and analyzed EdU incorporation in
insulin1 b-cells. b-Cell proliferation was significantly
elevated in islets from bCpeKO mice (Fig. 5E). We also

generated ibCpeKO mice by crossing Pdx1-CreER mice
with Cpeflox/flox mice (Fig. 5F). Shortly after oral tamoxi-
fen administration, male, but not female, ibCpeKO mice be-
come mildly glucose intolerant (Fig. 5G and H). To induce
b-cell proliferation, we treated ibCpeKO and their Wt litter-
mates with a 60% fat diet for 2 days and analyzed EdU in-
corporation in the mouse pancreas. We found that the
b-cell proliferation rate was significantly elevated in
ibCpeKO female mice (Fig. 5I [males] and Fig. 5J [females]).

Altered Glycolytic Gene Expression and Increased
(Pro)insulin Biosynthesis in Cpe-Deficient b-Cells
To identify the underlying molecular mechanisms contribut-
ing to increased b-cell proliferation in bCpeKO mice, we
performed transcriptomic analysis in sorted b-cells from Wt
and bCpeKO mice (Fig. 6A). As expected, Cpe was drastically
reduced in b-cells from bCpeKO mice. Expression of many
Hif1a-regulated genes (including Ldha, Hmox1, P4ha1, Pgk1,
Mif, Ak4, Bnip3, Pfkp, P4ha2, Slc2a1, and Pfkfb3) was in-
creased. Gene ontology analysis showed that expression of
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sulin and Cpd in Wt and bCpeKO b-cells was captured by STED microscope (10 consecutive z stack images per cell were taken from
mice with different genotypes, three cells were analyzed per genotype), and colocalization of proinsulin and Cpd was analyzed with the
Manders method. A.U., arbitrary units.
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genes related to glycolysis and hypoxia are enriched, while
hallmarks of pancreatic b-cells are reduced, in Cpe-deficient
mouse b-cells (Fig. 6B). We found that the rate of glucose
uptake into islet cells is comparable in bCpeKO and Wt mice
(Fig. 6C), and glycolytic flux analysis showed that bCpeKO
islet cells have an oxygen consumption rate similar to that
of Wt islet cells (Fig. 6D). Interestingly, despite elevated
(pro)insulin production (Fig. 6E) and increased accumulation
of proinsulin oligomers (28) (Fig. 6F), (pro)insulin protein
stability was not significantly reduced in islets from bCpeKO
mice (Supplementary Fig. 1), and canonical unfolded protein
response elements were not elevated in freshly isolated
bCpeKO islets (Supplementary Fig. 2A–E).

Dysregulated Mitochondrial Dynamics and Loss of
b-Cell Identity in Glucose-Challenged bCpeKO Islets
Because (pro)insulin production is elevated in bCpeKO islets,
we asked whether the morphology or function of the fuel-
providing mitochondria is altered in Cpe-deficient b-cells.
Electron micrograph analysis of mitochondrial images
showed that bCpeKO b-cells have similar area, yet reduced
size (Fig. 7A–C). Additional confocal image analysis showed
mitochondrial number, area, perimeter, and branch num-
ber were all reduced in bCpeKO b-cells (Fig. 7D–H), while
mtDNA content was not reduced (Fig. 7I). This suggests
that mitochondria in Cpe-deficient b-cells work to accom-
modate an increased demand for (pro)insulin synthesis.
Nevertheless, after prolonged glucose treatment, b-cells
from bCpeKO mice had reduced mitochondrial membrane
potential upon high glucose stimulation (Fig. 7J) and dis-
played elevated levels of mitochondrial and cellular reactive

oxygen species (ROS) (Fig. 7K and L). b-Cells from bCpeKO
mice have no increase in mitochondria biogenesis upon high
glucose culture, as Pgc1a transcript levels are not signifi-
cantly elevated (Fig. 7M). Islets from bCpeKO mice failed to
display elevated MafA transcript level upon high glucose
treatment (Fig. 7N). Rather, Aldh1a3 transcript levels were
significantly elevated, suggesting loss of b-cell identity in
bCpeKO islets (Fig. 7O). Glucose metabolism was likely al-
tered, as transcript levels of Pfkp were significantly increased
in bCpeKO islets (Fig. 7P). Of note, treatment of islets with
high glucose led to increased expression of endoplasmic re-
ticulum (ER) stress markers such as spliced Xbp1 (Xbp1s),
but bCpeKO islets showed no increase in Xbp1s (Fig. 7Q), in-
ferring that elevated proinsulin biosynthesis does not con-
tribute to increased ER stress in Cpe-deficient b-cells.

bCpeKO Mice Have Accelerated Development of
STZ-Induced Hyperglycemia
We administered bCpeKO and littermate mice with MLD-
STZ to induce cell dysfunction in a small portion of b-cells
and to create secretory stress in the remaining cells (Fig.
8A). bCpeKO mice showed higher blood glucose levels at
10 days after the last STZ treatment, compared with Cpe
heterozygous (bCpeHet) or Wt mice (Fig. 8B–D). bCpeKO
mice did not display increased STZ-induced b-cell death:
b-cell area (analyzed at 10 days post-STZ) and number of
TUNEL1 b-cells (analyzed at 3 days post-STZ) were similar
in bCpeKO and Wt mice (Fig. 8E and F). Building on our
finding of increased b-cell area in bCpeKO mice (Fig. 5A),
we found that buffer-treated bCpeKO mice had a higher
percentage of b-cells in their islets (Fig. 8G). Although
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Figure 3—Glucose tolerance and insulin secretion of bCpeKOmice. A: IPGTT was performed on 8-week-old chow-fed bCpeKO and litter-
mate males (n $ 5 per genotype). B and C: 4-h fasting blood glucose levels and body weight of 8-week-old chow-fed bCpeKO and litter-
mate males (n$ 5 per genotype). D: IPGTT was performed on 8-week-old chow-fed bCpeKO and littermate females (n$ 6 per genotype).
E and F: 4-h fasting blood glucose and body weight of 8-week-old chow-fed bCpeKO and littermate females (n $ 6 per genotype). G and
H: Insulin-like immunoreactivity and proinsulin-like immunoreactivity during perifusion of 1.67 mmol/L glucose, 16.7 mmol/L glucose, and
1.67 mmol/L glucose plus 30 mmol/L KCl (n = 5 and 5). I and J: Exocytosis, and exocytosis during a train of depolarization pulses with in-
creased duration, of b-cells from islets of bCpeKO andWtmice (>10 cells per mouse, three mice per genotype).
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MLD-STZ led to a modest increase in the percentage of
b-cells in Wt islets, it reduced the percentage of b-cells in
bCpeKO islets (Fig. 8G). In agreement with previous re-
ports, we showed that the portion of Glut21 b-cells was
reduced after MLD-STZ (Fig. 8H); however, the number of
Glut21 b-cells remained comparable in Wt and bCpeKO
mice. We also found an increased percentage of Aldh1a31

b-cells and increased ER stress markers in the islet cells
upon MLD-STZ treatment (Fig. 8I and Supplementary Fig.
2F). However, the deficiency of Cpe in b-cells did not
cause further elevation of ER stress, as immunofluores-
cence intensity of phosphorylated eIF2a, Atf4, and Bip
was comparable between MLD-STZ Wt and bCpeKO mice
(Supplementary Fig. 2). As the insulin antibody used for
immunostaining recognizes both proinsulin and mature in-
sulin, the increased mean fluorescence intensity observed
in b-cells from buffer-treated bCpeKO versus Wt mice
likely reflects the significantly elevated proinsulin protein
expression in bCpeKO islets (Fig. 8J). Upon STZ treat-
ment, insulin and Glut2 expression levels were significantly

reduced in bCpeKO, but not Wt, mice (Fig. 8J and K), sug-
gesting that b-cells in bCpeKO are more susceptible to se-
cretory stress–induced degranulation and dysfunction.
b-Cell maturity remained comparable, as islet Aldh1a3 ex-
pression levels were not further increased in STZ-treated
bCpeKO mice (Fig. 8L).

DISCUSSION

Cpe mutations in mice and humans lead to obesity and
hyperglycemia; however, the underlying cellular and phys-
iological mechanisms remain unknown. We hypothesized
that lack of Cpe in pancreatic b-cells is the main contribu-
tor to such clinical phenotypes because 1) Cpe is required
for proper proinsulin processing (3), 2) reduced expres-
sion of Cpe is associated with b-cell dysfunction in multi-
ple experimental models of diabetes (29–31), and 3) Cpe
may play a protective role in preventing b-cell death (32).
To address this hypothesis, we generated b-cell–specific
Cpe knockout mice. Our data indicate that while Cpe is
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Figure 4—Comparable glucose tolerance and weight gain in HFD-fed bCpeKO and littermate mice. Body weight and 4-h fasting blood
glucose were monitored every 2 weeks for 24 weeks for LFD-fed bCpeKO and their littermate male (A and B) and female (F and G) mice.
IPGTT was performed after 16 weeks of LFD treatment on male (C) and female (H) mice. ITT and body mass composition analysis were
performed after 20 weeks of LFD treatment on male (D and E) and female (I and J) mice (n $ 8 per group). Body weight and 4-h fasting
blood glucose were monitored every 2 weeks for 24 weeks, on HFD-fed bCpeKO and their littermate male (K and L) and female (P and Q)
mice. IPGTT was performed after 16 weeks of HFD treatment on male (M) and female (R) mice. ITT and body mass composition analysis
were performed after 20 weeks of HFD treatment on male (N and O) and female (S and T) mice (n$ 8 per group).
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important in normal proinsulin processing, Cpe deficiency
alone does not contribute to obesity or cause marked
dysglycemia.

Islets from bCpeKO mice contain markedly more proin-
sulin peptides, yet have detectable mature insulin peptide,
suggesting that another carboxypeptidase, likely Cpd, is
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Figure 5—bCpeKO mice have increased b-cell area and b-cell replication. A–D: b-Cell area was analyzed with insulin immunostaining of
pancreatic sections from male or female bCpeKO and littermate mice after 24 weeks of LFD or HFD (n $ 4 per group). E: We analyzed
b-cell replication rate by calculating EdU1 and insulin1 cells in dispersed bCpeKO and Wt islets treated with 5 mmol/L glucose or
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Figure 6—Altered glycolytic transcripts and increased proinsulin biosynthesis in bCpeKO islets. A: Transcriptomic analysis of islet b-cells from
16-week-old chow-fed bCpeKO andWtmice (n = 3 and 3). Data are presented as a volcano plot with significantly up- or downregulated genes an-
notated. B: Results fromGSEA are presented as EnrichmentMap. Red, upregulated gene sets; blue, downregulated gene sets.C: Glucose uptake
was analyzed by quantifying 2-NBDG fluorescence intensity of dispersed live islet cells from bCpeKO andWtmice via flow cytometer (n = 6 and 6).
D: Baseline-normalized oxygen consumption rate of dispersed islet cells from bCpeKO andWtmice was analyzed (technical triplicate per sample,
three samples per genotype). E: Freshly isolated islets were equilibrated in methionine-free media and pulsed with 5 mmol/L or 25 mmol/L
L-azidohomoalaine (AHA)-containing media for 90 min. Islet protein pellets were click conjugated with biotin alkyne, immunoprecipitated (IP) with
avidin, and analyzed with immunoblotting (IB) with use of streptavidin (Strep) and an anti-insulin antibody. F: Proinsulin oligomers were analyzed
with immunoblotting with an antibody against proinsulin oligomers (monoclonal antibody CCI-17). Down, downregulated; FCCP, carbonyl cyanide
4-(trifluoromethoxy)phenylhydrazone; MFI, mean fluorescence intensity; Oligo, oligomycin; Rot/AA, rotenone and antimycin A; Up, upregulated.
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compensating. In agreement with an in vitro study sug-
gesting that Cpe is essential for PC2-mediated peptide
processing (25), we showed that loss of Cpe results in re-
duced PC2 enzyme activity and increased N-terminally ex-
tended proIAPP (which is normally processed by PC2 into
mature IAPP [23]). Although total islet PC1/3 enzyme

activity was not changed in bCpeKO mice, PC1/3 protein
levels were elevated, suggesting that on a per-enzyme
basis, PC1/3 activity is likely reduced in bCpeKO b-cells.
To our surprise, even with markedly impaired proinsulin
processing and diminished output of mature insulin,
bCpeKO mice failed to develop obesity and hyperglycemia
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Figure 7—Mitochondrial morphology and function were disturbed in islet cells from bCpeKO mice. A: Representative electron micro-
graphs of mitochondria in b-cells from bCpeKO and Wt mice. B and C: Total mitochondria (Mt) area and average mitochondrial size in
b-cells were quantified. Each dot represents the average of two to six images from one mouse (>400 mitochondria were analyzed per
mouse) (n = 3 per genotype). D: Representative immunofluorescence staining of mitochondria with MTG in islet cells from bCpeKO and
Wt mice. E–H: Mitochondria numbers, area, perimeter, and branch number were quantified. Each dot represents one cell, 10–15 cells per
mouse, n $ 3 per genotype. I: mtDNA content of islets from bCpeKO and Wt mice was analyzed with quantitative RT-PCR with ND1
(mtDNA) and 16S (nuclear DNA [nDNA]) primer probes, presented as mtDNA-to-nDNA ratio (n = 5 per genotype). J–L: Mitochondrial mem-
brane potential, mitochondrial ROS levels, and cellular ROS levels were analyzed via live cell imaging in 5 mmol/L or 25 mmol/L
glucose–treated dispersed islet cells with use of TMRM, MTG, MitoSOX, and CellROX dyes. Each dot represents one cell, 10–15 cells per
mouse, n$ 3 per genotype.M–Q: Quantitative RT-PCR analysis of Pgc1a,MafA, Aldh1a3, Pfkp, and Xbp1s in bCpeKO andWtmouse is-
lets treated with 5 mmol/L or 25 mmol/L glucose for 48 h (n = 6 per group). A.U., arbitrary units; MFI, mean fluorescence intensity.
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Figure 8—bCpeKO mice have accelerated development of MLD-STZ–induced hyperglycemia. A: Timeline of MLD-STZ experiment.
B: Fasting blood glucose levels of bCpeKO and littermate mice administered with a buffer (empty circle with dotted line) or MLD-STZ (filled
circle with solid line). C and D: IPGTT was performed 7 days after the last STZ injection, and excursion area under the glucose tolerance
test curve was analyzed (n$ 10 per group). E: b-Cell area of MLD-STZ–treated bCpeKO andWtmice (n = 9 and 9). F: b-Cell death was an-
alyzed with use of pancreatic sections of MLD-STZ–treated bCpeKO andWtmice with TUNEL and insulin staining (n = 8 and 8). G–L: Fre-
quency and staining intensity of insulin1, Glut21, and Aldh1a31 cells in pancreatic sections of MLD-STZ bCpeKO and Wt mice were
analyzed. (G–I: Each dot represents one islet. J–L: Each dot represents average fluorescent intensity of islets from one pancreatic section
of one mouse; n $ 5 per group.) AUC, area under the curve; A.U., arbitrary units; GTT, glucose tolerance test; MFI, mean fluorescence
intensity.
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spontaneously or when challenged with an HFD, contrary
to a recent report that Pdx-CreERT-mediated Pcsk1 deletion
and elevated proinsulin promote the development of obe-
sity in mice (33). It is plausible that elevated proinsulin,
possessing 5% activity compared with insulin (34,35), is
sufficient to maintain glucose homeostasis. Another pos-
sibility is that obesity and overt hyperglycemia observed
in Cpe mutations are driven by insufficient Cpe and defec-
tive neuropeptide processing in other tissues, such as in
the hypothalamus, although mice with Cpe deletion in
proopiomelanocortin (POMC)-expressing neurons do not
become obese (36). Whether Cpe controls body weight and
metabolic homeostasis in non-POMC-expressing neuroen-
docrine cells remains to be tested.

b-Cells are able to adapt to increased insulin demand
by increasing production, secretion, and mass prior to hy-
perglycemia onset (37–39). bCpeKO mice have increased
proinsulin production and elevated b-cell area but remain
normoglycemic. Because protein overproduction may change
intrinsic metabolic pathways and alter b-cell fate (40), it is
plausible that increased demand caused by increased insulin
production (41) contributes to metabolic pathway rewiring
and concomitant b-cell proliferation in bCpeKO mice. In a
recent large-scale small molecule screen a compound was
identified that promotes protein synthesis and b-cell regen-
eration. The authors showed that the increased b-cell re-
generation is associated with hypo-translation of mRNAs
that are integral to mitochondrial-related processes (42). In
support of this idea, we observed altered glycolytic gene
signatures and changes in mitochondrial morphology and
membrane potential in bCpeKO b-cells. Oxygen consump-
tion rate was not reduced in islets from bCpeKO mice,
hinting that additional pathological stimuli are likely needed
to disrupt oxidative phosphorylation. Alternatively, metabolic
flux analysis may offer more quantitative insights into car-
bon metabolism and energy flow in islets with inherently ele-
vated proinsulin biosynthesis. It is also possible that the
increased proinsulin oxidative folding burden may create ER
redox imbalances (43), leading to increased mitochondrial
and cellular ROS levels. Future live-cell imaging experiments
with ROS biosensors could illuminate the cellular sequence
of events. Both mild ER stress and ROS have been reported
to facilitate b-cell proliferation (16,44). Despite an accumula-
tion of proinsulin oligomers (28), we failed to detect signifi-
cant changes in transcripts encoding ER chaperons or
unfolded protein response proteins. Of note, b-cell de-
differentiation markers Serpina7 (45) and Ldha (46) are re-
duced in sorted b-cells from normoglycemic bCpeKO mice,
suggesting that the slight loss of b-cell identity may occur
during early-stage b-cell compensation prior to the develop-
ment of hyperglycemia. Whether insulin biosynthesis impacts
insulin granule secretion requires further investigation. We
speculated that increased proinsulin biosynthesis burden and
altered glucose metabolism or redox handling capacity may
contribute to defects in coupling or translocation of granules
to the site of Ca21 channels, which results in reduced

exocytotic response of bCpeKO b-cells to a train of mem-
brane depolarizations. Alternatively, increased insulin produc-
tion may affect the composition of the secretory granule
membrane (47), which alters its interaction with plasma
membrane Ca21 channels or the fusion with plasma mem-
brane (48). It is also worth mentioning that we have not ana-
lyzed possible changes in paracrine signaling in bCpeKO
islets.

bCpeKO mice adapted to chronic dietary stress weight
gain and glucose tolerance similar to those of their litter-
mates. We administered bCpeKO mice and their littermates
with MLD-STZ to induce acute insulin secretory stress with-
out extensive b-cell death or loss of b-cell mass. MLD-STZ
led to loss of b-cell identity in both Wt and bCpeKO mice,
evidenced by an increased percentage of Aldh1a31 cells and
reduced Glut21 cells in islets. After MLD-STZ, bCpeKO mice
also had accelerated development of hyperglycemia and dis-
played reduced (pro)insulin and Glut2 expression levels in
b-cells. These findings were mirrored in vitro, as we ob-
served no induction of MafA, and increased Aldh1a3, in
high glucose–treated bCpeKO islets. We speculate that sub-
optimal mitochondrial function, or altered cellular redox
homeostasis, resulting from the combination of secretory
stress and Cpe deficiency, contributes to b-cell dysfunction
in MLD-STZ Cpe-deficient islets (49–51). It has been re-
ported that islets from Cpe mutant mice are more suscepti-
ble to palmitic acid–induced b-cell apoptosis (32). We were
unable to observe detectable differences in TUNEL1 b-cells
in MLD-STZ–treated bCpeKO 3 days after the last STZ in-
jection, when b-cell apoptosis rates are at their highest
(52). Instead, b-cells from bCpeKO mice have reduced
Glut2 expression, which may present an adaptive mecha-
nism to attenuate glucose uptake and metabolic stress–in-
duced b-cell death (53).

In summary, we demonstrated that loss of Cpe in pan-
creatic b-cells does not contribute to spontaneous devel-
opment of obesity and hyperglycemia in mice. However,
elevated proinsulin output likely reshapes b-cell glucose
metabolism and increases its susceptibility to secretory
stress–induced dysfunction and diabetes. Our model may
shed light on b-cell translational adaptation, which likely
occurs early during the development of diabetes. Addi-
tional studies in other prediabetes models and human is-
lets are needed for a better understanding of these early
adaptive events and will aid discovery of new therapeutic
targets to preserve b-cell function prior to the onset of
diabetes.
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