
Development/Plasticity/Repair

Mapping Genetic Topography of Cortical Thickness and
Surface Area in Neonatal Brains

Ying Huang,1 Zhengwang Wu,1 Tengfei Li,1 Xifeng Wang,2 Ya Wang,1 Lei Xing,3 Hongtu Zhu,2 Weili Lin,1

Li Wang,1 Lei Guo,4 John H. Gilmore,5 and Gang Li1
1Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina 27514, 2Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, 3UNC Neuroscience
Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, 4School of Automation, Northwestern Polytechnical
University, Xi’an, Shaanxi 710129, China, and 5Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North
Carolina 27514

Adult twin neuroimaging studies have revealed that cortical thickness (CT) and surface area (SA) are differentially influenced
by genetic information, leading to their spatially distinct genetic patterning and topography. However, the postnatal origins
of the genetic topography of CT and SA remain unclear, given the dramatic cortical development from neonates to adults. To
fill this critical gap, this study unprecedentedly explored how genetic information differentially regulates the spatial topogra-
phy of CT and SA in the neonatal brain by leveraging brain magnetic resonance (MR) images from 202 twin neonates with
minimal influence by the complicated postnatal environmental factors. We capitalized on infant-dedicated computational
tools and a data-driven spectral clustering method to parcellate the cerebral cortex into a set of distinct regions purely
according to the genetic correlation of cortical vertices in terms of CT and SA, respectively, and accordingly created the first
genetically informed cortical parcellation maps of neonatal brains. Both genetic parcellation maps exhibit bilaterally symmet-
ric and hierarchical patterns, but distinct spatial layouts. For CT, regions with closer genetic relationships demonstrate an an-
terior-posterior (A-P) division, while for SA, regions with greater genetic proximity are typically within the same lobe.
Certain genetically informed regions exhibit strong similarities between neonates and adults, with the most striking similar-
ities in the medial surface in terms of SA, despite their overall substantial differences in genetic parcellation maps. These
results greatly advance our understanding of the development of genetic influences on the spatial patterning of cortical
morphology.
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Significance Statement

Genetic influences on cortical thickness (CT) and surface area (SA) are complex and could evolve throughout the lifespan.
However, studies revealing distinct genetic topography of CT and SA have been limited to adults. Using brain structural mag-
netic resonance (MR) images of twins, we unprecedentedly discovered the distinct genetically-informed parcellation maps of
CT and SA in neonatal brains, respectively. Each genetic parcellation map comprises a distinct spatial layout of cortical
regions, where vertices within the same region share high genetic correlation. These genetic parcellation maps of CT and SA
of neonates largely differ from those of adults, despite their highly remarkable similarities in the medial cortex of SA. These
discoveries provide important insights into the genetic organization of the early cerebral cortex development.

Introduction
Cortical thickness (CT) and surface area (SA) are two essential
morphologic features of the cerebral cortex and have been widely
adopted in neuroimaging studies (Sowell et al., 2004; Hazlett et
al., 2011; Wierenga et al., 2014; Dubois and Dehaene-Lambertz,
2015; Lyall et al., 2015; F. Wang et al., 2019b). Although both CT
and SA have complex nonlinear and dynamic development,
especially during early postnatal stages (Knickmeyer et al., 2008;
Li et al., 2013, 2014a), each has its own distinct spatiotemporal
patterns (Raznahan et al., 2011; Storsve et al., 2014; Wierenga et
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al., 2014; Bethlehem et al., 2022). Specifically, CT increases rap-
idly after birth, reaches the peak at around 14months of age (F.
Wang et al., 2019b), and then gradually decreases thereafter
(Bethlehem et al., 2022). By contrast, SA expands to 69% of adult
size by two years of age (Lyall et al., 2015), peaks at ;11 years of
age (Bethlehem et al., 2022), and turns out to be the principal fac-
tor that drives the growth of the cerebral cortex after CT reaching
its peak (Wierenga et al., 2014). The early development of CT
and SA has critical influences on behavioral and cognitive abil-
ities as well as neurodevelopmental and neuropsychiatric disor-
ders (Stiles and Jernigan, 2010; Brown and Jernigan, 2012; Ecker
et al., 2014; Gerrits et al., 2016; Haring et al., 2016; Li et al., 2016;
Vijayakumar et al., 2016). Discovering the underlying mecha-
nisms that drive the distinct early development of CT and SA is
critical for better understanding of healthy and disordered
brains.

Intrinsic genetic mechanisms are widely perceived as one of
the major determinants of the patterns of CT and SA (Panizzon
et al., 2009; Winkler et al., 2010; Eyler et al., 2012; Jha et al., 2018;
Strike et al., 2019). Previous studies have reported that the dis-
tinct genetic influences on CT and SA change from neonates to
adults and exhibit regionally heterogeneous patterns (Panizzon
et al., 2009; Winkler et al., 2010; Eyler et al., 2012; Schmitt et al.,
2014; Jha et al., 2018; Strike et al., 2019; Teeuw et al., 2019; K. Xia
et al., 2022). For example, the genetic influence on the total SA,
whether in neonatal stage or in adulthood, is strong and signifi-
cant. In contrast, the genetic influence on the average CT is weak
and insignificant during the neonatal stage, although it increases
during adulthood (Panizzon et al., 2009; Jha et al., 2018). Previous
studies also revealed that the heritability estimates of CT (neo-
nates: 0.01–0.52, adults: 0.06–0.73) and SA (neonates: 0.01–0.76,
adults: 0.17–0.76) vary across cortical regions and age groups
(Winkler et al., 2010; Jha et al., 2018). With reference to the above,
genetic-based region-specific patterns of CT and SA may provide
important information to many brain disorders. Nowadays, a se-
ries of studies on how genetic factors influence the formation of
region-specific patterns of CT and SA have been performed using
structural magnetic resonance imaging (MRI) of adult twin brains
(Rubenstein et al., 1999; Panizzon et al., 2009; Chen et al., 2011,
2013; Schlaggar, 2011). The distinct genetic-based cortical parcel-
lation maps of CT and SA in adults and their different organizing
principles thus have been unveiled (Chen et al., 2011, 2013), pro-
viding us valuable references for understanding cortical regional
specialization and potential genetic vulnerabilities associated with
brain disorders. However, it remains unknown how genetic fac-
tors regulate the initial spatial patterns of CT and SA after birth,
and whether they are preserved through postnatal development or
evolve with age.

To fill this knowledge gap, we aimed to discover the initial ge-
netically-regulated spatial patterns of CT and SA by taking
advantage of neonatal twins. The motivation is that CT and SA
in the neonatal brains are mainly genetically determined and
minimally affected by the complicated postnatal environmental
factors and thus are ideal candidates for discovering the postnatal
origins of genetically influenced patterns. Furthermore, existing
studies have demonstrated the genetic hierarchy of cortical area-
lization in animals (O’Leary et al., 2007) and the hierarchical
transcriptional architecture of the human brain regions (Kang et
al., 2011). Consistent with these findings, researchers also
unveiled the hierarchical cortical genetic parcellation maps of
adult CT and SA (Chen et al., 2013). We thus reasonably specu-
late that the cortical genetic parcellation maps of neonatal CT
and SA should also be hierarchical.

To this end, brain structural MRI scans from 202 same-sex
neonatal twins from the University of North Carolina (UNC)
Early Brain Development Study, including monozygotic (MZ)
twins and dizygotic (DZ) twins, were used in this study. The clas-
sical twin analysis model (Maes, 2005; Neale and Cardon, 2013),
also termed as ACE model, was adopted to estimate the genetic
and environmental influences on the variances of CT and SA,
and to compute the genetic correlations between different verti-
ces on the cortical surface. Accordingly, we leveraged the data-
driven spectral clustering (Ng et al., 2001; Von Luxburg, 2007)
method to generate genetic parcellation maps of CT and SA in
neonatal brains. Since vertices within the same region are maxi-
mally genetically correlated, the resulting parcellation maps well
represent the genetically regulated topography of CT and SA in
neonates. Then, we calculated the pair-wise genetic similarity
matrices among regions of discovered genetic parcellations of
CT and SA, respectively. Based on these two genetic similarity
matrices, we adopted the dendrogram to further explore the hier-
archical genetic organization among regions of genetic parcella-
tions of CT and SA, respectively.

Materials and Methods
Participants
The Institutional Review Boards of the University of North Carolina at
Chapel Hill and Duke University Medical Center (DUMC) approved
this study. Pregnant mothers, who have provided written informed con-
sent for this research, were recruited during their second trimesters of
pregnancy from prenatal diagnostic clinics at UNC Hospitals and
DUMC. Subjects with abnormal fetal ultrasounds or mothers with major
medical diseases or psychiatric illnesses were excluded from this study.
Subjects included in this study had no congenital anomaly, significant
medical illness, or MRI abnormality (Gilmore et al., 2012). Structural
MR images from 202 neonates, including 112 DZ twins and 90MZ twins
with same sex, were adopted in this study. The detailed demographic in-
formation is shown in Table 1.

MRI acquisition
All T1-weighted and T2-weighted images were collected on a Siemens
head-only 3T scanner. Acquired with a 3D magnetization-prepared
rapid gradient echo (MPRAGE) sequence, the acquisition parameters of
T1-weighted images (160 sagittal slices) are: TR/TE¼ 1,820/4.38ms, flip
angle¼ 7°, inversion time¼ 1,100ms, and resolution¼ 1� 1 � 1 mm3.
T2-weighted images (70 transverse slices) were acquired with the
turbo spin-echo (TSE) sequences and acquisition parameters are:
TR/TE¼ 7,380/119 ms, flip angle¼ 150° and resolution ¼1.25�
1.25� 1.95 mm3.

Image processing and cortical surface reconstruction
All T1-weighted and T2-weighted MR images were processed using
an infant-dedicated computational pipeline (http://www.ibeat.cloud/)
described previously (Li et al., 2014a, 2015, 2019; L. Wang et al., 2018,
2023). The processing procedure contains the following main steps:
(1) correction of intensity inhomogeneity of both T1-weighted and
T2-weighted MR images using the N3 method (Sled et al., 1998); (2)
linear alignment of each T2-weighted image onto its corresponding
T1-weighted image using FLIRT (Smith et al., 2004); (3) removal of
brain skull, brainstem, and cerebellum using a deep learning-based
method (Zhang et al., 2019); (4) segmentation of brain tissues into

Table 1. Demographic information of used neonatal twins

All Male Female

Subject numbers 202 110 92
PMW at birth 35.486 2.27 35.536 2.26 35.416 2.31
PMW at scan 40.806 1.77 40.736 1.64 40.896 1.92

PMW: postmenstrual weeks
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white matter, gray matter and cerebrospinal fluid through a deep
learning-based segmentation method (L. Wang et al., 2018); (5) sepa-
ration of each brain into left and right hemispheres with noncortical
regions filled with white matter.

After that, cortical surfaces of each MRI scan were reconstructed by
the following steps: (1) correction of topological defects of white matter
using a learning-based topological correction method (Sun et al., 2019);
(2) reconstruction of the inner cortical surface of each hemisphere by
tessellating the corrected white matter as a triangular mesh; (3) recon-
struction of the outer cortical surface of each hemisphere by deforming
the inner cortical surface outwards while avoiding mesh self-intersection
(Li et al., 2012, 2014a); and generation of the middle cortical surface as
the geometric average of the inner and outer cortical surfaces; (4) map-
ping the inner cortical surface onto a standard sphere while minimizing
the geometric distortion (Fischl et al., 1999). To enable the vertex-wise
intersubject comparison and analysis of CT and SA, we further regis-
tered each mapped spherical surface onto the age-matched template in
the UNC 4D Neonatal and Infant Cortical Surface Atlases (Wu et al.,
2019) using Spherical Demons (Yeo et al., 2009) and accordingly
resampled each surface to a 163,842 standard mesh tessellation to build
the vertex-to-vertex cortical correspondences across subjects. For each
vertex, CT was computed as the minimum distance between the inner
and outer surfaces, while SA was computed as one-third the sum of areas
of all triangles associated with that vertex on the resampled middle
cortical surface. The 163,842 vertex-wise CT and SA maps were then
smoothed using iterative nearest neighbor averaging with 2560 iterations
as previously described (Chen et al., 2013; F. Wang et al., 2019b). To
reduce the computational cost of discovering the genetic regions, we
further resampled CT and SA maps to have 2562 vertices on each
hemisphere.

Twin analysis
The common model in twin analysis is the standard ACE model, which
assumes that the variation in a phenotype is caused by additive genetic
effects (A), common environmental effects (C), and individual-specific
environmental effects (E; Maes, 2005; Neale and Cardon, 2013). In the
univariate ACE model, the genotypes of MZ twins are identical and thus
share 100% of their genes, while DZ twins share 50% of their genes. The
common environmental effects among members of a twin pair are
equal, despite their zygosity. As for the individual-specific environ-
mental effects, they are independent across members of any twin
pairs.

The bivariate ACE model is an extension of the univariate ACE
model (Maes, 2005; Neale and Cardon, 2013). It can not only decompose
the phenotypic variance into genetic and environmental variances,
but also decompose the covariance between phenotypes into genetic
and environmental covariances. Therefore, the genetic and environ-
mental correlations between phenotypes can be estimated according
to the genetic and environmental covariances. Of note, genetic corre-
lations reflect the degree to which two phenotypes share genetic var-
iance based on twin data. Mathematically, the genetic correlation
between two phenotypes is calculated as the genetic covariance of two
phenotypes divided by the square root of the product of their separate
genetic variances (Neale and Cardon, 2013).

Since we aimed to, respectively, obtain the genetic correlations of CT
and SA between any two vertices on the cortical surface, we adopted the
standard bivariate ACE model, as in previous studies of genetic influence
on CT (Panizzon et al., 2009; Rimol et al., 2010; Chen et al., 2013).

To avoid additional confounding sex effects within twins, we focused
on twin pairs with the same sex. Thus, the adopted 202 subjects in this
study are all same-sex twins. Before model fitting, the mean CT and total
SA of the whole cerebral cortex were, respectively, regressed out from
the CT and SA at each vertex through the linear regression as in (Chen
et al., 2012, 2013; Jha et al., 2018).

Discovering genetic parcellations with spectral clustering
To discover the genetic parcellations of CT and SA in neonates, after
obtaining their genetic correlation matrices, we leveraged the spectral
clustering method (Ng et al., 2002; Von Luxburg, 2007) to group cortical

vertices into a set of distinct regions. The main motivation of using spec-
tral clustering is that it is flexible to discover clusters with arbitrary
shapes according to the realistic distribution of data similarity (Meila,
2016). Specifically, spectral clustering transforms the data similarity
matrix into eigenspace and represents the similarity matrix with top
k decomposed eigenvectors, thus can better capture the distribu-
tions of the data similarity for identifying clusters. Given a similarity
matrix S 2 Rn�n, where n denotes the total vertex numbers of both
left and right hemispheres, and the predefined region number k, the
spectral clustering method will: (1) calculate a diagonal degree ma-

trix D 2 Rn�n with Dii ¼
Xn

j¼1
Sij; (2) compute the normalized

Laplacian L ¼ I � D�1=2SD�1=2, where I is the identity matrix; (3)
compute the top k eigenvectors u1; :::; uk of L, and arrange them in
columns to form a matrix U 2 Rn�k; (4) normalize each row of U to

norm 1 to form the matrix T 2 Rn�k with tij ¼ ui;j=ð
X

k
u2i;kÞ1=2; (5)

treat each row of T as a point in Rk and perform K-means method to
cluster the points into k clusters.

In this study, Sij corresponds to r
i;j
A , which represents the genetic cor-

relation between vertices i and j of CT or SA. To take advantage of
strong positive correlation between vertices, before feeding the genetic
correlation matrix into spectral clustering, we empirically processed the
matrix by keeping the top 20% of the correlations and setting others to
0, similar to previously published work (Yeo et al., 2011). After perform-
ing the spectral clustering, the vertices on the cortical surface were
grouped into k regions, each with distinct genetic influence, leading to a
genetic parcellation map.

To determine an appropriate region number of genetic parcellation,
we applied the widely used silhouette coefficients (Rousseeuw, 1987)
adopted in many previous studies (Chen et al., 2012, 2013; F. Wang et
al., 2019a,b; J. Xia et al., 2019). The silhouette coefficients of the vertex i
denoted as sc ið Þ based on both intraregion and inter-region dissimilarity

is calculated as: sc ið Þ ¼ min b ið Þ � a ið Þð Þ
max min b ið Þð Þ; a ið Þ

� � ; i ¼ 1; 2; � � � ; n. Herein,

a ið Þ denotes the average intra-region dissimilarity between vertex i and
all other vertices in the same region, while b ið Þ denotes the minimum
average inter-region dissimilarity of vertex i with vertices in other
regions. The dissimilarity between any two vertices was computed as
1� Si;j where Si;j is genetic similarity between vertices i and j. The av-
erage silhouette coefficient from all vertices is used. High average sil-
houette coefficients indicate better clustering results with large inter-
region dissimilarity and small intraregion dissimilarity.

Since the previous adult twin studies (Chen et al., 2013) determined
12 as the appropriate region number under genetic influence, we set the
region number k ranging from 2 to 15 in this study for comparison.
Then the average silhouette coefficient was used to determine the most
appropriate region number to further investigate the genetic parcellation
maps in neonates. Finally, we explored the genetic relatedness between
discovered distinct regions and constructed a dendrogram accordingly.

Results
Genetic parcellation maps of neonatal CT and SA
We first identified the genetic parcellation maps of CT and SA
on both left and right hemispheres (Figs. 1, 2), with region num-
bers k increasing from 2 to 15, respectively. As can be seen, the
discovered genetic parcellation maps of both CT and SA appear
to be bilaterally symmetric across most regions, although we did
not impose any constraint for hemispheric symmetry. Moreover,
with the region number increasing, newly emerged regions
largely follow the previously formed region boundaries and yield
the meaningful hierarchical genetic parcellations of CT and SA.
Meanwhile, the discovered genetic parcellation maps of CT differ
remarkably from SA.

As for CT (Fig. 1), when the region number k equals to 2, the
unveiled two-region basic genetic parcellation exhibits an ante-
rior-posterior (A-P) division, which separates the frontal and
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Figure 2. Genetic parcellation maps of SA on both left and right hemispheres of neonates, with region numbers increasing from 2 to 15. The arrows indicate some region boundaries consis-
tently preserved across different region numbers.

Figure 1. Genetic parcellation maps of CT on both left and right hemispheres of neonates, with region numbers increasing from 2 to 15. The black and yellow arrows indicate some region
boundaries consistently preserved across different region numbers.
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insular cortices from other cortices. When increasing the region
number to 4, the medial parietal-occipital boundary, indicated
by yellow arrows, emerges and is well preserved till the 15-region
partition. Besides, the boundary of the lateral occipital cortex,
indicated by black arrows, appears when region number is three
and exists until the region number reaches 15.

Regarding SA (Fig. 2), the identified two-region basic
genetic parcellation roughly demonstrates an A-P division
on the lateral surface, but a lateral-medial division on the
medial surface. The lateral occipital boundary indicated by
magenta arrows consistently exists with region numbers
from 5 to 15. Moreover, the medial occipital boundary indi-
cated by green arrows also appears when the region number
is 5 and is well preserved until the region reaches 15.
Meanwhile, the boundary, which separates the frontal and
nonfrontal parts and is indicated by blue arrows, is consis-
tently well-preserved from 2 to 15 regions.

Then we estimated the average silhouette coefficients of
genetic parcellation maps with different region numbers to
help discover the appropriate region number. Accordingly,
the appropriate region number was determined based on
two criteria: (1) having a relatively high value of silhouette
coefficient, which indicates better quality of a parcellation;
(2) having relatively stable silhouette coefficients across the
neighboring region numbers. The silhouette coefficient of
CT (Fig. 3) increases from k ¼ 2 to k ¼ 9 and then becomes
relatively stable from k ¼ 10 to k ¼ 15. While the silhouette
coefficient of SA keeps increasing from k ¼ 2 to k ¼ 11 and
then gradually decreases to reach a local minimum at
k ¼ 13. Although the local maximal values were reached
when k ¼11 for both CT and SA, to make a direct compari-
son between our neonatal parcellation results and the pub-
lished 12-region parcellation results of adults (Chen et al.,
2013) and meanwhile consider the above criteria, we took
12-region as the final parcellation results of CT and SA
in neonates (Figs. 4A, 5A). Since the region order has no
influence on our results, to make the order number of each
column of the pair-wise genetic similarity matrix to be con-
tinuous, we re-ordered the original region order directly
derived from the spectral clustering. Therefore, regions in
Figures 4A and 5A were labeled according to the order
numbers of columns in the pair-wise genetic similarity mat-
rices of CT and SA, respectively. In addition, to make a

better visual comparison between neonates and adults, we
labeled the relatively similar regions in their corresponding
parcellation maps with the same color.

The parcellation maps with 12 regions of CT and SA in neo-
nates (Figs. 4A, 5A) approximately correspond to the structur-
ally or functionally meaningful regions. With approximate
names shown below the parcellation map, discovered genetic
regions of CT approximately correspond to: (1) superior parie-
tal cortex, (2) precuneus and cingulate, (3) medial occipital cor-
tex, (4) anteromedial temporal cortex, (5) perisylvian, inferior
parietal and lateral temporal cortex, (6) middle precentral and
postcentral, (7) lateral occipital cortex, (8) superior precentral
and postcentral, (9) superior frontal cortex, (10) anterior frontal
cortex, (11) anterior insula, and (12) dorsolateral prefrontal
cortex. The genetic parcellation map of CT in neonates (Fig.
4A) is largely different from that in adults (Fig. 4B), except for a
few regions in the posterior and medial surfaces. For example,
region 1 (superior parietal cortex), region 3 (medial occipital
cortex), region 4 (anteromedial temporal cortex), region 7 (lat-
eral occipital cortex), and region 10 (anterior frontal cortex) in
neonates are roughly consistent with region 2, region 6, region
9, region 5, and region 7 of adults, respectively.

The discovered genetic regions of SA in neonates (Fig. 5A)
approximately correspond to: (1) superior parietal cortex, (2)
primary somatosensory, (3) inferior parietal and posterior peri-
sylvian, (4) precuneus, (5) dorsomedial frontal cortex, (6) antero-
medial temporal cortex, (7) middle temporal cortex, (8) lateral
temporal-occipital junction, (9) medial occipital cortex, (10)
medial orbitofrontal and dorsolateral prefrontal cortex, (11) an-
terior insula and ventral orbitofrontal, and (12) premotor and
primary motor. Strikingly, genetic parcellation maps of SA in
neonates (Fig. 5A) and adults (Fig. 5B) seem to resemble each
other in many regions, especially for regions in the medial sur-
face. For example, region 1 (superior parietal cortex), region 12
(premotor and primary motor), region 4 (precuneus), region
5 (dorsomedial frontal cortex), region 6 (anteromedial tempo-
ral cortex), and region 9 (medial occipital cortex) in neonates,
respectively, correspond well to region 10, region 1, region 11,
region 3, region 8, and region 12 in adults (Fig. 5B).

Hierarchical organization of genetic regions
After discovering the above genetically distinct regions, we tried
to reveal the hierarchical organization between these regions.

Figure 3. Average silhouette coefficients of genetic parcellations with different numbers of regions. The yellow and blue colors represent silhouette coefficients of CT and SA, respectively.
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Figure 5. Comparison of genetic parcellation maps of SA in neonates and adults. A, Our discovered genetic parcellation map with 12 regions in neonates. B, The published genetic parcella-
tion map with 12 regions in adults (Chen et al., 2013).

Figure 4. Comparison of genetic parcellation maps of CT in neonates and adults. A, Our discovered genetic parcellation map with 12 regions in neonates. B, The published genetic parcella-
tion map with 12 regions in adults (Chen et al., 2013).
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First, to visualize the genetic proximity between these regions,
we built their pair-wise genetic similarity matrix, with each
row and column corresponding to the sorted region number.
Specifically, based on the genetic correlation matrix obtained
from twin analysis, each cell in the pair-wise genetic similarity
matrix is the average of genetic correlations within and
between regions as described previously (Chen et al., 2011,
2013). Then, based on the pair-wise genetic similarity matrix
of CT or SA, we performed the hierarchical clustering method
to group the genetic regions into a multilevel cluster tree or
dendrogram to represent the genetic organization among
regions. Since the dendrogram shows the hierarchical rela-
tionship between regions, it can help us to make a direct com-
parison of the hierarchical organizations of CT and SA. The
color bars of heatmaps represent the mean genetic correla-
tions within and between regions of CT (SA), where higher
values indicate closer genetic relatedness.

As can be observed from the dendrograms (Fig. 6A,B),
which are, respectively, derived from the pair-wise genetic simi-
larity matrix of CT and SA, the hierarchical relationship
between genetic regions of CT differs remarkably from that of
SA. Specifically, genetic correlations of SA (Fig. 6B) between
regions within the same lobe are higher than those from differ-
ent lobes, except for the precuneus cortex (region 4), dorsolat-
eral frontal cortex (region 5), and medial occipital cortex
(region 9). Regions that are genetically more similar in SA can
be roughly grouped as: (1) parietal lobe, including the superior
parietal cortex, primary somatosensory cortex, inferior parietal
and posterior perisylvian, as well as precuneus cortex (regions
1–4); (2) temporal lobe, including the anteromedial temporal
cortex, middle temporal cortex and the lateral temporal-occipi-
tal junction (regions 6–8); (3) frontal lobe, including the medial
orbitofrontal and dorsolateral prefrontal, anterior insula and
ventral orbitofrontal, and premotor and primary motor cortex
(regions 10–12).

The genetic organization of CT (Fig. 6A) among regions dif-
fers remarkably from that of SA (Fig. 6B). The organization

among genetic regions of CT (Fig. 6A) can be roughly di-
vided into frontal and nonfrontal parts, which can also be
considered as an A-P division. Specifically, the frontal parts
approximately contain the superior precentral and postcen-
tral (region 8), superior frontal cortex (region 9), anterior
frontal cortex (region 10), anterior insula (region 11), and
dorsolateral prefrontal cortex (region 12). While the non-
frontal parts cover the superior parietal cortex (region 1),
precuneus and cingulate (region 2), medial occipital cortex
(region 3), anteromedial temporal cortex (region 4), perisyl-
vian, inferior parietal and lateral temporal cortex (region 5),
middle precentral and postcentral (region 6), and the lateral
occipital cortex (region 7). Meanwhile, in the nonfrontal
parts, regions with strong genetic correlation are typically
spatially adjacent, but come from different lobes, e.g., regions 1
and 2, regions 3 and 4, and regions 5 and 6.

Discussion
To our knowledge, this is the first study to comprehensively
explore the early postnatal genetic topography of CT and SA
using neonatal twins. We found that the genetic parcellations of
both CT and SA are bilaterally symmetric, and the discovered
regions largely correspond to existing structural or functional
parcels (Tzourio-Mazoyer et al., 2002; Desikan et al., 2006;
Gordon et al., 2016). Of note, we performed the spectral cluster-
ing purely based on the genetic correlation matrix without any
restrictions for hemispheric symmetry or anatomic knowledge,
thus the naturally-formed bilaterally symmetric regions may
reflect the intrinsic constraint of genetic regulation on cortical
regionalization (formation of structurally and functionally dis-
tinct cortical regions) of both hemispheres, consistent with the
observation in previous adult research (Wilkinson et al., 1989;
Fraser et al., 1990; Puelles and Rubenstein, 2003; Tomancak et
al., 2007).

We found that when the region number is 2, the basic genetic
parcellations of CT and SA are similar to some extent on the

Figure 6. Hierarchical organization of our discovered genetic regions in neonates. A, B, Dendrograms derived from 12 regions based on the pair-wise genetic similarity matrix among clusters
of CT and SA, respectively. C, D, Corresponding genetic parcellation maps with region locations labeled in number. Heatmaps represent the pair-wise genetic similarity matrix among regions of
CT (C) and SA (D).
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lateral surface, as both roughly exhibit an anterior-posterior (A-
P) division. As initial patterns of CT and SA are mainly deter-
mined by genetic factors before birth, these findings suggest
that genetic influence in forming the initial patterns of CT and
SA may be similar on the lateral surface on a coarse scale. Such
results are generally consistent with previous studies that signif-
icant genetic overlap exists between CT and SA in infants (Jha
et al., 2018). Studies in rodent models show that the initiation
of cortical regionalization is predominantly driven by intrinsic
genetic mechanisms involving morphogen gradients along the
A-P, dorsal-ventral (D-V), and medial-lateral (M-L) axes of the
developing cortex (O’Leary et al., 2007; Sansom and Livesey,
2009). These morphogens, which play critical roles in neuro-
genesis and progenitor cell proliferation (Tiberi et al., 2012),
may serve as the common factors affecting the development of
both CT and SA. Unlike in neonates, very little genetic correla-
tion is found between CT and SA in adults (Chen et al., 2013).
Moreover, in adults, the basic genetic regions of SA follow an
A-P division, while the basic genetic regions of CT follow a D-
V division (Chen et al., 2013). A possible explanation is that CT
and SA may share similar genetic influences in neonates on a
coarse scale, which subsequently diverge over time, leading to
differences in basic genetic patterns between neonates and
adults (K. Xia et al., 2022).

When the region number is 12, the genetic parcellations of
CT and SA demonstrate significantly distinct patterns. As in the
radial unit hypothesis of cerebral cortex development (Rakic,
1988, 2000), SA is determined by the number of radial columns,
whereas CT is under the influence of the number of cells within
a column. The two different processes may be manipulated by
their unique regulatory genes and thus leading to distinct genetic
patterns between CT and SA. In fact, a large-scale human study
reveals that CT and SA are associated with largely distinct com-
mon genetic variants (Grasby et al., 2020). For example, SA is
associated with common genetic variants affecting the Wnt sig-
naling pathway (Nusse and Varmus, 1992; Nusse, 2005), which
regulates progenitor cell expansion. On the contrary, CT is asso-
ciated with common genetic variants affecting genes functioning
in neural differentiation, migration, and myelination.

Moreover, since the patterns of CT and SA in neonates are
mainly genetically determined and inevitably suffer from compli-
cated postnatal environmental influence during development,
the similar patterns of SA and different patterns of CT between
neonates and adults may suggest that SA is under strong genetic
influence, while CT has weaker genetic influences and is more
likely influenced by environmental factors (Jha et al., 2018,
2019). Previous studies have revealed that SA is mainly deter-
mined by the shape of cortical folding (Mota and Herculano-
Houzel, 2015; Garcia et al., 2018), which features the greatest de-
velopment during the third trimester of pregnancy and has been
well formed at term birth, especially for the primary and second-
ary cortical folds (Armstrong et al., 1995; White et al., 2010; Li et
al., 2014b). Although SA undergoes more growth than CT from
birth to adulthood, the SA expansion of the medial surface is less
than the lateral surface (Li et al., 2013). Therefore, SA may
intrinsically suffer from less postnatal environmental influences,
especially for the medial surface, and keep relatively stable
genetic patterns across the lifespan. Furthermore, though the
peaking time of the average CT is around 14months of age (F.
Wang et al., 2019b), rather earlier than the total SA peaking at
around 11 years of age (Bethlehem et al., 2022), CT still shows
age-related changes across the lifespan and tends to thin after
reaching its peak (Wierenga et al., 2014; Bethlehem et al., 2022).

This processing is driven by age-related biological procedures, e.
g., synaptic pruning (Stiles and Jernigan, 2010; Lyall et al., 2015)
and myelination (Natu et al., 2019), which are reported to be
influenced by environmental factors (Tooley et al., 2021).
Moreover, compared with SA, CT is more sensitive (Hutton et
al., 2009; Winkler et al., 2012) and vulnerable to postnatal envi-
ronmental influences, likely leading to different genetic topogra-
phy between neonates and adults.

These findings are also consistent with previous studies of
genetic influences on CT and SA at different developmental
stages. For example, in a neonatal twin study, genetic influences
on the total SA (0.78) are significant and stronger than that on
the average CT (0.29; Jha et al., 2018). Meanwhile, with twins
between zero and two years of age, researchers found relatively
stronger genetic influences on SA (0.59 in neonates, 0.74 in one-
year olds, and 0.73 in two-year olds) than on CT (0.48 in neo-
nates, 0.37 in one-year olds, and 0.44 in two-year olds) across all
three examined age groups (K. Xia et al., 2022). Additionally,
studies with participants between three and 20 years of age indi-
cated that shared environmental influences (socioeconomic sta-
tus) are larger on changes of CT than on changes of SA (Piccolo
et al., 2016).

We also found that the hierarchical organization of CT
among the 12 regions is different from that of SA. Roughly
organized according to four cortical lobes, the discovered genetic
regions of SA within the same lobe are genetically more corre-
lated than regions across lobes, consistent with the organization
principle of SA in adults (Chen et al., 2013). This suggests rela-
tively little postnatal environmental influences on the genetic or-
ganization principle of SA. Nevertheless, the organization of CT
in neonates does not always follow this principle. Specifically, for
CT in neonates, clusters with closer genetic correlation roughly
correspond to an A-P division, which separates the cerebral cor-
tex into frontal and nonfrontal parts. Moreover, in the nonfron-
tal parts, regions with strong genetic correlations are typically
from different lobes. According to the previous study on the de-
velopmental topography of CT during infancy (F. Wang et al.,
2019b), this potentially reflects the differential maturation pat-
terns of CT. For example, most regions in nonfrontal cortices
reach their peaks of CT during the second postnatal year, while
many regions in the frontal cortex show a monotonical increase
of CT during the first two postnatal years, e.g., regions 8, 9, and
12 in Figure 4A. Previous adult studies also suggested that
regions with close genetic similarity in CT tend to have similar
maturational timing (Chen et al., 2013). Taken together, these
findings suggest CT and SA have distinct organizational princi-
ples for genetic similarity among discovered regions since birth,
which differentially evolve from neonates to adults.

It is also worth noting that the A-P division of the genetic or-
ganization of CT in neonates in our study aligns with prior stud-
ies investigating the evolution of the cerebral cortex. For
example, previous studies discovered that both genetic correla-
tion and structural covariance of CT in adults exhibited an A-P
pattern (Valk et al., 2020). A comparable organization of struc-
tural covariance of CT in macaques is also present, potentially
indicating that the A-P division is phylogenetically conserved
during evolution. Further studies of the genetic organization of
CT in macaques are needed to confirm this.

Although the revealed genetic parcellations of CT and SA in
neonates are neurobiologically meaningful, some limitations in
our study should be noted. First, our study only contains neona-
tal twins, thus further studies with twin data from different
developing age groups is needed to fill the gap of genetic
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parcellations of CT and SA between neonates and adults.
Second, genetic factors affect human cortical structures, which
can be characterized not only by CT and SA, but also by other
cortical features, e.g., cortical folding, gyrification, and functional
connectivity. Future studies might be performed on how genetic
factors influence other cortical features to complement the
research on genetically influenced cortical parcellations during
early brain development. Third, since many neurodevelopmental
disorders are rooted during infancy, future research should be
performed to explore whether genetic parcellations can help
identify early biomarkers for early interventions.

In summary, this study has three contributions. First, leverag-
ing the neonatal twins, for the first time, we revealed the post-
natal origins of the genetic topography of CT and SA. The
genetically informed parcellation maps of CT and SA are dis-
tinct, but both tend to be hierarchically organized and bilaterally
symmetric and correspond well to existing structurally or func-
tionally meaningful regions. Second, by comparing our revealed
genetic parcellations in neonates with those in adults, we found
their larger differences in most regions, but also striking similar-
ities in many regions in terms of surface area, especially on the
medial surface. Third, we showed that CT and SA have distinct
organizational principles of genetic similarity among regions in
the generated parcellation maps since birth, which differentially
evolve from neonates to adults. These results help us better
understand how genetic factors shape the initial postnatal organ-
izational patterns of CT and SA and provide important referen-
ces for future studies of the genetic contribution to the
development of CT and SA. Our generated genetically informed
cortical parcellation maps of CT and SA will be publicly available
on our website.
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